1
|
Escorcia Mora P, Valbuena D, Diez-Juan A. The Role of the Gut Microbiota in Female Reproductive and Gynecological Health: Insights into Endometrial Signaling Pathways. Life (Basel) 2025; 15:762. [PMID: 40430189 PMCID: PMC12113314 DOI: 10.3390/life15050762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Fertility is a dynamic, multifactorial process governed by hormonal, immune, metabolic, and environmental factors. Recent evidence highlights the gut microbiota as a key systemic regulator of reproductive health, with notable impacts on endometrial function, implantation, pregnancy maintenance, and the timing of birth. This review examines the gut-endometrial axis, focusing on how gut microbial communities influence reproductive biology through molecular signaling pathways. We discuss the modulatory roles of microbial-derived metabolites-including short-chain fatty acids, bile acids, and tryptophan catabolites-in shaping immune tolerance, estrogen metabolism, and epithelial integrity at the uterine interface. Emphasis is placed on shared mechanisms such as β-glucuronidase-mediated estrogen recycling, Toll-like receptor (TLR)-driven inflammation, Th17/Treg cell imbalance, and microbial translocation, which collectively implicate dysbiosis in the etiology of gynecological disorders including endometriosis, polycystic ovary syndrome (PCOS), recurrent implantation failure (RIF), preeclampsia (PE), and preterm birth (PTB). Although most current evidence remains correlational, emerging insights from metagenomic and metabolomic profiling, along with microbiota-depletion models and Mendelian randomization studies, underscore the biological significance of gut-reproductive crosstalk. By integrating concepts from microbiology, immunology, and reproductive molecular biology, this review offers a systems-level perspective on host-microbiota interactions in female fertility.
Collapse
Affiliation(s)
| | | | - Antonio Diez-Juan
- R&D Department, Igenomix (Part of Vitrolife Group), Ronda de Narcís Monturiol, nº11, B, Edificios Europark, Parque Tecnológico, 46980 Paterna, Valencia, Spain; (P.E.M.); (D.V.)
| |
Collapse
|
2
|
Cao Y, Yang D, Cai S, Yang L, Yu S, Geng Q, Mo M, Li W, Wei Y, Li Y, Yin T, Diao L. Adenomyosis-associated infertility: an update of the immunological perspective. Reprod Biomed Online 2025; 50:104703. [PMID: 40175227 DOI: 10.1016/j.rbmo.2024.104703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 04/04/2025]
Abstract
Adenomyosis is characterized by the invasion of endometrial glands and stroma into the myometrium. Its clinical manifestations often include dysmenorrhoea, excessive menstrual bleeding and infertility. Reduced pregnancy and live birth rates and an increased miscarriage rate are observed in women with adenomyosis. This review summarizes relevant advances and presents the underlying mechanisms of adenomyosis-associated infertility from an immunological perspective. Individuals with adenomyosis exhibit imbalances in immune cell subpopulations and the endocrine hormone-immunomodulatory axis. These immunological alterations may be key contributors to, or at least accomplices in, impaired endometrial receptivity. In addition, adenomyosis often occurs in association with endometriosis, uterine leiomyoma or endometrial polyps, which are pathogenetically relevant; their similarities and differences are discussed from an immunological perspective. The clinical diagnostic criteria of adenomyosis are not perfect, and the pathogenesis remains to be fully explored. Therefore screening for effective targets for early diagnosis and treatment at the cellular and molecular levels from the immunological point of view holds great potential, which will be of great importance in preventing this disease and improving women's reproductive health.
Collapse
Affiliation(s)
- Ying Cao
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dongyong Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Songchen Cai
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, Guangdong, China; Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China
| | - Lingtao Yang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, Guangdong, China; Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China
| | - Shuyi Yu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, Guangdong, China; Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China
| | - Qiang Geng
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, Guangdong, China; Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China
| | - Meilan Mo
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, Guangdong, China; Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China
| | - Wenzhu Li
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yiqiu Wei
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuye Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, Guangdong, China; Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China.
