1
|
Sasmita DMA, Anwar SL, Heriyanto DS, Paramita DK, Hendrawan F, Aryandono T. Prognosis value of circulating telomere repeat binding factor 2 and leukocyte telomere length in breast cancer mortality. NARRA J 2025; 5:e1601. [PMID: 40352198 PMCID: PMC12059881 DOI: 10.52225/narra.v5i1.1601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/03/2024] [Indexed: 05/14/2025]
Abstract
Telomere repeat binding factor 2 (TRF2) is currently a novel tumor marker, yet its clinical implication has not been investigated. The aim of this study was to investigate the prognostic value of circulating TRF2 and leukocyte telomere length in 5-year mortality in breast cancer patients. In this cohort retrospective study, breast cancer patients were included and the length of telomeres and circulating TRF2 were quantified. Receiver operating characteristics and the Youden index were used to determine the optimal cut-off. To analyze the overall survival rate in five years, Kaplan Meier analysis was used, while the prognostic value of both variables was analyzed in Cox proportional hazard regression on both univariate and multivariate models. Our data indicated that the optimal cut-off points for TRF2 and leukocyte telomere length were 598 pg/mL and 0.93 kb, respectively. Based on the optimal cut-off points, the participant's data was grouped, and our data indicated that the high TRF2 group had a poorer overall survival rate in comparison to the low group (91.3% vs 83.87%; log-rank test; p < 0.01). The overall survival between short and long telomeres was comparable (88.24% vs 88.37%; log-rank test; p = 0.64). TRF2 (hazard ratio (HR): 3.66; 95%CI: 1.45-9.29) and molecular subtype (p = 0.04) were identified as independent factors to predict mortality. In conclusion, a high circulating TRF2 in breast cancer participants was associated with lower overall 5-year survival rates in comparison with the low TRF2 group. Moreover, high TRF2 could predict the mortality of the breast cancer population to be 3.66 times higher than the lower group. In contrast, telomere length was not associated with overall survival rate nor predicting mortality in five years.
Collapse
Affiliation(s)
- Dhyas MA. Sasmita
- Department of Oncological Surgery, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
- Department of Surgery, Dr. Soeradji Tirtonegoro General Hospital, Klaten, Indonesia
| | - Sumadi L. Anwar
- Department of Oncological Surgery, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
- Department of Oncological Surgery, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Didik S. Heriyanto
- Department of Oncological Surgery, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
- Department of Anatomical Pathology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Anatomical Pathology, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Dewi K. Paramita
- Department of Oncological Surgery, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Fandi Hendrawan
- Department of Oncological Surgery, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Teguh Aryandono
- Department of Oncological Surgery, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
- Department of Oncological Surgery, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| |
Collapse
|
2
|
Iachettini S, Ciccarone F, Maresca C, D' Angelo C, Petti E, Di Vito S, Ciriolo MR, Zizza P, Biroccio A. The telomeric protein TERF2/TRF2 impairs HMGB1-driven autophagy. Autophagy 2022:1-12. [PMID: 36310382 DOI: 10.1080/15548627.2022.2138687] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023] Open
Abstract
TERF2/TRF2 is a pleiotropic telomeric protein that plays a crucial role in tumor formation and progression through several telomere-dependent and -independent mechanisms. Here, we uncovered a novel function for this protein in regulating the macroautophagic/autophagic process upon different stimuli. By using both biochemical and cell biology approaches, we found that TERF2 binds to the non-histone chromatin-associated protein HMGB1, and this interaction is functional to the nuclear/cytoplasmic protein localization. Specifically, silencing of TERF2 alters the redox status of the cells, further exacerbated upon EBSS nutrient starvation, promoting the cytosolic translocation and the autophagic activity of HMGB1. Conversely, overexpression of wild-type TERF2, but not the mutant unable to bind HMGB1, negatively affects the cytosolic translocation of HMGB1, counteracting the stimulatory effect of EBSS starvation. Moreover, genetic depletion of HMGB1 or treatment with