1
|
Abeni BA, Frank-Peterside N, Otokunefor K. Comparative analysis of virulence gene profiles of Escherichia coli from human and non-human sources in Rivers State, Nigeria. Access Microbiol 2024; 6:000776.v6. [PMID: 39130738 PMCID: PMC11316598 DOI: 10.1099/acmi.0.000776.v6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024] Open
Abstract
Traditionally, the presence of virulence features has been thought to be a key factor in differentiating pathogenic from commensal strains. An understanding of the virulence potential of Escherichia coli isolates from various sources is essential to shed light on potential contamination/transmission rates between the various sources. This study was therefore aimed at exploring the occurrence of specific virulence genes and gene profiles associated with E. coli from human and non-human sources in Rivers State, Nigeria. Two hundred samples from human (urine and faeces) and non-human (soil and poultry droppings) sources (50 each) were analysed using standard microbiological procedures. DNA was extracted from isolates presumptively identified as E. coli using the Presto Mini gDNA Bacteria-Kit Quick protocol following the manufacturer's instructions. Isolate identities were confirmed using E. coli-specific 16S rRNA primers, and confirmed isolates were screened for the presence of six virulence genes [afimbriae binding adhesin (afa), type 1 fimbriae (fimH) and P-fimbrial usher protein (papC)], iron acquisition systems: aerobactin (aer), cytotoxic necrotizing factor I (cnf1) and alpha-hemolysin (hly). Results showed that all isolates harboured at least one of the tested virulence genes, with fimH (97%) as the most prevalent virulence gene and papC the least commonly occurring (35%). A higher occurrence of virulence genes was noted in non-human isolates, though hly and cnf were not detected at all in any of the isolates studied (0%). Ten different profiles were observed with the afaCc-aer-fimH profile the most commonly occurring virulence gene profile being in general (33.3%). For non-human isolates, however, aer-afaCc-fimH-papC was the most commonly occurring profile (42.9%). This study shows that the test E. coli from human and non-human sources do not carry distinct virulence gene profiles. Studies on a larger subset of isolates would however be necessary to determine if the virulence genes tested in this study really cannot be used to tell whether an isolate is from a human source or not in the South-South of Nigeria.
Collapse
Affiliation(s)
- Barira Azeez Abeni
- Department of Microbiology, Faculty of Science, University of Port Harcourt, Port Harcourt, Nigeria
| | - Nnenna Frank-Peterside
- Department of Microbiology, Faculty of Science, University of Port Harcourt, Port Harcourt, Nigeria
| | - Kome Otokunefor
- Department of Microbiology, Faculty of Science, University of Port Harcourt, Port Harcourt, Nigeria
| |
Collapse
|
2
|
Al-Gallas N, Fadel ME, Altammar KA, Awadi Y, Aissa RB. Pathovars, occurrence, and characterization of plasmid-mediated quinolone resistance in diarrheal Escherichia coli isolated from farmers and farmed chickens in Tunisia and Nigeria. Lett Appl Microbiol 2024; 77:ovae043. [PMID: 38653718 DOI: 10.1093/lambio/ovae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
The poultry industry is a very important agricultural and industrial sector in Tunisia and Nigeria, with little information about occurrence of diarrheagenic Escherichia coli in the farmers and chickens. This study aimed to detect the prevalence of diarrheal E. coli in humans and poultry and to investigate plasmid-mediated quinolone resistance (PMQR) genes in both countries. Seventy-four isolates of E. coli were studied; nine different virulence genes were screened by PCR. Serotyping was performed only for pathotypes as well as the determining of antibiotic resistance profiles against 21 antibiotics. PMQR genes were investigated by PCR. EAEC was the most abundant pathotype (37/74; 50%) in human and chicken isolates, whereas single EHEC and EPEC (1/74, 1.35%) pathotypes were detected in Tunisia and Nigeria, respectively. About 17 (45.95%) quinolones/fluoroquinolones-resistant isolates were detected, from which the following PMQR genes were detected: aac(6')-Ib-cr (8/17, 47.05%), qepA (6/17, 35.29%), qnrA + qnrB (2/17, 11.76%), and qnrS gene (1/17, 5.88%). Our findings highlight high occurrence of EAEC pathotype in Tunisia and Nigeria, more frequent than EPEC and EHEC. Additionally, all E. coli pathotypes isolated from different sources (humans, poultry) showed resistance to several antibiotics, which are in use as therapeutic choices in Tunisia and Nigeria.