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, Guangdong, China; Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China.
| |
Collapse
|
3
|
Gurkan N, Alper T. The effect of endometrial PRP on fertility outcomes in women with implantation failure or thin endometrium. Arch Gynecol Obstet 2025; 311:1195-1204. [PMID: 39939464 PMCID: PMC11985561 DOI: 10.1007/s00404-025-07948-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/02/2025] [Indexed: 02/14/2025]
Abstract
OBJECTIVE To evaluate the effect of intrauterine platelet-rich plasma (PRP) treatment on frozen-thawed embryo transfer (FET) cycles in patients with recurrent implantation failure. MATERIALS AND METHODS The study group consisted of 150 patients. The patients were grouped only as those with thin endometria, those with recurrent implantation failure (RIF), and those with both thin endometria and RIF. All participants underwent frozen embryo transfer. The control group consisted of a total of 150 patients who had normal endometrial thickness and did not have a history of RIF and who presented to the clinic due to unexplained infertility. The rates of biochemical pregnancy, clinical pregnancy, miscarriage and live birth were compared among the groups in terms of fertility outcomes. RESULTS In 150 patients with a thin endometrium or a history of RIF who underwent PRP, the endometrial thickness was significantly greater than the pre-PRP endometrial thickness, and this value was found to be statistically significant (7.38 mm vs. 7.96 mm, p < 0.001). In the thin endometrium group, there was also a statistically significant difference between the endometrial thickness measured before and after PRP (5.85 mm vs 6.65 mm, p < 0.001). The rate of not achieving pregnancy in the RIF group without PRP was found to be significantly greater than that in the control group (53.1% vs 28.7%, p < 0.05). There was no significant difference in pregnancy rates between the PRP groups. Morever, no statistically significant relationship was found between pregnancy status and whether or not PRP was performed in RIF patients (p value > 0.05). Overall, although there was an increase in clinical pregnancy and live birth rates in the PRP group compared with the control group, this difference did not reach statistical significance. CONCLUSION In patients suffering from a thin endometrium or RIF, although endometrial PRP increases endometrial thickness, it does not significantly improve fertility outcomes.
Collapse
Affiliation(s)
- Naziye Gurkan
- VM Medical Park Hospital, Gynecology and Obstetrics Clinic, Samsun, Turkey.
| | - Tayfun Alper
- VM Medical Park Hospital, Gynecology and Obstetrics Clinic, Samsun, Turkey
| |
Collapse
|
4
|
Mishra A, Modi D. Role of HOXA10 in pathologies of the endometrium. Rev Endocr Metab Disord 2025; 26:81-96. [PMID: 39499452 DOI: 10.1007/s11154-024-09923-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/07/2024]
Abstract
HOXA10 belongs to the homeobox gene family and is essential for uterine biogenesis, endometrial receptivity, embryo implantation, and stromal cell decidualization. Available evidence suggests that the expression of HOXA10 is dysregulated in different endometrial disorders like endometrial hyperplasia, endometrial cancer, adenomyosis, endometriosis, recurrent implantation failure, and unexplained infertility. The downregulation of HOXA10 occurs by genetic changes in the HOXA10 gene, methylation of the HOXA10 locus, or selected miRNAs. Endocrine disruptors and organic pollutants also cause the reduced expression of HOXA10 in these conditions. In vivo experiments in mouse models and in vitro studies in human cell lines demonstrate that downregulation of HOXA10 leads to endometrial epithelial cell proliferation, failure of stromal cell decidualization, altered expression of genes involved in cell cycle regulation, immunomodulation, and various signaling pathways. These disruptions are speculated to cause infertility associated with the disorders of the endometrium.
