1
|
Wang H, Zhu C, Swamynathan MM, Rajput S, Jayanetti K, Rendina D, Takemura K, Bogdan D, Wang L, Rizzo RC, Kaczocha M, Trotman LC, Bialkowska AB, Ojima I. Fatty acid binding protein 5 inhibitors as novel anticancer agents against metastatic castration-resistant prostate cancer. Bioorg Med Chem 2025; 122:118136. [PMID: 40058274 DOI: 10.1016/j.bmc.2025.118136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025]
Abstract
Prostate cancer (PCa) is one of the most common malignancies diagnosed among men and is the second leading cause of cancer-related death. Despite recent advancements in early diagnosis of PCa, androgen deprivation therapy (ADT) remains the most common treatment of PCa. Docetaxel (DTX) and Cabazitaxel (CTX) are two of the most extensively used drugs for metastatic castration-resistant prostate cancer (mCRPC). However, there is a clear medical need for newer and more efficacious therapies for CRPC. FABP5 is overexpressed in prostate cancer cells and chaperones fatty acids to PPARs, which leads to the upregulation of proangiogenic factors, resulting in cell survival and metastasis. The critical role and upregulation of FABP5 in PCa make FABP5 an excellent druggable target for CRPC. We reported a promising anti-PCa activity of truxillic acid monoester (TAME)-based FABP5 inhibitors (SB-FIs) and their synergy with DTX and CTX in vitro and in vivo against PC-3 cells and PC-3 tumor xenografts. In the present work, we performed an extensive SAR study on the potencies of 2nd- and 3rd-generation SB-FIs against PC-3 and RCaP cell lines. RCaP is a mouse PCa cell line, resistant to anti-androgen and first-line taxane chemotherapies, and shows a high level of the Fabp5-gene. This SAR study led to the identification of a number of 3rd-generation SB-FIs with strong cytotoxicity against these two PCa cell lines. Cell cycle analysis of selected SB-FIs revealed a clear evolution of apoptotic potency in the 1st-, 2nd- and 3rd-generation SB-FIs. Since taxanes, DTX and CTX, are ineffective against RCaP cell line, we selected a topoisomerase I inhibitor, topotecan (TPT) as a replacement for taxanes. We screened the library of SB-FIs for synergy with TPT and identified 3 SB-FIs (L3, α-11 and α-4), exhibiting strong synergy, which could remarkably expand the therapeutic window of TPT.
Collapse
Affiliation(s)
- Hehe Wang
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Chuanzhou Zhu
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | | | - Shubhra Rajput
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Kalani Jayanetti
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Dominick Rendina
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Kathryn Takemura
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Diane Bogdan
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-8480, USA
| | - Liqun Wang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Robert C Rizzo
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, USA; Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794-3600, USA
| | - Martin Kaczocha
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, USA; Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-8480, USA
| | - Lloyd C Trotman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Agnieszka B Bialkowska
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, USA; Department of Medicine, Stony Brook University, Stony Brook, NY 11794-8176, USA
| | - Iwao Ojima
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, USA.
| |
Collapse
|
2
|
Jasim AH, Abu-Raghif AR, Hussein ZA. Protective Effects of Niclosamide Ethanolamine Against Testosterone-Induced Benign Prostatic Hyperplasia in Rats. Drug Res (Stuttg) 2025. [PMID: 40294597 DOI: 10.1055/a-2576-4153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Benign prostatic hyperplasia is a common urological condition in aging men. The anthelmintic agent niclosamide ethanolamide exhibits a wide range of pharmacological activities. This study aimed to evaluate the protective effect of niclosamide ethanolamide in testosterone propionate-induced benign prostatic hyperplasia in rats along with elucidating the probable mechanism of action by investigating the influence on PPAR-γ and Wnt/β-catenin. 40 male Wistar rats were divided randomly into 4 groups. The healthy (control) group, received daily oral and subcutaneous administration of the vehicle. The Induced (TP) group, received only a daily dose of testosterone propionate 3 mg/kg, SC for 28 days. The treated groups (TP+FIN) and (TP+NE), received a concomitant administration of a daily dose of testosterone propionate along with finasteride 5 mg/kg/day and niclosamide ethanolamide 50 mg/kg/day respectively through oral gavage. Animals were euthanized on day 30 of the experiment and prostate tissue samples were collected to evaluate prostate index, prostate hyperplastic markers by ELISA, and gene expression by RT-qPCR. Results revealed that niclosamide ethanolamide significantly reduced prostate index compared to the induced (TP) group (P<0.0001). The agent nearly normalized BPH markers including 5α-reductase type-2 enzyme, dihydrotestosterone, and PCNA compared to the induced (TP) group (P<0.0001). The agent reduced the tissue level of β-catenin while elevating PPAR-γ to control levels (P<0.05). The current study revealed that NE can help prevent BPH in rats by upregulating the PPAR-γ receptor and inhibiting the Wnt pathway.