Collapse
Affiliation(s)
- Nazek Al-Gallas
- Department of Biology, College of Science, University of Hafr Al Batin, P.O. Box 1803, Hafr Al Batin 31991, Kingdom of Saudi Arabia
- Water and Food Control Lab, National Center of Salmonella, Shigella, Vibrio-Enteropathogens-Institut Pasteur de Tunis (IPT) Tunis-Belvédère, Tunis 1002, Tunisia
| | - Mohamed-Elamen Fadel
- Medical Laboratory Department, Faculty of Engineering and Technology, University of Sebha, Sebha 19631, Libya
| | - Khadijah A Altammar
- Department of Biology, College of Science, University of Hafr Al Batin, P.O. Box 1803, Hafr Al Batin 31991, Kingdom of Saudi Arabia
| | - Yasmin Awadi
- Water and Food Control Lab, National Center of Salmonella, Shigella, Vibrio-Enteropathogens-Institut Pasteur de Tunis (IPT) Tunis-Belvédère, Tunis 1002, Tunisia
| | - Ridha Ben Aissa
- Water and Food Control Lab, National Center of Salmonella, Shigella, Vibrio-Enteropathogens-Institut Pasteur de Tunis (IPT) Tunis-Belvédère, Tunis 1002, Tunisia
| |
Collapse
|
3
|
Kavinesan K, Sugumar G, Chrisolite B, Muthiahsethupathy A, Sudarshan S, Parthiban F, Mansoor M. Phenotypic and genotypic characterization of pathogenic Escherichia coli identified in resistance mapping of β-lactam drug-resistant isolates from seafood along Tuticorin coast. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:68111-68128. [PMID: 37120498 DOI: 10.1007/s11356-023-27008-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/10/2023] [Indexed: 05/27/2023]
Abstract
The ubiquity of pathogenic E. coli isolate possessing antimicrobial resistance was investigated in seafood samples procured from major seafood supply chain markets established for export and domestic consumption along Tuticorin coast. Out of 63 seafood samples examined, 29 (46%) were found to be contaminated by pathogenic E. coli harbouring one or more genes of virulent potential. Based on virulome profiling, 9.55% of isolates belonged to enterotoxigenic E. coli (ETEC), 8.08% to enteroaggregative E. coli (EAEC), 7.35% to enterohemorrhagic E. coli (EHEC), 2.20% to enteropathogenic E. coli (EPEC), and 2.20% to uropathogenic E. coli (UPEC). All the 34 virulome positive and haemolytic pathogenic E. coli have been serogrouped as O119, O76, O18, O134, O149, O120, O114, O25, O55, O127, O6, O78, O83, O17 and clinically significant O111, O121, O84, O26, O103, and O104 (non-O157 STEC) serotypes in this study. Multi-drug resistance (MDR) (≥ 3 antibiotic classes/sub-classes) was exhibited in 38.23% of the pathogenic E. coli, and 17.64% were extensive drug resistant (XDR). Extended spectrum of β-lactamase (ESBL) genotypes were confirmed in 32.35% isolates and 20.63% isolates harboured ampC gene. One sample (Penaeus semisulcatus) collected from landing centre (L1) harboured all ESBL genotypes blaCTX-M, blaSHV, blaTEM, and ampC genes. Hierarchical clustering of isolates revealed the separation of ESBL isolates into three clusters and non-ESBL isolates into three clusters based on phenotypic and genotypic variations. Based on dendrogram analysis on antibiotic efficacy pattern, carbapenems and β-lactam inhibitor drugs are the best available treatment for ESBL and non-ESBL infections. This study emphasizes the significance of comprehensive surveillance of pathogenic E. coli serogroups that pose serious threat to public health and compliance of AMR antimicrobial resistant genes in seafood that hinder seafood supply chain.
Collapse
Affiliation(s)
- Kumar Kavinesan
- TNJFU-Fisheries College and Research Institute, Thoothukudi, Tamil Nadu, India, 628 008
| | - Gopalrajan Sugumar
- Tamil Nadu Dr. J.Jayalalithaa Fisheries University, Nagapattinam, Tamil Nadu, India, 611 002
| | - Bagthasingh Chrisolite
- TNJFU-Fisheries College and Research Institute, Thoothukudi, Tamil Nadu, India, 628 008.