Collapse
Affiliation(s)
- Anuradha Mishra
- Molecular and Cellular Biology Laboratory, National Institute for Research in Reproductive and Child Health, J.M. Street, Parel, Mumbai, 400 012, India
| | - Deepak Modi
- Molecular and Cellular Biology Laboratory, National Institute for Research in Reproductive and Child Health, J.M. Street, Parel, Mumbai, 400 012, India.
| |
Collapse
|
5
|
Zhang H, Li C, Li W, Xin W, Qin T. Research Advances in Adenomyosis-Related Signaling Pathways and Promising Targets. Biomolecules 2024; 14:1402. [PMID: 39595579 PMCID: PMC11591984 DOI: 10.3390/biom14111402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Adenomyosis is a benign gynecological condition characterized by the proliferation of the endometrial stroma and glands into the myometrium, uterine volume enlargement, and peripheral smooth muscle hypertrophy. The typical clinical symptoms include chronic pelvic pain, abnormal uterine bleeding, and subfertility, all of which significantly impact quality of life. There are no effective prevention or treatment strategies for adenomyosis, partly due to a limited understanding of the pathological mechanisms underlying the initiation and progression of the disease. Given that signaling pathways play a crucial role in the development of adenomyosis, a better understanding of these signaling pathways is essential for identifying therapeutic targets and advancing drug development. The occurrence and progression of adenomyosis are closely linked to various underlying pathophysiological mechanisms, including proliferation, migration, invasion, fibrosis, angiogenesis, inflammation, oxidative stress, immune response, and epigenetic changes. This review summarizes the signaling pathways and targets associated with the pathogenesis of adenomyosis, including CXCL/CXCR, NLRP3, NF-κB, TGF-β/smad, VEGF, Hippo/YAP, PI3K/Akt/mTOR, JAK/STAT, and other relevant pathways. In addition, it identifies promising future targets for the development of adenomyosis treatment, such as m6A, GSK3β, sphks, etc.
Collapse
Affiliation(s)
- Hongyu Zhang
- Department of Gynecology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Chaoming Li
- Departmemt of Urology, The First People’s Hospital of Longnan, Longnan 742500, China
| | - Wenyan Li
- Department of Gynecology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Wenhu Xin
- Department of Gynecology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| | - Tiansheng Qin
- Department of Gynecology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
6
|
Liu Y, Jiang Z, Zhang L, Tian W, Lin A, Li M. Blockage of the NLRP3 inflammasome by MCC950 inhibits migration and invasion in adenomyosis. Reprod Biomed Online 2024; 49:104319. [PMID: 39121559 DOI: 10.1016/j.rbmo.2024.104319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 08/12/2024]
Abstract
RESEARCH QUESTION Does the NOD-like receptor protein 3 (NLRP3) inflammasome have an effect in adenomyosis? DESIGN Fresh-frozen endometrial tissues and paraffin specimens were obtained from endometrial tissues from patients with adenomyosis and controls. Western blot, quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC) were applied to assess expression of the NLRP3 inflammasome components. Primary eutopic endometrial stromal cells were isolated from the uteri of patients with adenomyosis. After NLRP3 was knocked down using small interfering RNA, proliferation, invasion and epithelial-mesenchymal transition (EMT) were evaluated using EdU, CCK8, transwell assays and western blot. Importantly, a mouse model of adenomyosis was established to evaluate the effects of the NLRP3 inhibitor MCC950 on the formation of adenomyosis. RESULTS Expression of the NLRP3 inflammasome components was elevated in the ectopic or eutopic endometrium of patients with adenomyosis. NLRP3 knockdown inhibited migration, invasion and EMT in endometrial cells and primary endometrial cells (P < 0.0001). MCC950, which blocks the NLRP3 inflammasome, reduced migration and invasion of endometrial cells (P < 0.01) and primary endometrial cells (P < 0.0001) considerably. Importantly, in the mouse model of adenomyosis, MCC950 had a mitigating effect on the severity of adenomyosis (P < 0.01). CONCLUSIONS NLRP3 was found to enhance migration, invasion and EMT of human endometrial cells in adenomyosis. Notably, the NLRP3 inhibitor MCC950 reduced migration and invasion of endometrial cells effectively. Furthermore, in the mouse model of adenomyosis, MCC950 exhibited a therapeutic effect by alleviating the severity of adenomyosis.