Collapse
Affiliation(s)
- Ali Hussein Jasim
- Department of Pharmacology, College of Medicine, Al-Nahrain University, Baghdad, Iraq
| | | | - Zeena Ayad Hussein
- Department of Pharmacology, College of Medicine, Al-Nahrain University, Baghdad, Iraq
| |
Collapse
|
3
|
Chen L, Xu YX, Wang YS, Zhou JL. Lipid metabolism, amino acid metabolism, and prostate cancer: a crucial metabolic journey. Asian J Androl 2024; 26:123-134. [PMID: 38157428 PMCID: PMC10919422 DOI: 10.4103/aja202363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/08/2023] [Indexed: 01/03/2024] Open
Abstract
Prostate cancer (PCa) is one of the most common malignancies in males worldwide, and its development and progression involve the regulation of multiple metabolic pathways. Alterations in lipid metabolism affect the proliferation and metastatic capabilities of PCa cells. Cancer cells increase lipid synthesis and regulate fatty acid oxidation to meet their growth and energy demands. Similarly, changes occur in amino acid metabolism in PCa. Cancer cells exhibit an increased demand for specific amino acids, and they regulate amino acid transport and metabolic pathways to fulfill their proliferation and survival requirements. These changes are closely associated with disease progression and treatment response in PCa cells. Therefore, a comprehensive investigation of the metabolic characteristics of PCa is expected to offer novel insights and approaches for the early diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Lin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Yu-Xin Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuan-Shuo Wang
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Jian-Liang Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
4
|
Balraj AS, Muthamilselvan S, Raja R, Palaniappan A. PRADclass: Hybrid Gleason Grade-Informed Computational Strategy Identifies Consensus Biomarker Features Predictive of Aggressive Prostate Adenocarcinoma. Technol Cancer Res Treat 2024; 23:15330338231222389. [PMID: 38226611 PMCID: PMC10793196 DOI: 10.1177/15330338231222389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/18/2023] [Accepted: 12/06/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Prostate adenocarcinoma (PRAD) is a common cancer diagnosis among men globally, yet large gaps in our knowledge persist with respect to the molecular bases of its progression and aggression. It is mostly indolent and slow-growing, but aggressive prostate cancers need to be recognized early for optimising treatment, with a view to reducing mortality. METHODS Based on TCGA transcriptomic data pertaining to PRAD and the associated clinical metadata, we determined the sample Gleason grade, and used it to execute: (i) Gleason-grade wise linear modeling, followed by five contrasts against controls and ten contrasts between grades; and (ii) Gleason-grade wise network modeling via weighted gene correlation network analysis (WGCNA). Candidate biomarkers were obtained from the above analysis and the consensus found. The consensus biomarkers were used as the feature space to train ML models for classifying a sample as benign, indolent or aggressive. RESULTS The statistical modeling yielded 77 Gleason grade-salient genes while the WGCNA algorithm yielded 1003 trait-specific key genes in grade-wise significant modules. Consensus analysis of the two approaches identified two genes in Grade-1 (SLC43A1 and PHGR1), 26 genes in Grade-4 (including LOC100128675, PPP1R3C, NECAB1, UBXN10, SERPINA5, CLU, RASL12, DGKG, FHL1, NCAM1, and CEND1), and seven genes in Grade-5 (CBX2, DPYS, FAM72B, SHCBP1, TMEM132A, TPX2, UBE2C). A RandomForest model trained and optimized on these 35 biomarkers for the ternary classification problem yielded a balanced accuracy ∼ 86% on external validation. CONCLUSIONS The consensus of multiple parallel computational strategies has unmasked candidate Gleason grade-specific biomarkers. PRADclass, a validated AI model featurizing these biomarkers achieved good performance, and could be trialed to predict the differentiation of prostate cancers. PRADclass is available for academic use at: https://apalania.shinyapps.io/pradclass (online) and https://github.com/apalania/pradclass (command-line interface).
Collapse
Affiliation(s)
- Alex Stanley Balraj
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Sangeetha Muthamilselvan
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Rachanaa Raja
- Department of Pharmaceutical Technology, UCE, Anna University (BIT campus), Trichy, India
| | - Ashok Palaniappan
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
5
|
Williams SD, Smith TM, Stewart LV, Sakwe AM. Hypoxia-Inducible Expression of Annexin A6 Enhances the Resistance of Triple-Negative Breast Cancer Cells to EGFR and AR Antagonists. Cells 2022; 11:3007. [PMID: 36230969 PMCID: PMC9564279 DOI: 10.3390/cells11193007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
Physiological changes such as hypoxia in the tumor microenvironment (TME) endow cancer cells with malignant properties, leading to tumor recurrence and rapid progression. Here, we assessed the effect of hypoxia (1% Oxygen) on the tumor suppressor Annexin A6 (AnxA6) and the response of triple-negative breast cancer (TNBC) cells to epidermal growth factor receptor (EGFR) and androgen receptor (AR) targeted therapies. We demonstrate that brief exposure of TNBC cells to hypoxia (within 24 h) is associated with down regulation of AnxA6 while > 24 h exposure cell type dependently stimulated the expression of AnxA6. Hypoxia depicted by the expression and stability of HIF-1/2α led to up regulation of the HIF target genes SLC2A1, PGK1 as well as AR and the AR target genes FABP-4 and PPAR-γ, but the cellular levels of AnxA6 protein decreased under prolonged hypoxia. Down regulation of AnxA6 in TNBC cells inhibited, while AnxA6 over expression enhanced the expression and cellular levels of HIF-1/2α, SLC2A1 and PGK1. RNAi mediated inhibition of hypoxia induced AnxA6 expression also strongly inhibited glucose uptake and ROS production in AnxA6 expressing TNBC cells. Using a luciferase reporter assay, we confirm that short-term exposure of cells to hypoxia inhibits while prolonged exposure of cells to hypoxia enhances AnxA6 promoter activity in HEK293T cells. Compared to cells cultured under normoxia, TNBC cells were more resistant to lapatinib under hypoxic conditions, and the downregulation of AnxA6 sensitized the cells to EGFR as well as AR antagonists. These data suggest that AnxA6 is a hypoxia inducible gene and that targeting AnxA6 upregulation may be beneficial in overcoming TNBC resistance to EGFR and/or AR targeted therapies.