| | | | - Shanmugam Sudarshan
- TNJFU-Dr.MGR Fisheries College and Research Institute, TNJFU, Thalainayeru, Tamil Nadu, India, 614712
| | - Fathiraja Parthiban
- TNJFU-Fisheries College and Research Institute, Thoothukudi, Tamil Nadu, India, 628 008
| | - Mohamed Mansoor
- TNJFU-Fisheries College and Research Institute, Thoothukudi, Tamil Nadu, India, 628 008
| |
Collapse
|
4
|
Accumulation of Trace Metals (Hg, As, Cd, and Pb) in Sediments from a Pleistocene Lagoon: A Case Study in Côte d’Ivoire, West Africa. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00515-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
5
|
Loest D, Uhland FC, Young KM, Li XZ, Mulvey MR, Reid-Smith R, Sherk LM, Carson CA. Carbapenem-resistant Escherichia coli from shrimp and salmon available for purchase by consumers in Canada: a risk profile using the Codex framework. Epidemiol Infect 2022; 150:e148. [PMID: 35968840 PMCID: PMC9386791 DOI: 10.1017/s0950268822001030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/28/2022] [Accepted: 05/21/2022] [Indexed: 11/05/2022] Open
Abstract
Resistance to carbapenems in human pathogens is a growing clinical and public health concern. The carbapenems are in an antimicrobial class considered last-resort, they are used to treat human infections caused by multidrug-resistant Enterobacterales, and they are classified by the World Health Organization as 'High Priority Critically Important Antimicrobials'. The presence of carbapenem-resistant Enterobacterales (CREs) of animal-origin is of concern because targeted studies of Canadian retail seafood revealed the presence of carbapenem resistance in a small number of Enterobacterales isolates. To further investigate this issue, a risk profile was developed examining shrimp and salmon, the two most important seafood commodities consumed by Canadians and Escherichia coli, a member of the Enterobacterales order. Carbapenem-resistant E. coli (CREc) isolates have been identified in shrimp and other seafood products. Although carbapenem use in aquaculture has not been reported, several classes of antimicrobials are utilised globally and co-selection of antimicrobial-resistant microorganisms in an aquaculture setting is also of concern. CREs have been identified in retail seafood purchased in Canada and are currently thought to be uncommon. However, data concerning CRE or CREc occurrence and distribution in seafood are limited, and argue for implementation of ongoing or periodic surveillance.
Collapse
Affiliation(s)
- Daleen Loest
- Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - F. Carl Uhland
- Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Kaitlin M. Young
- Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Xian-Zhi Li
- Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Michael R. Mulvey
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Richard Reid-Smith
- Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Lauren M. Sherk
- Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Carolee A. Carson
- Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| |
Collapse
|
6
|
Kichana E, Addy F, Dufailu OA. Genetic characterization and antimicrobial susceptibility of Escherichia coli isolated from household water sources in northern Ghana. JOURNAL OF WATER AND HEALTH 2022; 20:770-780. [PMID: 35635771 DOI: 10.2166/wh.2022.197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The microbial quality of household water is an important issue in developing countries, especially in Ghana, where many people still depend on unimproved sources of water. The present study investigated the prevalence, genetic characteristics, and antimicrobial resistance profile of Escherichia coli from surface water sources. Fifty-two water samples were analyzed by using a spread plate, a biochemical test, and multiplex polymerase chain reactions. E. coli was isolated from each of the 52 water samples. Of these isolates, 75% were noted to possess virulence genes. Approximately 54% of the isolates were characterized as follows: enterotoxigenic E. coli (ETEC, 10.26%), enteropathogenic E. coli (EPEC, 17.95%), verotoxigenic E. coli (VTEC, 23.07%), and enteroinvasive E. coli (EIEC, 2.57%). Eighteen of the fifty-two isolates could not be characterized due to heterogeneity in banding. The disc diffusion method was used to test for antimicrobial susceptibility. The isolates were most resistant to ceftazidime, augmentin, and cefuroxime. Multidrug resistance was recorded in 48.1% of the isolates. In contrast, the isolates were most susceptible to ciprofloxacin (86.5%), nitrofurantoin (84.6%), and ofloxacin (75%). These results revealed a high diversity and widespread of E. coli in northern Ghana. The study provides important data for public health nationwide surveillance of E. coli in surface water across the country.