Collapse
Affiliation(s)
- Yanping Liu
- Department of Gynaecology and Obstetrics, Jinan Central Hospital, Shandong University, Jinan, Shandong, People's Republic of China
| | - Zhou Jiang
- Department of Reproductive Medicine, Qingdao Women and Children's Hospital, Qingdao, Shandong, People's Republic of China
| | - Lu Zhang
- Department of Gynaecology and Obstetrics, Affiliated Hospital of Jining Medical Univeristy, Jining, Shandong, People's Republic of China
| | - Wei Tian
- Department of Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Aimin Lin
- Department of Gynecology and Obstetrics, Yantai Yuhuangding Hospital, Shandong University, Yantai, Shandong, P.R. China
| | - Mingjiang Li
- Department of Gynecology and Obstetrics, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, P. R. China.
| |
Collapse
|
7
|
Wu HM, Tsai TC, Liu SM, Pai AHY, Chen LH. The Current Understanding of Molecular Mechanisms in Adenomyosis-Associated Infertility and the Treatment Strategy for Assisted Reproductive Technology. Int J Mol Sci 2024; 25:8937. [PMID: 39201621 PMCID: PMC11354813 DOI: 10.3390/ijms25168937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Adenomyosis, endometriosis of the uterus, is associated with an increased likelihood of abnormal endometrial molecular expressions thought to impair implantation and early embryo development, resulting in disrupted fertility, including the local effects of sex steroid and pituitary hormones, immune responses, inflammatory factors, and neuroangiogenic mediators. In the recent literature, all of the proposed pathogenetic mechanisms of adenomyosis reduce endometrial receptivity and alter the adhesion molecule expression necessary for embryo implantation. The evidence so far has shown that adenomyosis causes lower pregnancy and live birth rates, higher miscarriage rates, as well as adverse obstetric and neonatal outcomes. Both pharmaceutical and surgical treatments for adenomyosis seem to have a positive impact on reproductive outcomes, leading to improved pregnancy and live birth rates. In addition, adenomyosis has negative impacts on reproductive outcomes in patients undergoing assisted reproductive technology. This association appears less significant after patients follow a long gonadotropin-releasing hormone agonist (GnRHa) protocol, which improves implantation rates. The pre-treatment of GnRHa can also be beneficial before engaging in natural conception attempts. This review aims to discover adenomyosis-associated infertility and to provide patient-specific treatment options.
Collapse
Affiliation(s)
- Hsien-Ming Wu
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (H.-M.W.); (T.-C.T.); (S.-M.L.); (A.H.-Y.P.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Tian-Chi Tsai
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (H.-M.W.); (T.-C.T.); (S.-M.L.); (A.H.-Y.P.)
| | - Shang-Min Liu
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (H.-M.W.); (T.-C.T.); (S.-M.L.); (A.H.-Y.P.)
| | - Angel Hsin-Yu Pai
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (H.-M.W.); (T.-C.T.); (S.-M.L.); (A.H.-Y.P.)