Collapse
Affiliation(s)
- Stephen D. Williams
- Department of Biochemistry, Cancer Biology, Neuroscience, and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA
| | - Tunde M. Smith
- Department of Biochemistry, Cancer Biology, Neuroscience, and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA
| | - LaMonica V. Stewart
- Department of Biochemistry, Cancer Biology, Neuroscience, and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA
- School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Amos M. Sakwe
- Department of Biochemistry, Cancer Biology, Neuroscience, and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
6
|
Celik MA, Erdem H, Cankaya S, Arici YK. Differences in SUV39H1 and androgen receptor distribution in adenomyomatous hyperplasia and prostatic adenocarcinoma. Niger J Clin Pract 2022; 25:1387-1392. [DOI: 10.4103/njcp.njcp_61_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
7
|
Prichystalova R, Caron-Beaudoin E, Richardson L, Dirkx E, Amadou A, Zavodna T, Cihak R, Cogliano V, Hynes J, Pelland-St-Pierre L, Verner MA, van Tongeren M, Ho V. An approach to classifying occupational exposures to endocrine disrupting chemicals by sex hormone function using an expert judgment process. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2021; 31:753-768. [PMID: 32704083 DOI: 10.1038/s41370-020-0253-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/29/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are exogenous substances that interfere with the endocrine system and cause adverse effects. We aimed to classify the effects of 24 known EDCs, prevalent in certain occupations, according to four modes of action (estrogenic, antiestrogenic, androgenic, and/or antiandrogenic). A literature search, stratified into four types of literature was conducted (namely: national and international agency reports; review articles; primary studies; ToxCastTM). The state of the evidence of each EDC on sex hormone function was summarized and reviewed by an expert panel. For each mode of action, the experts evaluated the likelihood of endocrine disruption in five categories: "No", "Unlikely", "Possibly", "Probably", and "Yes". Seven agents were categorized as "Yes," or having strong evidence for their effects on sex hormone function (antiandrogenic: lead, arsenic, butylbenzyl phthalate, dibutyl phthalate, dicyclohexyl phthalate; estrogenic: nonylphenol, bisphenol A). Nine agents were categorized as "Probable," or having probable evidence (antiandrogenic: bis(2-ethylhexyl)phthalate, nonylphenol, toluene, bisphenol A, diisononyl phthalate; androgenic: cadmium; estrogenic: copper, cadmium and; anti-estrogenic: lead). Two agents (arsenic, polychlorinated biphenyls) had opposing conclusions supporting both "probably" estrogenic and antiestrogenic effects. This synthesis will allow researchers to evaluate the health effects of selected EDCs with an added level of precision related to the mode of action.
Collapse
Affiliation(s)
- R Prichystalova
- Faculty of Safety Engineering, Technical University of Ostrava, Ostrava, Czech Republic
| | - E Caron-Beaudoin
- Department of Occupational and Environmental Health, Université de Montréal, Montréal, QC, Canada
| | - L Richardson
- Centre de recherche du CHUM (CRCHUM), Montréal, QC, Canada
| | - E Dirkx
- Centre de recherche du CHUM (CRCHUM), Montréal, QC, Canada
| | - A Amadou
- Département Prévention Cancer Environnement, Centre Léon Bérard, Lyon, France
- Inserm UA 08 Radiations: Défense, Santé, Environement, Lyon, France
| | - T Zavodna
- Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - R Cihak
- Výzkumný ústav organických syntéz a.s., Centre for Ecology, Toxicology and Analytics, Rybitví, Czech Republic
| | - V Cogliano
- National Center for Environmental Health Hazard Assessment, US Environmental Protection Agency, Washington, DC, USA
| | - J Hynes
- JH Tox Consulting, Maastricht, Netherlands
| | - L Pelland-St-Pierre
- Department of Social and Preventive Medicine, Université de Montréal, Montréal, QC, Canada
| | - M A Verner
- Department of Occupational and Environmental Health, Université de Montréal, Montréal, QC, Canada
- Centre de recherche en santé publique (CReSP), Université de Montréal, Montréal, QC, Canada
| | - M van Tongeren
- Faculty of Science and Engineering, Division of Population Health, Health Services Research & Primary Care, University of Manchester, Manchester, UK
| | - V Ho
- Centre de recherche du CHUM (CRCHUM), Montréal, QC, Canada.
- Department of Social and Preventive Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
8
|
Alaaeddine RA, Elzahhar PA, AlZaim I, Abou-Kheir W, Belal ASF, El-Yazbi AF. The Emerging Role of COX-2, 15-LOX and PPARγ in Metabolic Diseases and Cancer: An Introduction to Novel Multi-target Directed Ligands (MTDLs). Curr Med Chem 2021; 28:2260-2300. [PMID: 32867639 DOI: 10.2174/0929867327999200820173853] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 11/22/2022]
Abstract
Emerging evidence supports an intertwining framework for the involvement of different inflammatory pathways in a common pathological background for a number of disorders. Of importance are pathways involving arachidonic acid metabolism by cyclooxygenase-2 (COX-2) and 15-lipoxygenase (15-LOX). Both enzyme activities and their products are implicated in a range of pathophysiological processes encompassing metabolic impairment leading to adipose inflammation and the subsequent vascular and neurological disorders, in addition to various pro- and antitumorigenic effects. A further layer of complexity is encountered by the disparate, and often reciprocal, modulatory effect COX-2 and 15-LOX activities and metabolites exert on each other or on other cellular targets, the most prominent of which is peroxisome proliferator-activated receptor gamma (PPARγ). Thus, effective therapeutic intervention with such multifaceted disorders requires the simultaneous modulation of more than one target. Here, we describe the role of COX-2, 15-LOX, and PPARγ in cancer and complications of metabolic disorders, highlight the value of designing multi-target directed ligands (MTDLs) modifying their activity, and summarizing the available literature regarding the rationale and feasibility of design and synthesis of these ligands together with their known biological effects. We speculate on the potential impact of MTDLs in these disorders as well as emphasize the need for structured future effort to translate these early results facilitating the adoption of these, and similar, molecules in clinical research.