Collapse
Affiliation(s)
- Elvis Kichana
- Regional Water Quality Laboratory, World Vision Ghana, No. 3 Kotei Robertson Road, North Industrial Area, North Kaneshie, PMB Accra, Ghana E-mail:
| | - Francis Addy
- Department of Biotechnology, University for Development Studies, Tamale NL-1142-8658, Ghana
| | - Osman Adamu Dufailu
- Department of Microbiology, University for Development Studies, Tamale NL-1142-8658, Ghana
| |
Collapse
|
7
|
Odetoyin B, Ogundipe O, Onanuga A. Prevalence, diversity of diarrhoeagenic Escherichia coli and associated risk factors in well water in Ile-Ife, Southwestern Nigeria. ONE HEALTH OUTLOOK 2022; 4:3. [PMID: 35130987 PMCID: PMC8822758 DOI: 10.1186/s42522-021-00057-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/28/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Diarrhoeagenic Escherichia coli (DEC) strains are common causes of morbidity and mortality worldwide. Waterborne DEC could pose a health risk to humans through domestic use of contaminated water. However, epidemiological studies on DEC in well water are scarce in Nigeria. This study determined the prevalence, diversity and factors associated with the presence of DEC in well water in Ile-Ife, southwestern Nigeria. METHODS We assessed 143 wells for safety and a questionnaire was administered. Contaminating isolates were identified as E. coli by amplifying their 16S rRNA gene. Five diarrhoeagenic E. coli pathotypes were sought using multiplex polymerase chain reaction (PCR). (GTG)5 repetitive PCR and Shannon diversity index were used to determine isolates diversity. Multivariate analysis was used to reveal the factors associated with the presence of DEC in well water. RESULTS Fifty-six (39.2%) wells were contaminated by diarrhoeagenic E. coli. Wells with dirty platforms, undercut by erosion and sited near septic tanks significantly harboured DEC (p < 0.05). There was a preponderance of Shiga-toxin producing E. coli among the isolates with 10 (17.9%) wells contaminated by multiple DEC. The DEC isolates showed 45 unique fingerprints and were divided into six clades, with an overall diversity index of 18.87. DISCUSSION The presence of DEC in well water highlights the risk to human health associated with the use of untreated water. There was a high degree of genetic diversity among the isolates implying multiple sources of contamination. There is a need for periodic sanitation and inspection of wells for cracks to prevent seepages and possible outbreaks of waterborne diseases.
Collapse
Affiliation(s)
- Babatunde Odetoyin
- Department of Medical Microbiology and Parasitology, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Olawumi Ogundipe
- Department of Medical Microbiology and Parasitology, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Adebola Onanuga
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmacy, University of Maiduguri, Maiduguri, Borno State Nigeria
| |
Collapse
|
8
|
Bonkoungou IJO, Somda NS, Traoré O, Zoma BS, Garba Z, Drabo KM, Barro N. DETECTION OF DIARRHEAGENIC ESCHERICHIA COLI IN HUMAN DIARRHEIC STOOL AND DRINKING WATER SAMPLES IN OUAGADOUGOU, BURKINA FASO. Afr J Infect Dis 2020; 15:53-58. [PMID: 33884359 PMCID: PMC8047281 DOI: 10.21010/ajid.v15i1.7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/27/2022] Open
Abstract
Background: The presence of diarrheagenic Escherichia coli (DEC) in drinking water, is a grave public health problem. This study was aimed at characterization of diarrheagenic Escherichia coli isolated from drinking water and faecal samples from diarrheic patients in Ouagadougou, Burkina Faso. Materials and Methods: A total of 242 water samples consisting of 182 potable sachets and 60 from boreholes were collected in the period between October 2018 and April 2019 in the city of Ouagadougou. Faecal samples were also collected from 201 diarrheic patients visiting National Public Health Laboratory for a biological diagnosis by coproculture. The presence of virulence genes associated with DEC was determined by 16-plex polymerase chain reaction from bacteria culture. Results: From drinking water, we found 17% (42/242) Escherichia coli isolates in which 1% (2/242) DEC were detected. Among analyzed samples (182 sachet water versus 60 borehole water), the two DEC (01 ETEC and 01 EPEC) were detected in sachet water. DEC were detected in 20% (40/201) of patients. Enteroaggregative Escherichia coli (EAEC) were mostly detected in 10% followed by Enteropathogenic Escherichia coli (EPEC) in 4%, Enteroinvasive Escherichia coli (EIEC) in 2%, and Shiga toxin-producing Escherichia coli (STEC) 0.5%. However, Enterotoxigenic Escherichia coli (ETEC) was not detected alone, but in co-infections with EAEC. Conclusion: The present study documented the prevalence of Escherichia coli pathovars associated in patients with diarrhea, and shows that drinking water might be a source of DEC transmission in human.