inflachromene, a specific inhibitor of its cytosolic translocation, completely abolished the pro-autophagic activity of TERF2 silencing. In conclusion, our data highlighted a novel mechanism through which TERF2 modulates the autophagic process, thus demonstrating the key role of the telomeric protein in regulating a process that is fundamental, under both physiological and pathological conditions, in defining the fate of the cells.Abbreviations: ALs: autolysosomes; ALT: alternative lengthening of telomeres; ATG: autophagy related; ATM: ATM serine/threonine kinase; CQ: Chloroquine; DCFDA: 2',7'-dichlorofluorescein diacetate; DDR: DNA damage response; DHE: dihydroethidium; EBSS: Earle's balanced salt solution; FACS: fluorescence-activated cell sorting; GFP: green fluorescent protein; EGFP: enhanced green fluorescent protein; GSH: reduced glutathione; GSSG: oxidized glutathione; HMGB1: high mobility group box 1; ICM: inflachromene; IF: immunofluorescence; IP: immunoprecipitation; NAC: N-acetyl-L-cysteine; NHEJ: non-homologous end joining; PLA: proximity ligation assay; RFP: red fluorescent protein; ROS: reactive oxygen species; TIF: telomere-induced foci; TERF2/TRF2: telomeric repeat binding factor 2.
Collapse
Affiliation(s)
- Sara Iachettini
- Translational Oncology Research Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Fabio Ciccarone
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy.,Biochemistry of aging section, IRCCS San Raffaele Roma, Rome, Italy
| | - Carmen Maresca
- Translational Oncology Research Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Carmen D' Angelo
- Translational Oncology Research Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Eleonora Petti
- Translational Oncology Research Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Serena Di Vito
- Translational Oncology Research Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Maria Rosa Ciriolo
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy.,Biochemistry of aging section, IRCCS San Raffaele Roma, Rome, Italy
| | - Pasquale Zizza
- Translational Oncology Research Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Annamaria Biroccio
- Translational Oncology Research Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
3
|
Dos Santos GA, Viana NI, Pimenta R, Guimarães VR, de Camargo JA, Romão P, Reis ST, Leite KRM, Srougi M. Prognostic value of TERF1 expression in prostate cancer. J Egypt Natl Canc Inst 2021; 33:24. [PMID: 34486082 DOI: 10.1186/s43046-021-00082-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Telomere dysfunction is one of the hallmarks of cancer and is crucial to prostate carcinogenesis. TERF1 is a gene essential to telomere maintenance, and its dysfunction has already been associates with several cancers. TERF1 is a target of miR-155, and this microRNA can inhibit its expression and promotes carcinogenesis in breast cancer. We aim to analyze TERF1, in gene and mRNA level, involvement in prostate cancer progression. RESULTS Alterations in TERF1 DNA were evaluated using datasets of primary tumor and castration-resistant tumors (CRPC) deposited in cBioportal. The expression of TERF1 mRNA levels was assessed utilizing TCGA datasets, clinical specimens, and metastatic prostate cancer cell lines (LNCaP, DU145, and PC3). Six percent of localized prostate cancer presents alterations in TERF1 (the majority of that was amplifications). In the CRPC cohort, 26% of samples had TERF1 amplification. Patients with TERF1 alterations had the worst overall survival only on localized cancer cohort (p = 0.0027). In the TCGA cohort, mRNA levels of TERF1 were downregulated in comparison with normal tissue (p = 0.0013) and upregulated in tumors that invade lymph nodes (p = 0.0059). The upregulation of TERF1 is also associated with worst overall survival (p = 0.0028) and disease-free survival (p = 0.0023). There is a positive correlation between TERF1 and androgen receptor expression in cancer tissue (r = 0.53, p < 0.00001) but not on normal tissue (r = - 0.16, p = 0.12). In the clinical specimens, there is no detectable expression of TERF1 and upregulation of miR-155 (p = 0.0348). In cell lines, TERF1 expression was higher in LNCaP and was progressively lower in DU145 and PC3 (p = 0.0327) with no differences in miR-155 expression. CONCLUSION Amplification/upregulation of TERF1 was associated with the worst prognostic in localized prostate cancer. Our results corroborate that miR-155 regulates TERF1 expression in prostate cancer. TERF1 has the potential to become a biomarker in prostate cancer.