Collapse
Affiliation(s)
- Rana A Alaaeddine
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Perihan A Elzahhar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ibrahim AlZaim
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Ahmed S F Belal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| |
Collapse
|
9
|
Knura M, Garczorz W, Borek A, Drzymała F, Rachwał K, George K, Francuz T. The Influence of Anti-Diabetic Drugs on Prostate Cancer. Cancers (Basel) 2021; 13:cancers13081827. [PMID: 33921222 PMCID: PMC8068793 DOI: 10.3390/cancers13081827] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/27/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
The incidences of prostate cancer (PC) and diabetes are increasing, with a sustained trend. The occurrence of PC and type 2 diabetes mellitus (T2DM) is growing with aging. The correlation between PC occurrence and diabetes is noteworthy, as T2DM is correlated with a reduced risk of incidence of prostate cancer. Despite this reduction, diabetes mellitus increases the mortality in many cancer types, including prostate cancer. The treatment of T2DM is based on lifestyle changes and pharmacological management. Current available drugs, except insulin, are aimed at increasing insulin secretion (sulfonylureas, incretin drugs), improving insulin sensitivity (biguanides, thiazolidinediones), or increasing urinary glucose excretion (gliflozin). Comorbidities should be taken into consideration during the treatment of T2DM. This review describes currently known information about the mechanism and impact of commonly used antidiabetic drugs on the incidence and progression of PC. Outcomes of pre-clinical studies are briefly presented and their correlations with available clinical trials have also been observed. Available reports and meta-analyses demonstrate that most anti-diabetic drugs do not increase the risk during the treatment of patients with PC. However, some reports show a potential advantage of treatment of T2DM with specific drugs. Based on clinical reports, use of metformin should be considered as a therapeutic option. Moreover, anticancer properties of metformin were augmented while combined with GLP-1 analogs.
Collapse
|
10
|
Liu RZ, Choi WS, Jain S, Dinakaran D, Xu X, Han WH, Yang XH, Glubrecht DD, Moore RB, Lemieux H, Godbout R. The FABP12/PPARγ pathway promotes metastatic transformation by inducing epithelial-to-mesenchymal transition and lipid-derived energy production in prostate cancer cells. Mol Oncol 2020; 14:3100-3120. [PMID: 33031638 PMCID: PMC7718947 DOI: 10.1002/1878-0261.12818] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/11/2020] [Accepted: 10/05/2020] [Indexed: 12/31/2022] Open
Abstract
Early stage localized prostate cancer (PCa) has an excellent prognosis; however, patient survival drops dramatically when PCa metastasizes. The molecular mechanisms underlying PCa metastasis are complex and remain unclear. Here, we examine the role of a new member of the fatty acid‐binding protein (FABP) family, FABP12, in PCa progression. FABP12 is preferentially amplified and/or overexpressed in metastatic compared to primary tumors from both PCa patients and xenograft animal models. We show that FABP12 concurrently triggers metastatic phenotypes (induced epithelial‐to‐mesenchymal transition (EMT) leading to increased cell motility and invasion) and lipid bioenergetics (increased fatty acid uptake and accumulation, increased ATP production from fatty acid β‐oxidation) in PCa cells, supporting increased reliance on fatty acids for energy production. Mechanistically, we show that FABP12 is a driver of PPARγ activation which, in turn, regulates FABP12's role in lipid metabolism and PCa progression. Our results point to a novel role for a FABP‐PPAR pathway in promoting PCa metastasis through induction of EMT and lipid bioenergetics.
Collapse
Affiliation(s)
- Rong-Zong Liu
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Won-Shik Choi
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Saket Jain
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Deepak Dinakaran
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Xia Xu
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Woo Hyun Han
- Faculty Saint-Jean, University of Alberta, Edmonton, AB, Canada
| | - Xiao-Hong Yang
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Darryl D Glubrecht
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Ronald B Moore
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada.,Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Hélène Lemieux
- Faculty Saint-Jean, University of Alberta, Edmonton, AB, Canada
| | - Roseline Godbout
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
11
|
Santoro M, De Amicis F, Aquila S, Bonofiglio D. Peroxisome proliferator-activated receptor gamma expression along the male genital system and its role in male fertility. Hum Reprod 2020; 35:2072-2085. [PMID: 32766764 DOI: 10.1093/humrep/deaa153] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) acts as a ligand activated transcription factor and regulates processes, such as energy homeostasis, cell proliferation and differentiation. PPARγ binds to DNA as a heterodimer with retinoid X receptor and it is activated by polyunsaturated fatty acids and fatty acid derivatives, such as prostaglandins. In addition, the insulin-sensitizing thiazolidinediones, such as rosiglitazone, are potent and specific activators of PPARγ. PPARγ is present along the hypothalamic-pituitary-testis axis and in the testis, where low levels in Leydig cells and higher levels in Sertoli cells as well as in germ cells have been found. High amounts of PPARγ were reported in the normal epididymis and in the prostate, but the receptor was almost undetectable in the seminal vesicles. Interestingly, in the human and in pig, PPARγ protein is highly expressed in ejaculated spermatozoa, suggesting a possible role of PPARγ signaling in the regulation of sperm biology. This implies that both natural and synthetic PPARγ ligands may act directly on sperm improving its performance. Given the close link between energy balance and reproduction, activation of PPARγ may have promising metabolic implications in male reproductive functions. In this review, we first describe PPARγ expression in different compartments of the male reproductive axis. Subsequently, we discuss the role of PPARγ in both physiological and several pathological conditions related to the male fertility.