Collapse
Affiliation(s)
- Isidore Juste Ouindgueta Bonkoungou
- Département de Biochimie-Microbiologie. UFR- Sciences de la vie et de la terre. Université Joseph Ki-Zerbo, 03 BP 7021 Ouagadougou 03, Burkina Faso
| | - Namwin Siourimè Somda
- Département Technologie Alimentaire (DTA) / IRSAT / CNRST, Burkina Faso, 03 BP 7047 Ouagadougou 03
| | - Oumar Traoré
- Département de Biochimie-Microbiologie. UFR- Sciences de la vie et de la terre. Université Joseph Ki-Zerbo, 03 BP 7021 Ouagadougou 03, Burkina Faso.,Unité de Formation et de Recherche en Sciences Appliquées à la Technologie (UFR/SAT). Université de Dédougou, BP 176 Dédougou
| | - Barthelemy Sibiri Zoma
- Laboratoire National de Santé Publique (LNSP), 09 BP 24 Ouagadougou 09, Burkina Faso.,Polygon Bio Services SARL,09 BP 969 Ouagadougou 09, Ouagadougou, Burkina Faso 969
| | - Zakaria Garba
- Département de Biochimie-Microbiologie. UFR- Sciences de la vie et de la terre. Université Joseph Ki-Zerbo, 03 BP 7021 Ouagadougou 03, Burkina Faso.,Unité de Recherche Clinique de NANORO, IRSS-CNRST, BP: 218 Ouaga 11 Burkina Faso
| | - Koine Maxime Drabo
- Institut de Recherche en Sciences de la santé, CNRST, 03 B.P. 7192 Ouagadougou 03 Burkina Faso
| | - Nicolas Barro
- Département de Biochimie-Microbiologie. UFR- Sciences de la vie et de la terre. Université Joseph Ki-Zerbo, 03 BP 7021 Ouagadougou 03, Burkina Faso
| |
Collapse
|
9
|
Sun J, Shi Y, Du Y, Wang Z, Liu Z, Wang H, Zhao G, Ma Y, Zheng M. Rapid Detection of Diarrheagenic Escherichia coli by a New Multiplex Real-Time Quantitative PCR Assay. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820060174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Bautista-Trujillo GU, Gutiérrez-Miceli FA, Mandujano-García L, Oliva-Llaven MA, Ibarra-Martínez C, Mendoza-Nazar P, Ruiz-Sesma B, Tejeda-Cruz C, Pérez-Vázquez LC, Pérez-Batrez JE, Vidal JE, Gutiérrez-Jiménez J. Captive Green Iguana Carries Diarrheagenic Escherichia coli Pathotypes. Front Vet Sci 2020; 7:99. [PMID: 32258064 PMCID: PMC7093018 DOI: 10.3389/fvets.2020.00099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 02/10/2020] [Indexed: 11/13/2022] Open
Abstract
The green iguana appears to be a carrier for bacteria causing gastrointestinal infections in humans. The presence of diarrheagenic E. coli (DEC) pathotypes, however, has not been studied in this reptile. The aim of the current work was to investigate the prevalence of DEC in the intestines of 240 captive green iguanas, their phylogenetic groups, and the antibiotic susceptibility profile. E. coli strains were isolated from 41.7% (N = 100/240) of the intestinal content of green iguanas. DEC strains was identified in 25.9% of the screened population and were detected in the majority (62%, p = 0.009) of those reptiles carrying E. coli strains. Among DEC strains, STEC strains carrying the stx1 gene were the most prevalent pathotype isolated (38.7%), followed by EAEC and ETEC (27.4% each). Genetic markers of DEC strains belonging to the EHEC pathotype were not detected. More than a half of DEC strains were classified into the Clade I-II phylogroup (64.5%), followed by the phylogroup A (14.5%). The antibiotic susceptibility method demonstrated that a high proportion of DEC strains were resistance, or non-susceptible, to carbenicillin, amikacin, and ampicillin. We conclude that the green iguana kept in captivity is a carrier of DEC strains bearing resistance to first-line antibiotics, including penicillins. Given the increase presence of the green iguana in Latin American households, these reptiles represent a potential source of transmission to susceptible humans and therefore a potential source of gastrointestinal disease.