| | - Liang-Hsuan Chen
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (H.-M.W.); (T.-C.T.); (S.-M.L.); (A.H.-Y.P.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
8
|
Qiu Y, Cao J, Li S, Liu Y, Wan G, Gui T. Macrophage polarization in adenomyosis: A review. Am J Reprod Immunol 2024; 91:e13841. [PMID: 38606715 DOI: 10.1111/aji.13841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024] Open
Abstract
Adenomyosis (AM) is a common gynecological disorder characterized by the presence of endometrial glands and stroma within the uterine myometrium. It is associated with abnormal uterine bleeding (AUB), dysmenorrhea, and infertility. Although several mechanisms have been proposed to elucidate AM, the exact cause and development of the condition remain unclear. Recent studies have highlighted the significance of macrophage polarization in the microenvironment, which plays a crucial role in AM initiation and progression. However, a comprehensive review regarding the role and regulatory mechanism of macrophage polarization in AM is currently lacking. Therefore, this review aims to summarize the phenotype and function of macrophage polarization and the phenomenon of the polarization of adenomyosis-associated macrophages (AAMs). It also elaborates on the role and regulatory mechanism of AAM polarization in invasion/migration, fibrosis, angiogenesis, dysmenorrhea, and infertility. Furthermore, this review explores the underlying molecular mechanisms of AAM polarization and suggests future research directions. In conclusion, this review provides a new perspective on understanding the pathogenesis of AM and provides a theoretical foundation for developing targeted drugs through the regulation of AAM polarization.
Collapse
Affiliation(s)
- Yingying Qiu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Laboratory of Obstetrics and Gynecology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
- The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jian Cao
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital Nanjing, Nanjing, China
| | - Sujuan Li
- Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Laboratory of Obstetrics and Gynecology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Yongli Liu
- The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, China
| | - Guiping Wan
- Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Laboratory of Obstetrics and Gynecology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Tao Gui
- Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Laboratory of Obstetrics and Gynecology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
9
|
Cozzolino M, Cosentino M, Loiudice L, Martire FG, Galliano D, Pellicer A, Exacoustos C. Impact of adenomyosis on in vitro fertilization outcomes in women undergoing donor oocyte transfers: a prospective observational study. Fertil Steril 2024; 121:480-488. [PMID: 38043844 DOI: 10.1016/j.fertnstert.2023.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
OBJECTIVE To prospectively examine the association between adenomyosis type, location, and severity with reproductive outcomes in patients undergoing single embryo transfer (SET) with embryos derived from donor oocytes. DESIGN A prospective observational cohort study. SETTING University-affiliated in vitro fertilization center. PATIENTS Patients with infertility with (n = 114) and without (n = 114) adenomyosis who received their first donor oocyte transfer between January 2019 and January 2023 were included in this study. INTERVENTIONS Adenomyosis was confirmed with the presence of at least one direct feature visualized by 2- or 3-dimensional transvaginal ultrasound and classified according to type (diffuse or focal), localization (inner or outer myometrium and/or junctional zone [JZ]), and uterine extension (mild, moderate, or severe). After an artificial or natural endometrial preparation cycle, patients underwent SET in the blastocyst stage. MAIN OUTCOME MEASURES The primary outcome was the implantation rate. The secondary outcomes were the clinical pregnancy, live birth, and miscarriage rates after SET. RESULTS The presence of adenomyosis did not significantly affect the implantation, clinical pregnancy, or live birth rates. However, women with adenomyosis had a significantly higher miscarriage rate than those without adenomyosis (35.4% vs. 18.1%, respectively). The multivariate analysis assessed possible risk factors for each clinical outcome considered in the study and showed that adenomyosis affected the risk of miscarriage. Specifically, transvaginal sonography detection of adenomyosis in the JZ was associated with over threefold higher relative risk of miscarriage (relative risk [RR], 3.28; 95% confidence interval [CI], 1.38-7.78). Conversely, adenomyosis features detected exclusively in the outer myometrium were associated with a higher ongoing pregnancy rate (RR, 0.30; 95% CI, 0.13-0.72). Diffuse adenomyosis in the JZ and severe adenomyosis increased the relative risk of miscarriage two-fold (RR, 2.29; 95% CI, 1.22-4.30 and RR, 2.20; 95% CI, 1.19-4.04, respectively). CONCLUSIONS This study demonstrated that although adenomyosis did not significantly reduce the odds of implantation, the direct signs of adenomyosis in the JZ and disease severity are significant risk factors for miscarriage in patients receiving donor oocyte transfers. This study highlights the importance of thorough ultrasound examination and detailed adenomyosis classification in the assessment and management of patients with infertility.