Collapse
Affiliation(s)
- Marta Santoro
- Department of Pharmacy, Health and Nutritional Sciences (Department of Excellence, Italian Law 232/2016), Arcavacata di Rende, Cosenza 87036, Italy.,Centro Sanitario, University of Calabria, Arcavacata di Rende, Cosenza 87036, Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences (Department of Excellence, Italian Law 232/2016), Arcavacata di Rende, Cosenza 87036, Italy
| | - Saveria Aquila
- Department of Pharmacy, Health and Nutritional Sciences (Department of Excellence, Italian Law 232/2016), Arcavacata di Rende, Cosenza 87036, Italy.,Centro Sanitario, University of Calabria, Arcavacata di Rende, Cosenza 87036, Italy
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences (Department of Excellence, Italian Law 232/2016), Arcavacata di Rende, Cosenza 87036, Italy.,Centro Sanitario, University of Calabria, Arcavacata di Rende, Cosenza 87036, Italy
| |
Collapse
|
12
|
Tamarindo GH, Góes RM. Docosahexaenoic acid differentially modulates the cell cycle and metabolism- related genes in tumor and pre-malignant prostate cells. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158766. [PMID: 32712248 DOI: 10.1016/j.bbalip.2020.158766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/13/2020] [Accepted: 07/19/2020] [Indexed: 12/11/2022]
Abstract
Prostate cancer (PCa) has different molecular features along progression, including androgen profile, which is associated to therapy inefficiency leading to more aggressive phenotype. Docosahexaenoic acid (DHA) has antiproliferative and pro-apoptotic properties in different cancers associated to cell metabolism modulation. The latter is of particular interest since metabolic reprogramming is one of PCa hallmarks, but is not clear how this occurs among disease progression. Therefore, we evaluated DHA antiproliferative potential in distinct androgenic backgrounds associated to metabolism modulation and androgen-regulated genes. For this purpose, pre-malignant PNT1A and tumor AR-positive 22rv1, and AR-negative PC3 cells were incubated with DHA at 100 μM-48 h. DHA reduced at least 26% cell number for all lineages due to S-phase decrease in AR-positive and G2/M arrest in AR-negative. Mitochondrial metabolic rate decreased in PNT1A (~38%) and increased in tumor cells (at least 40%). This was associated with ROS overproduction (1.6-fold PNT1A; 2.1 22rv1; 2.2 PC3), lipid accumulation (3-fold PNT1A; 1.8 22rv1; 3.6 PC3) and mitochondria damage in all cell lines. AKT, AMPK and PTEN were not activated in any cell line, but p-ERK1/2 increased (1.5-fold) in PNT1A. Expression of androgen-regulated and nuclear receptors genes showed that DHA affected them in a distinct pattern in each cell line, but most converged to metabolism regulation, response to hormones, lipids and stress. In conclusion, regardless of androgenic or PTEN background DHA exerted antiproliferative effect associated to cell cycle impairment, lipid deregulation and oxidative stress, but differentially regulated gene expression probably due to distinct molecular features of each pathologic stage.
Collapse
Affiliation(s)
| | - Rejane Maira Góes
- Institute of Biology, University of Campinas, Campinas, SP, Brazil; Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, SP, Brazil.
| |
Collapse
|
13
|
Chaturvedi AP, Dehm SM. Androgen Receptor Dependence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1210:333-350. [PMID: 31900916 DOI: 10.1007/978-3-030-32656-2_15] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Androgens and the androgen receptor (AR) play crucial roles in the biology of normal and diseased prostate tissue, including prostate cancer (PCa). This dependence is evidenced by the use of androgen depletion therapy (ADT) as the primary treatment for locally advanced, metastatic, or relapsed PCa. This dependence is further evidenced by the various mechanisms employed by PCa cells to re-activate the AR to circumvent the growth-inhibitory effects of ADT. Re-activation of the AR during ADT is central to the disease evolving into the lethal castration resistant PCa (CRPC) phenotype, which is responsible for nearly all PCa mortality. Thus, understanding the regulation of AR and AR signaling is important for understanding the development and progression of PCa. This understanding provides the foundation for development of newer approaches for targeting CRPC therapeutically.
Collapse
Affiliation(s)
| | - Scott M Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA.