Collapse
Affiliation(s)
- Gabriel Arantes Dos Santos
- Urology Department, Laboratory of Medical Investigation (LIM55), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Room 2145 01246-903, 2° Floor, Av. Dr. Arnaldo 455, Sao Paulo, SP, Brazil. .,D'Or Institute for Research and Education (IDOR), Sao Paulo, Brazil.
| | - Nayara Izabel Viana
- Urology Department, Laboratory of Medical Investigation (LIM55), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Room 2145 01246-903, 2° Floor, Av. Dr. Arnaldo 455, Sao Paulo, SP, Brazil
| | - Ruan Pimenta
- Urology Department, Laboratory of Medical Investigation (LIM55), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Room 2145 01246-903, 2° Floor, Av. Dr. Arnaldo 455, Sao Paulo, SP, Brazil.,D'Or Institute for Research and Education (IDOR), Sao Paulo, Brazil
| | - Vanessa Ribeiro Guimarães
- Urology Department, Laboratory of Medical Investigation (LIM55), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Room 2145 01246-903, 2° Floor, Av. Dr. Arnaldo 455, Sao Paulo, SP, Brazil
| | - Juliana Alves de Camargo
- Urology Department, Laboratory of Medical Investigation (LIM55), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Room 2145 01246-903, 2° Floor, Av. Dr. Arnaldo 455, Sao Paulo, SP, Brazil
| | - Poliana Romão
- Urology Department, Laboratory of Medical Investigation (LIM55), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Room 2145 01246-903, 2° Floor, Av. Dr. Arnaldo 455, Sao Paulo, SP, Brazil
| | - Sabrina T Reis
- Urology Department, Laboratory of Medical Investigation (LIM55), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Room 2145 01246-903, 2° Floor, Av. Dr. Arnaldo 455, Sao Paulo, SP, Brazil.,Minas Gerais State University (UEMG), Passos, Minas Gerais, Brazil
| | - Katia Ramos Moreira Leite
- Urology Department, Laboratory of Medical Investigation (LIM55), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Room 2145 01246-903, 2° Floor, Av. Dr. Arnaldo 455, Sao Paulo, SP, Brazil
| | - Miguel Srougi
- Urology Department, Laboratory of Medical Investigation (LIM55), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Room 2145 01246-903, 2° Floor, Av. Dr. Arnaldo 455, Sao Paulo, SP, Brazil.,D'Or Institute for Research and Education (IDOR), Sao Paulo, Brazil
| |
Collapse
|
4
|
Imran SAM, Yazid MD, Idrus RBH, Maarof M, Nordin A, Razali RA, Lokanathan Y. Is There an Interconnection between Epithelial-Mesenchymal Transition (EMT) and Telomere Shortening in Aging? Int J Mol Sci 2021; 22:ijms22083888. [PMID: 33918710 PMCID: PMC8070110 DOI: 10.3390/ijms22083888] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial–Mesenchymal Transition (EMT) was first discovered during the transition of cells from the primitive streak during embryogenesis in chicks. It was later discovered that EMT holds greater potential in areas other than the early development of cells and tissues since it also plays a vital role in wound healing and cancer development. EMT can be classified into three types based on physiological functions. EMT type 3, which involves neoplastic development and metastasis, has been the most thoroughly explored. As EMT is often found in cancer stem cells, most research has focused on its association with other factors involving cancer progression, including telomeres. However, as telomeres are also mainly involved in aging, any possible interaction between the two would be worth noting, especially as telomere dysfunction also contributes to cancer and other age-related diseases. Ascertaining the balance between degeneration and cancer development is crucial in cell biology, in which telomeres function as a key regulator between the two extremes. The essential roles that EMT and telomere protection have in aging reveal a potential mutual interaction that has not yet been explored, and which could be used in disease therapy. In this review, the known functions of EMT and telomeres in aging are discussed and their potential interaction in age-related diseases is highlighted.