Collapse
Affiliation(s)
| | | | - Leonel Mandujano-García
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Mexico
| | - María Angela Oliva-Llaven
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Mexico
| | - Carlos Ibarra-Martínez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Mexico
| | - Paula Mendoza-Nazar
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Mexico
| | - Benigno Ruiz-Sesma
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Mexico
| | - Carlos Tejeda-Cruz
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Mexico
| | | | | | - Jorge E. Vidal
- Rollins School of Public Health, Emory University, Atlanta, GA, United States
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Javier Gutiérrez-Jiménez
- Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez, Mexico
| |
Collapse
|
11
|
Taha ZM, Yassin NA. Prevalence of diarrheagenic Escherichia coli in animal products in Duhok province, Iraq. IRANIAN JOURNAL OF VETERINARY RESEARCH 2019; 20:255-262. [PMID: 32042289 PMCID: PMC6983314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 05/28/2019] [Accepted: 06/15/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Diarrheagenic Escherichia coli (DEC) is regarded as a great public health concern all around the world causing diarrhoea which can be transmitted through food chain. AIMS This study aimed to determine the contamination level and exact distribution rate of DEC in food products consumed by human. METHODS Seven hundred and twenty samples of food from animal origin and fishes were analysed by conventional and molecular method for the presence of E. coli and two multiplex polymerase chain reaction (mPCR) for detection of DEC. RESULTS Two hundred and eighty-three E. coli isolates were detected. The classification of DEC by two multiplex PCR assay yielded 84 DEC pathotypes. Enterotoxigenic E. coli (ETEC) was detected at high rates (75%) followed by shiga-toxigenic E. coli (STEC) and enterohemorrhagic E. coli (EHEC) (each of 9.5%), enteroaggregative E. coli (EAEC) (3.5%) and atypical enteropathogenic E. coli (aEPEC) (about 2.3%). The highest number of DEC (n=26; 21.6%) was observed from beef carcasses in abattoir while the lowest number (n=7; 5.8%) was noticed from burger samples (P<0.01). Enterotoxigenic E. coli was widespread in local raw ground meat and fish surface swabs (P<0.001), EAEC (P<0.01), and EHEC (P<0.001) were only in beef carcasses swabs, STEC was more prevalent in both imported and local raw burger (P<0.01), while the isolates of aEPEC were from imported chicken carcasses (P>0.05). CONCLUSION High DEC contamination rate that was observed is attributed to the poor hygienic practices during food processing. Therefore, a superior hygienic application is required.
Collapse
Affiliation(s)
- Z. M. Taha
- Department of Pathology and Microbiology, College of Veterinary Medicine, University of Duhok, Duhok, Iraq
| | - N. A. Yassin
- Department of Microbiology, College of Medicine, University of Duhok, Duhok, Iraq
| |
Collapse
|
12
|
Rodrigues PA, Ferrari RG, Conte-Junior CA. Application of molecular tools to elucidate the microbiota of seafood. J Appl Microbiol 2018; 124:1347-1365. [PMID: 29345036 DOI: 10.1111/jam.13701] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 12/19/2022]
Abstract
The aim of this review is to present the methodologies currently applied to identify microbiota and pathogens transmitted to humans through seafood consumption, focusing on molecular techniques and pointing out their importance, advantages, disadvantages and applicability. Knowledge of available techniques allows researchers to identify which technique best fits their expectations. With such discernment, it will be possible to infer which disadvantages will be present and, therefore, not interfering with the final result. Two methodologies can be employed for this purpose, dependent and independent cultures. However, the dependent culture has certain limitations that can be solved through the independent cultivation techniques, such as PCR, PFGE and NGS, especially through the sequencing of the 16S rRNA region, providing a complete view of microbial diversity. These have revolutionized microbiological knowledge, mainly because they allow for the identification of uncultivable micro-organisms, which represent a substantial portion of total micro-organisms, making it possible to elucidate not yet described taxa which may display pathogenic potential, besides quantifying microbial communities, microbiota genetics, translated proteins and produced metabolites. In addition, transcriptomic and metabolomic techniques also allow for the evaluation of possible impacts that microbial communities may create in their environment, as well as the determination of potential pathogenicity to humans.
Collapse
Affiliation(s)
- P A Rodrigues
- Department of Food Technology, Faculty of Veterinary, Molecular & Analytical Laboratory Center, Universidade Federal Fluminense, Niterói, Brazil
| | - R G Ferrari
- Department of Food Technology, Faculty of Veterinary, Molecular & Analytical Laboratory Center, Universidade Federal Fluminense, Niterói, Brazil.,Chemistry Institute, Food Science Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - C A Conte-Junior
- Department of Food Technology, Faculty of Veterinary, Molecular & Analytical Laboratory Center, Universidade Federal Fluminense, Niterói, Brazil.,Chemistry Institute, Food Science Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|