- Department of Urology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
14
|
He Z, Duan X, Zeng G. Identification of potential biomarkers and pivotal biological pathways for prostate cancer using bioinformatics analysis methods. PeerJ 2019; 7:e7872. [PMID: 31598425 PMCID: PMC6779116 DOI: 10.7717/peerj.7872] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022] Open
Abstract
Background Prostate cancer (PCa) is a common urinary malignancy, whose molecular mechanism has not been fully elucidated. We aimed to screen for key genes and biological pathways related to PCa using bioinformatics method. Methods Differentially expressed genes (DEGs) were filtered out from the GSE103512 dataset and subjected to the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. The protein–protein interactions (PPI) network was constructed, following by the identification of hub genes. The results of former studies were compared with ours. The relative expression levels of hub genes were examined in The Cancer Genome Atlas (TCGA) and Oncomine public databases. The University of California Santa Cruz Xena online tools were used to study whether the expression of hub genes was correlated with the survival of PCa patients from TCGA cohorts. Results Totally, 252 (186 upregulated and 66 downregulated) DEGs were identified. GO analysis enriched mainly in “oxidation-reduction process” and “positive regulation of transcription from RNA polymerase II promoter”; KEGG pathway analysis enriched mostly in “metabolic pathways” and “protein digestion and absorption.” Kallikrein-related peptidase 3, cadherin 1 (CDH1), Kallikrein-related peptidase 2 (KLK2), forkhead box A1 (FOXA1), and epithelial cell adhesion molecule (EPCAM) were identified as hub genes from the PPI network. CDH1, FOXA1, and EPCAM were validated by other relevant gene expression omnibus datasets. All hub genes were validated by both TCGA and Oncomine except KLK2. Two additional top DEGs (ABCC4 and SLPI) were found to be associated with the prognosis of PCa patients. Conclusions This study excavated the key genes and pathways in PCa, which might be biomarkers for diagnosis, prognosis, and potential therapeutic targets.
Collapse
Affiliation(s)
- Zihao He
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Urology, Guangzhou, China.,Guangdong Key Laboratory of Urology, Guangzhou, China
| | - Xiaolu Duan
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Urology, Guangzhou, China.,Guangdong Key Laboratory of Urology, Guangzhou, China
| | - Guohua Zeng
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Urology, Guangzhou, China.,Guangdong Key Laboratory of Urology, Guangzhou, China
| |
Collapse
|
15
|
Mahmoud SY, Svensson F, Zoufir A, Módos D, Afzal AM, Bender A. Understanding Conditional Associations between ToxCast in Vitro Readouts and the Hepatotoxicity of Compounds Using Rule-Based Methods. Chem Res Toxicol 2019; 33:137-153. [DOI: 10.1021/acs.chemrestox.8b00382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Samar Y. Mahmoud
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Fredrik Svensson
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Azedine Zoufir
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Dezső Módos
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Avid M. Afzal
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Andreas Bender
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| |
Collapse
|
16
|
Baken KA, Lambrechts N, Remy S, Mustieles V, Rodríguez-Carrillo A, Neophytou CM, Olea N, Schoeters G. A strategy to validate a selection of human effect biomarkers using adverse outcome pathways: Proof of concept for phthalates and reproductive effects. ENVIRONMENTAL RESEARCH 2019; 175:235-256. [PMID: 31146096 DOI: 10.1016/j.envres.2019.05.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 05/21/2023]
Abstract
Human biomonitoring measures the concentrations of environmental chemicals or their metabolites in body fluids or tissues. Complementing exposure biomarkers with mechanistically based effect biomarkers may further elucidate causal pathways between chemical exposure and adverse health outcomes. We combined information on effect biomarkers previously implemented in human observational studies with mechanisms of action reported in experimental studies and with information from published Adverse Outcome Pathways (AOPs), focusing on adverse reproductive effects of phthalate exposure. Phthalates constitute a group of chemicals that are ubiquitous in consumer products and have been related to a wide range of adverse health effects. As a result of a comprehensive literature search, we present an overview of effect biomarkers for reproductive toxicity that are substantiated by mechanistic information. The activation of several receptors, such as PPARα, PPARγ, and GR, may initiate events leading to impaired male and female fertility as well as other adverse effects of phthalate exposure. Therefore, these receptors appear as promising targets for the development of novel effect biomarkers. The proposed strategy connects the fields of epidemiology and toxicology and may strengthen the weight of evidence in observational studies that link chemical exposures to health outcomes.
Collapse
Affiliation(s)
- Kirsten A Baken
- Unit Health, Flemish Institute for Technological Research (VITO NV), Mol, Belgium.
| | - Nathalie Lambrechts
- Unit Health, Flemish Institute for Technological Research (VITO NV), Mol, Belgium
| | - Sylvie Remy
- Unit Health, Flemish Institute for Technological Research (VITO NV), Mol, Belgium; Department of Epidemiology and Social Medicine, University of Antwerp, Antwerp, Belgium
| | - Vicente Mustieles
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada, Granada, Spain; Center for Biomedical Research (CIBM), University of Granada, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | | | - Christiana M Neophytou
- Department of Biological Sciences, School of Pure and Applied Sciences, University of Cyprus, Nicosia, Cyprus
| | - Nicolas Olea
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada, Granada, Spain; Center for Biomedical Research (CIBM), University of Granada, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Greet Schoeters
- Unit Health, Flemish Institute for Technological Research (VITO NV), Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
17
|
Shiota M, Fujimoto N, Kashiwagi E, Eto M. The Role of Nuclear Receptors in Prostate Cancer. Cells 2019; 8:cells8060602. [PMID: 31212954 PMCID: PMC6627805 DOI: 10.3390/cells8060602] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022] Open
Abstract
The nuclear receptor (NR) superfamily consists of 48 members that are divided into seven subfamilies. NRs are transcription factors that play an important role in a number of biological processes. The NR superfamily includes androgen receptor, which is a key player in prostate cancer pathogenesis, suggesting the functional roles of other NRs in prostate cancer. The findings on the roles of NRs in prostate cancer thus far have shown that several NRs such as vitamin D receptor, estrogen receptor β, and mineralocorticoid receptor play antioncogenic roles, while other NRs such as peroxisome proliferator-activated receptor γ and estrogen receptor α as well as androgen receptor play oncogenic roles. However, the roles of other NRs in prostate cancer remain controversial or uninvestigated. Further research on the role of NRs in prostate cancer is required and may lead to the development of novel preventions and therapeutics for prostate cancer.