Collapse
Affiliation(s)
- Siti A. M. Imran
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.A.M.I.); (M.D.Y.); (R.B.H.I.); (M.M.); (A.N.); (R.A.R.)
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.A.M.I.); (M.D.Y.); (R.B.H.I.); (M.M.); (A.N.); (R.A.R.)
| | - Ruszymah Bt Hj Idrus
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.A.M.I.); (M.D.Y.); (R.B.H.I.); (M.M.); (A.N.); (R.A.R.)
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Manira Maarof
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.A.M.I.); (M.D.Y.); (R.B.H.I.); (M.M.); (A.N.); (R.A.R.)
| | - Abid Nordin
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.A.M.I.); (M.D.Y.); (R.B.H.I.); (M.M.); (A.N.); (R.A.R.)
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Rabiatul Adawiyah Razali
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.A.M.I.); (M.D.Y.); (R.B.H.I.); (M.M.); (A.N.); (R.A.R.)
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (S.A.M.I.); (M.D.Y.); (R.B.H.I.); (M.M.); (A.N.); (R.A.R.)
- Correspondence: ; Tel.: +60-391457704
| |
Collapse
|
5
|
Yuan X, Dai M, Xu D. Telomere-related Markers for Cancer. Curr Top Med Chem 2020; 20:410-432. [PMID: 31903880 PMCID: PMC7475940 DOI: 10.2174/1568026620666200106145340] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/03/2019] [Accepted: 12/14/2019] [Indexed: 02/06/2023]
Abstract
Telomeres are structurally nucleoprotein complexes at termini of linear chromosomes and essential to chromosome stability/integrity. In normal human cells, telomere length erodes progressively with each round of cell divisions, which serves as an important barrier to uncontrolled proliferation and malignant transformation. In sharp contrast, telomere maintenance is a key feature of human malignant cells and required for their infinite proliferation and maintenance of other cancer hallmarks as well. Thus, a telomere-based anti-cancer strategy has long been suggested. However, clinically efficient and specific drugs targeting cancer telomere-maintenance have still been in their infancy thus far. To achieve this goal, it is highly necessary to elucidate how exactly cancer cells maintain functional telomeres. In the last two decades, numerous studies have provided profound mechanistic insights, and the identified mechanisms include the aberrant activation of telomerase or the alternative lengthening of telomere pathway responsible for telomere elongation, dysregulation and mutation of telomere-associated factors, and other telomere homeostasis-related signaling nodes. In the present review, these various strategies employed by malignant cells to regulate their telomere length, structure and function have been summarized, and potential implications of these findings in the rational development of telomere-based cancer therapy and other clinical applications for precision oncology have been discussed.
Collapse
Affiliation(s)
- Xiaotian Yuan
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, China
| | - Mingkai Dai
- Central Research Laboratory, Shandong University Second Hospital, Jinan, 250033, China.,Karolinska Institute Collaborative Laboratory for Cancer and Stem Cell Research, Shandong University Second Hospital, Jinan, 250033, China
| | - Dawei Xu
- Karolinska Institute Collaborative Laboratory for Cancer and Stem Cell Research, Shandong University Second Hospital, Jinan, 250033, China.,Department of Medicine, Division of Hematology, Center for Molecular Medicine (CMM) and Bioclinicum, Karolinska Institute and Karolinska University Hospital Solna, Solna 171 64, Sweden
| |
Collapse
|
6
|
Fernandes SG, Dsouza R, Pandya G, Kirtonia A, Tergaonkar V, Lee SY, Garg M, Khattar E. Role of Telomeres and Telomeric Proteins in Human Malignancies and Their Therapeutic Potential. Cancers (Basel) 2020; 12:E1901. [PMID: 32674474 PMCID: PMC7409176 DOI: 10.3390/cancers12071901] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/19/2022] Open
Abstract
Telomeres are the ends of linear chromosomes comprised of repetitive nucleotide sequences in humans. Telomeres preserve chromosomal stability and genomic integrity. Telomere length shortens with every cell division in somatic cells, eventually resulting in replicative senescence once telomere length becomes critically short. Telomere shortening can be overcome by telomerase enzyme activity that is undetectable in somatic cells, while being active in germline cells, stem cells, and immune cells. Telomeres are bound by a shelterin complex that regulates telomere lengthening as well as protects them from being identified as DNA damage sites. Telomeres are transcribed by RNA polymerase II, and generate a long noncoding RNA called telomeric repeat-containing RNA (TERRA), which plays a key role in regulating subtelomeric gene expression. Replicative immortality and genome instability are hallmarks of cancer and to attain them cancer cells exploit telomere maintenance and telomere protection mechanisms. Thus, understanding the role of telomeres and their associated proteins in cancer initiation, progression and treatment is very important. The present review highlights the critical role of various telomeric components with recently established functions in cancer. Further, current strategies to target various telomeric components including human telomerase reverse transcriptase (hTERT) as a therapeutic approach in human malignancies are discussed.