Collapse
Affiliation(s)
- Mauro Cozzolino
- IVIRMA Global Research Alliance, IVIRMA Roma, Rome, Italy; IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain.
| | - Martina Cosentino
- Department of Obstetrics and Gynecology, University of Rome "La Sapienza," Rome, Italy
| | - Luisa Loiudice
- IVIRMA Global Research Alliance, IVIRMA Roma, Rome, Italy
| | - Francesco Giuseppe Martire
- Department of Surgical Sciences, Obstetrics and Gynecology Clinic, University of Rome "Tor Vergata," Rome, Italy
| | | | - Antonio Pellicer
- IVIRMA Global Research Alliance, IVIRMA Roma, Rome, Italy; IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Caterina Exacoustos
- Department of Surgical Sciences, Obstetrics and Gynecology Clinic, University of Rome "Tor Vergata," Rome, Italy
| |
Collapse
|
10
|
Li Q, Chen Y, Adeniran SO, Qiu Z, Zhao Q, Zheng P. LIF regulates the expression of miR-27a-3p and HOXA10 in bovine endometrial epithelial cells via STAT3 pathway. Theriogenology 2023; 210:101-109. [PMID: 37490795 DOI: 10.1016/j.theriogenology.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 06/09/2023] [Accepted: 07/12/2023] [Indexed: 07/27/2023]
Abstract
LIF is crucial in regulating embryo implantation, while HOXA10 is a marker gene for uterine receptivity. However, the specific mechanism of LIF regulating HOXA10 during cow embryo implantation has not been fully understood. To address this knowledge gap, the experiment involved treating bovine endometrial epithelial cells (BEECs) with LIF to investigate the relationship between LIF, miRNA, and HOXA10. The experimental findings revealed that applying LIF resulted in a substantial increase in the proliferation of endometrial epithelial cells. Moreover, the expressions of PI3K, AKT, HOXA10, CDK4, cyclinD1, and cyclinE1 were significantly elevated. Conversely, the expression of p21Cipl was significantly reduced. In the group that received a combination of LIF and a STAT3 inhibitor, the expression of PI3K/AKT remained significantly increased, but there was no significant change in the expression of HOXA10. When miRNA-27a-3p was overexpressed, it resulted in a decrease in both the RNA and protein expression of HOXA10. Conversely, inhibiting miRNA-27a-3p increased the RNA and protein expression of HOXA10. In the presence of LIF treatment, the expression of miRNA-27a-3p was reduced, while the expression of HOXA10 was increased. However, when LIF and a STAT3 inhibitor were combined, there was no significant change in the expression of miRNA-27a-3p or HOXA10. Consequently, LIF facilitated cell proliferation by activating the PI3K/AKT pathway. LIF controlled the expression of miRNA-27a-3p and HOXA10 in endometrial epithelial cells through STAT3, with miRNA-27a-3p negatively regulating the expression of HOXA10.
Collapse
Affiliation(s)
- Qi Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Yanru Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Samson Olugbenga Adeniran
- Department of Biological Sciences, College of Basic and Applied Sciences, Mountain Top University Ibafo, Ogun State, Nigeria
| | - Zixi Qiu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Qian Zhao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Peng Zheng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China.