Collapse
Affiliation(s)
- Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Naohiro Fujimoto
- Department of Urology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan.
| | - Eiji Kashiwagi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
18
|
Long MD, Singh PK, Russell JR, Llimos G, Rosario S, Rizvi A, van den Berg PR, Kirk J, Sucheston-Campbell LE, Smiraglia DJ, Campbell MJ. The miR-96 and RARγ signaling axis governs androgen signaling and prostate cancer progression. Oncogene 2019; 38:421-444. [PMID: 30120411 PMCID: PMC6336686 DOI: 10.1038/s41388-018-0450-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/25/2018] [Accepted: 06/26/2018] [Indexed: 01/22/2023]
Abstract
Expression levels of retinoic acid receptor gamma (NR1B3/RARG, encodes RARγ) are commonly reduced in prostate cancer (PCa). Therefore, we sought to establish the cellular and gene regulatory consequences of reduced RARγ expression, and determine RARγ regulatory mechanisms. RARG shRNA approaches in non-malignant (RWPE-1 and HPr1-AR) and malignant (LNCaP) prostate models revealed that reducing RARγ levels, rather than adding exogenous retinoid ligand, had the greatest impact on prostate cell viability and gene expression. ChIP-Seq defined the RARγ cistrome, which was significantly enriched at active enhancers associated with AR binding sites. Reflecting a significant genomic role for RARγ to regulate androgen signaling, RARγ knockdown in HPr1-AR cells significantly regulated the magnitude of the AR transcriptome. RARγ downregulation was explained by increased miR-96 in PCa cell and mouse models, and TCGA PCa cohorts. Biochemical approaches confirmed that miR-96 directly regulated RARγ expression and function. Capture of the miR-96 targetome by biotin-miR-96 identified that RARγ and a number of RARγ interacting co-factors including TACC1 were all targeted by miR-96, and expression of these genes were prominently altered, positively and negatively, in the TCGA-PRAD cohort. Differential gene expression analyses between tumors in the TCGA-PRAD cohort with lower quartile expression levels of RARG and TACC1 and upper quartile miR-96, compared to the reverse, identified a gene network including several RARγ target genes (e.g., SOX15) that significantly associated with worse disease-free survival (hazard ratio 2.23, 95% CI 1.58 to 2.88, p = 0.015). In summary, miR-96 targets a RARγ network to govern AR signaling, PCa progression and disease outcome.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/mortality
- Adenocarcinoma/pathology
- Androgens
- Animals
- Cell Line, Tumor
- Disease Progression
- Enhancer Elements, Genetic
- Fetal Proteins/metabolism
- Gene Expression Regulation, Neoplastic
- Gene Regulatory Networks
- Humans
- Kaplan-Meier Estimate
- Male
- Mice
- MicroRNAs/physiology
- Microtubule-Associated Proteins/metabolism
- Neoplasm Proteins/physiology
- Neoplasms, Hormone-Dependent/genetics
- Neoplasms, Hormone-Dependent/metabolism
- Neoplasms, Hormone-Dependent/mortality
- Neoplasms, Hormone-Dependent/pathology
- Nuclear Proteins/metabolism
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/mortality
- Prostatic Neoplasms/pathology
- RNA Interference
- RNA, Neoplasm/physiology
- RNA, Small Interfering/genetics
- Receptors, Androgen/metabolism
- Receptors, Retinoic Acid/physiology
- Signal Transduction
- Retinoic Acid Receptor gamma
Collapse
Affiliation(s)
- Mark D Long
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center (RPCCC), Buffalo, NY, 14263, USA
| | - Prashant K Singh
- Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - James R Russell
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center (RPCCC), Buffalo, NY, 14263, USA
| | - Gerard Llimos
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center (RPCCC), Buffalo, NY, 14263, USA
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Spencer Rosario
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center (RPCCC), Buffalo, NY, 14263, USA
| | - Abbas Rizvi
- College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Patrick R van den Berg
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center (RPCCC), Buffalo, NY, 14263, USA
- Leiden institute of Physics, Leiden University, 2300 RA, Leiden, The Netherlands
| | - Jason Kirk
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Lara E Sucheston-Campbell
- College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
- College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Dominic J Smiraglia
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center (RPCCC), Buffalo, NY, 14263, USA
| | - Moray J Campbell
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, 536 Parks Hall, Columbus, OH, 43210, USA.