Collapse
Affiliation(s)
- Stina George Fernandes
- Sunandan Divatia School of Science, SVKM’s NMIMS (Deemed to be University), Vile Parle West, Mumbai 400056, India; (S.G.F.); (R.D.)
| | - Rebecca Dsouza
- Sunandan Divatia School of Science, SVKM’s NMIMS (Deemed to be University), Vile Parle West, Mumbai 400056, India; (S.G.F.); (R.D.)
| | - Gouri Pandya
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida 201313, India; (G.P.); (A.K.)
| | - Anuradha Kirtonia
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida 201313, India; (G.P.); (A.K.)
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; (V.T.); (S.Y.L.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
| | - Sook Y. Lee
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; (V.T.); (S.Y.L.)
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida 201313, India; (G.P.); (A.K.)
| | - Ekta Khattar
- Sunandan Divatia School of Science, SVKM’s NMIMS (Deemed to be University), Vile Parle West, Mumbai 400056, India; (S.G.F.); (R.D.)
| |
Collapse
|
7
|
A Novel Tissue and Stem Cell Specific TERF1 Splice Variant Is Downregulated in Tumour Cells. Int J Mol Sci 2019; 21:ijms21010085. [PMID: 31877678 PMCID: PMC6981981 DOI: 10.3390/ijms21010085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 11/17/2022] Open
Abstract
In this study, we describe the identification of a novel splice variant of TERF1/PIN2, one of the main components of the telomeric shelterin complex. This new splice variant is identical to TERF1, apart from a 30 amino acid internal insertion near to the C-terminus of TERF1. Based on genome comparison analyses and RNA expression data, we show that this splice variant is conserved among hominidae but absent from all other species. RNA expression and histological analyses show specific expression in human spermatogonial and hematopoietic stem cells (HSCs), while all other analyzed tissues lack the expression of this TERF1-isoform, hence the name TERF1-tsi (TERF1-tissue-specific-isoform). In addition, we could not detect any expression in primary human cells and established cancer cell lines. Immunohistochemistry results involving two new rabbit polyclonal antibodies, generated against TERF1-tsi specific peptides, indicate nuclear localization of TERF1-tsi in a subset of spermatogonial stem cells. In line with this observation, immunofluorescence analyzes in various cell lines consistently revealed that ectopic TERF1-tsi localizes to the cell nucleus, mainly but not exclusively at telomeres. In a first attempt to evaluate the impact of TERF1-tsi in the testis, we have tested its expression in normal testis samples versus matched tumor samples from the same patients. Both RT-PCR and IHC show a specific downregulation of TERF1-tsi in tumor samples while the expression of TERF1 and PIN2 remains unchanged.