| |
Collapse
|
19
|
Heudobler D, Rechenmacher M, Lüke F, Vogelhuber M, Klobuch S, Thomas S, Pukrop T, Hackl C, Herr W, Ghibelli L, Gerner C, Reichle A. Clinical Efficacy of a Novel Therapeutic Principle, Anakoinosis. Front Pharmacol 2018; 9:1357. [PMID: 30546308 PMCID: PMC6279883 DOI: 10.3389/fphar.2018.01357] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/05/2018] [Indexed: 12/18/2022] Open
Abstract
Classic tumor therapy, consisting of cytotoxic agents and/or targeted therapy, has not overcome therapeutic limitations like poor risk genetic parameters, genetic heterogeneity at different metastatic sites or the problem of undruggable targets. Here we summarize data and trials principally following a completely different treatment concept tackling systems biologic processes: the principle of communicative reprogramming of tumor tissues, i.e., anakoinosis (ancient greek for communication), aims at establishing novel communicative behavior of tumor tissue, the hosting organ and organism via re-modeling gene expression, thus recovering differentiation, and apoptosis competence leading to cancer control - in contrast to an immediate, "poisoning" with maximal tolerable doses of targeted or cytotoxic therapies. Therefore, we introduce the term "Master modulators" for drugs or drug combinations promoting evolutionary processes or regulating homeostatic pathways. These "master modulators" comprise a broad diversity of drugs, characterized by the capacity for reprogramming tumor tissues, i.e., transcriptional modulators, metronomic low-dose chemotherapy, epigenetically modifying agents, protein binding pro-anakoinotic drugs, such as COX-2 inhibitors, IMiDs etc., or for example differentiation inducing therapies. Data on 97 anakoinosis inducing schedules indicate a favorable toxicity profile: The combined administration of master modulators, frequently (with poor or no monoactivity) may even induce continuous complete remission in refractory metastatic neoplasia, irrespectively of the tumor type. That means recessive components of the tumor, successively developing during tumor ontogenesis, are accessible by regulatory active drug combinations in a therapeutically meaningful way. Drug selection is now dependent on situative systems characteristics, to less extent histology dependent. To sum up, anakoinosis represents a new substantive therapy principle besides novel targeted therapies.
Collapse
Affiliation(s)
- Daniel Heudobler
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Michael Rechenmacher
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Florian Lüke
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Martin Vogelhuber
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Sebastian Klobuch
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Simone Thomas
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Christina Hackl
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Lina Ghibelli
- Department Biology, Universita' di Roma Tor Vergata, Rome, Italy
| | - Christopher Gerner
- Faculty Chemistry, Institut for Analytical Chemistry, University Vienna, Vienna, Austria
| | - Albrecht Reichle
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
20
|
Capaia M, Granata I, Guarracino M, Petretto A, Inglese E, Cattrini C, Ferrari N, Boccardo F, Barboro P. A hnRNP K⁻AR-Related Signature Reflects Progression toward Castration-Resistant Prostate Cancer. Int J Mol Sci 2018; 19:ijms19071920. [PMID: 29966326 PMCID: PMC6073607 DOI: 10.3390/ijms19071920] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 06/27/2018] [Accepted: 06/29/2018] [Indexed: 12/21/2022] Open
Abstract
The major challenge in castration-resistant prostate cancer (CRPC) remains the ability to predict the clinical responses to improve patient selection for appropriate treatments. The finding that androgen deprivation therapy (ADT) induces alterations in the androgen receptor (AR) transcriptional program by AR coregulators activity in a context-dependent manner, offers the opportunity for identifying signatures discriminating different clinical states of prostate cancer (PCa) progression. Gel electrophoretic analyses combined with western blot showed that, in androgen-dependent PCa and CRPC in vitro models, the subcellular distribution of spliced and serine-phosphorylated heterogeneous nuclear ribonucleoprotein K (hnRNP K) isoforms can be associated with different AR activities. Using mass spectrometry and bioinformatic analyses, we showed that the protein sets of androgen-dependent (LNCaP) and ADT-resistant cell lines (PDB and MDB) co-immunoprecipitated with hnRNP K varied depending on the cell type, unravelling a dynamic relationship between hnRNP K and AR during PCa progression to CRPC. By comparing the interactome of LNCaP, PDB, and MDB cell lines, we identified 51 proteins differentially interacting with hnRNP K, among which KLK3, SORD, SPON2, IMPDH2, ACTN4, ATP1B1, HSPB1, and KHDRBS1 were associated with AR and differentially expressed in normal and tumor human prostate tissues. This hnRNP K–AR-related signature, associated with androgen sensitivity and PCa progression, may help clinicians to better manage patients with CRPC.
Collapse
Affiliation(s)
- Matteo Capaia
- Academic Unit of Medical Oncology, Ospedale Policlinico San Martino-IRCCS, L.go R. Benzi 10, 16132 Genova, Italy.
| | - Ilaria Granata
- Institute for High Performance Computing and Networking (ICAR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy.
| | - Mario Guarracino
- Institute for High Performance Computing and Networking (ICAR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy.
| | - Andrea Petretto
- Core Facilities-Proteomics Laboratory, Giannina Gaslini Institute, L.go G. Gaslini 5, 16147 Genova, Italy.
| | - Elvira Inglese
- Core Facilities-Proteomics Laboratory, Giannina Gaslini Institute, L.go G. Gaslini 5, 16147 Genova, Italy.
| | - Carlo Cattrini
- Academic Unit of Medical Oncology, Ospedale Policlinico San Martino-IRCCS, L.go R. Benzi 10, 16132 Genova, Italy.
- Department of Internal Medicine and Medical Specialties, School of Medicine, University of Genova, L.go R. Benzi 10, 16132 Genova, Italy.
| | - Nicoletta Ferrari
- Molecular Oncology and Angiogenesis, Ospedale Policlinico San Martino-IRCCS, L.go R. Benzi 10, 16132 Genova, Italy.
| | - Francesco Boccardo
- Academic Unit of Medical Oncology, Ospedale Policlinico San Martino-IRCCS, L.go R. Benzi 10, 16132 Genova, Italy.
- Department of Internal Medicine and Medical Specialties, School of Medicine, University of Genova, L.go R. Benzi 10, 16132 Genova, Italy.
| | - Paola Barboro
- Academic Unit of Medical Oncology, Ospedale Policlinico San Martino-IRCCS, L.go R. Benzi 10, 16132 Genova, Italy.
| |
Collapse
|