Collapse
|
8
|
Guven-Maiorov E, Tsai CJ, Nussinov R. Oncoviruses Can Drive Cancer by Rewiring Signaling Pathways Through Interface Mimicry. Front Oncol 2019; 9:1236. [PMID: 31803618 PMCID: PMC6872517 DOI: 10.3389/fonc.2019.01236] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/28/2019] [Indexed: 01/17/2023] Open
Abstract
Oncoviruses rewire host pathways to subvert host immunity and promote their survival and proliferation. However, exactly how is challenging to understand. Here, by employing the first and to date only interface-based host-microbe interaction (HMI) prediction method, we explore a pivotal strategy oncoviruses use to drive cancer: mimicking binding surfaces-interfaces-of human proteins. We show that oncoviruses can target key human network proteins and transform cells by acquisition of cancer hallmarks. Experimental large-scale mapping of HMIs is difficult and individual HMIs do not permit in-depth grasp of tumorigenic virulence mechanisms. Our computational approach is tractable and 3D structural HMI models can help elucidate pathogenesis mechanisms and facilitate drug design. We observe that many host proteins are unique targets for certain oncoviruses, whereas others are common to several, suggesting similar infectious strategies. A rough estimation of our false discovery rate based on the tissue expression of oncovirus-targeted human proteins is 25%.
Collapse
Affiliation(s)
- Emine Guven-Maiorov
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Ruth Nussinov
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
- Department of Human Genetics and Molecular Medicine, Sackler Institute of Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
9
|
Okamoto K, Seimiya H. Revisiting Telomere Shortening in Cancer. Cells 2019; 8:cells8020107. [PMID: 30709063 PMCID: PMC6406355 DOI: 10.3390/cells8020107] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/28/2019] [Accepted: 01/28/2019] [Indexed: 12/21/2022] Open
Abstract
Telomeres, the protective structures of chromosome ends are gradually shortened by each cell division, eventually leading to senescence or apoptosis. Cancer cells maintain the telomere length for unlimited growth by telomerase reactivation or a recombination-based mechanism. Recent genome-wide analyses have unveiled genetic and epigenetic alterations of the telomere maintenance machinery in cancer. While telomerase inhibition reveals that longer telomeres are more advantageous for cell survival, cancer cells often have paradoxically shorter telomeres compared with those found in the normal tissues. In this review, we summarize the latest knowledge about telomere length alterations in cancer and revisit its rationality. Finally, we discuss the potential utility of telomere length as a prognostic biomarker.
Collapse
Affiliation(s)
- Keiji Okamoto
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan.
| | - Hiroyuki Seimiya
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan.
| |
Collapse
|
10
|
Majerska J, Feretzaki M, Glousker G, Lingner J. Transformation-induced stress at telomeres is counteracted through changes in the telomeric proteome including SAMHD1. Life Sci Alliance 2018; 1:e201800121. [PMID: 30456372 PMCID: PMC6238619 DOI: 10.26508/lsa.201800121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 12/13/2022] Open
Abstract
The authors apply telomeric chromatin analysis to identify factors that accumulate at telomeres during cellular transformation, promoting telomere replication and repair and counteracting oncogene-borne telomere replication stress. Telomeres play crucial roles during tumorigenesis, inducing cellular senescence upon telomere shortening and extensive chromosome instability during telomere crisis. However, it has not been investigated if and how cellular transformation and oncogenic stress alter telomeric chromatin composition and function. Here, we transform human fibroblasts by consecutive transduction with vectors expressing hTERT, the SV40 early region, and activated H-RasV12. Pairwise comparisons of the telomeric proteome during different stages of transformation reveal up-regulation of proteins involved in chromatin remodeling, DNA repair, and replication at chromosome ends. Depletion of several of these proteins induces telomere fragility, indicating their roles in replication of telomeric DNA. Depletion of SAMHD1, which has reported roles in DNA resection and homology-directed repair, leads to telomere breakage events in cells deprived of the shelterin component TRF1. Thus, our analysis identifies factors, which accumulate at telomeres during cellular transformation to promote telomere replication and repair, resisting oncogene-borne telomere replication stress.
Collapse
Affiliation(s)
- Jana Majerska
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Marianna Feretzaki
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Galina Glousker
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Joachim Lingner
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|