| |
Collapse
|
11
|
Molecular Targets for Nonhormonal Treatment Based on a Multistep Process of Adenomyosis Development. Reprod Sci 2023; 30:743-760. [PMID: 35838920 DOI: 10.1007/s43032-022-01036-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/09/2022] [Indexed: 10/17/2022]
Abstract
Adenomyosis is an estrogen-dependent gynecologic disease characterized by the presence of endometrial tissue within the myometrium. Adenomyosis presents with abnormal uterine bleeding, pelvic pains, and infertility. This review aimed to investigate the major estrogen downstream effectors involved in the process of adenomyosis development and their potential use for nonhormonal treatment. A literature search was performed for preclinical and clinical studies published between January 2010 and November 2021 in the PubMed and Google Scholar databases using a combination of specific terms. Adenomyosis presents with a wide spectrum of clinical manifestations from asymptomatic to severe through a complex process involving a series of molecular changes associated with inflammation, invasion, angiogenesis, and fibrosis. Adenomyosis may develop through a multistep process, including the acquisition of (epi)genetic mutations, tissue injury caused at the endometrial-myometrial interface, inside-to-outside invasion (from the endometrial side into the uterine wall), or outside-to-inside invasion (from the serosal side into the uterine wall), and epithelial-mesenchymal transition, tissue repair or remodeling in the myometrium. These processes can be regulated by increased estrogen biosynthesis and progesterone resistance. The expression of estrogen downstream effectors associated with persistent inflammation, fragile and more permeable vessel formation, and tissue injury and remodeling may be correlated with dysmenorrhea, heavy menstrual bleeding, and infertility, respectively. Key estrogen downstream targets (e.g., WNT/β-catenin, transforming growth factor-β, and nuclear factor-κB) may serve as hub genes. We reviewed the molecular mechanisms underlying the development of adenomyosis and summarized potential nonhormonal therapies.
Collapse
|
12
|
Kobayashi H. Endometrial Inflammation and Impaired Spontaneous Decidualization: Insights into the Pathogenesis of Adenomyosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3762. [PMID: 36834456 PMCID: PMC9964052 DOI: 10.3390/ijerph20043762] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Adenomyosis is an estrogen-dependent gynecologic disease characterized by the myometrial invasion of the endometrial tissue. This review summarized the current understanding and recent findings on the pathophysiology of adenomyosis, focusing on repeated menstruation, persistent inflammation, and impaired spontaneous decidualization. A literature search was performed in the PubMed and Google Scholar databases from inception to 30 April 2022. Thirty-one full-text articles met the eligibility criteria. Repeated episodes of physiological events (i.e., endometrial shedding, damage, proliferation, differentiation, repair, and regeneration) during the menstrual cycle are associated with inflammation, angiogenesis, and immune processes. The decidualization process in humans is driven by the rise in progesterone levels, independently of pregnancy (i.e., spontaneous decidualization). Adenomyotic cells produce angiogenic and fibrogenic factors with the downregulation of decidualization-associated molecules. This decidualization dysfunction and persistent inflammation are closely related to the pathogenesis of adenomyosis. Recently, it has been found that the reproductive tract microbiota composition and function in women with adenomyosis differ from those without. An increase in opportunistic pathogens and a decrease in beneficial commensals may promote impaired defense mechanisms against inflammation and predispose women to uncontrolled endometrial inflammation. However, currently, there is no direct evidence that adenomyosis is linked to pre-existing inflammation and impaired spontaneous decidualization. Overall, persistent inflammation, impaired spontaneous decidualization, and microbiota dysbiosis (i.e., an imbalance in the composition and function of endometrial microbiota) may be involved in the pathophysiology of adenomyosis.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-cho, Kashihara 634-0813, Japan; ; Tel.: +81-744-20-0028
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan
| |
Collapse
|
13
|
Cozzolino M, Tartaglia S, Pellegrini L, Troiano G, Rizzo G, Petraglia F. The Effect of Uterine Adenomyosis on IVF Outcomes: a Systematic Review and Meta-analysis. Reprod Sci 2022; 29:3177-3193. [PMID: 34981458 DOI: 10.1007/s43032-021-00818-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/01/2021] [Indexed: 11/28/2022]
Abstract
To investigate the impact of uterine adenomyosis on in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) clinical outcomes and also to evaluate the impact of gonadotropin-releasing hormone agonist (GnRHa) and surgical treatments. Infertile women with adenomyosis undergoing conventional IVF or ICSI were compared with women without adenomyosis. Fertility outcomes were evaluated in two patients with adenomyosis untreated and treated surgically or medically therapy. The review protocol was registered in PROSPERO (CRD42020214586). We consider the live birth rate (LBR) as the primary outcome. The analysis showed that women with adenomyosis had lower LBR (OR 0.59, 95% CI 0.37-0.92, p = 0.02), clinical pregnancy rate (OR 0.66, 95% CI 0.48-0.90), and ongoing pregnancy rate (OR 0.43, 95% CI 0.21-0.88) compared to those without adenomyosis, and miscarriage rate was higher in women with adenomyosis (OR 2.11, 95% CI 1.33-3.33). Surgical treatment increases natural conception in women with adenomyosis although the paucity of data (only two studies), and conversely, treatment with GnRHa does not increase the IVF outcomes. Women with adenomyosis have decreased IVF clinical outcomes. Pretreatment with the use of long-term GnRHa could not be beneficial, even though only three studies were included in the meta-analysis. The major part of the studies has not divided focal and diffuse adenomyosis, and this represents a relevant source of bias: studies conducted with standardized diagnostic criteria for adenomyosis are still needed to determine if the different clinical presentations of such condition could compromise IVF outcomes.
Collapse
Affiliation(s)
- Mauro Cozzolino
- IVIRMA Rome, Largo Ildebrando Pizzetti 1, 00197, Rome, Italy.
- Universidad Rey Juan Carlos, Calle Tulipán, 28933, Móstoles, Madrid, Spain.
- Department of Obstetrics, Gynaecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar St, New Haven, CT, 06510, USA.
| | - Silvio Tartaglia
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Viale Montpellier 1, 00133, Rome, Italy
- U.O.C. Di Ostetricia E Patologia Ostetrica, Dipartimento Di Scienza Della Salute Della Donna E del Bambino E Di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | | | | | - Giuseppe Rizzo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Viale Montpellier 1, 00133, Rome, Italy
- Department of Obstetrics and Gynaecology, Fondazione Policlinico Tor Vergata, Rome, Italy
- Department of Obstetrics and Gynecology, The First IM Sechenov, Moscow State University, Moscow, Russian Federation
| | - Felice Petraglia
- Department of Experimental and Clinical Biomedical Sciences "M. Serio", The University of Florence, Florence, Italy
| |
Collapse
|
14
|
Durślewicz J, Jóźwicki J, Klimaszewska-Wiśniewska A, Zielińska A, Antosik P, Grzanka D, Braun M. High expression of RUVBL1 and HNRNPU is associated with poor overall survival in stage I and II non-small cell lung cancer patients. Discov Oncol 2022; 13:106. [PMID: 36242708 PMCID: PMC9569266 DOI: 10.1007/s12672-022-00568-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/04/2022] [Indexed: 11/24/2022] Open
Abstract
The present study aimed to investigate expression levels and prognostic significance of RUVBL1 and HNRNPU in stage I and II non-small-cell lung cancer (NSCLC) patients. Therefore, we evaluated immunohistochemical staining of RUVBL1 and HNRNPU, as well as RNA-seq data from public sources, and the results were evaluated concerning overall survival (OS) and clinicopathological features. We found that RUVBL1 and HNRNPU proteins and mRNA levels were higher in tumor tissues as compared to adjacent/normal tissues. RUVBL1 (p = 0.013) and HNRNPU (p = 0.021) high protein levels were independent prognostic factors for poor OS. Also, the multivariate analysis in the TCGA dataset revealed that high RUVBL1 (p = 0.064) and HNRNPU (p = 0.181) mRNA levels were not significantly associated with prognosis. However, the co-expression status of these markers (R + H +) was independently associated with poor OS both in the TCGA dataset (p = 0.027) and in our cohort (p = 0.001). In conclusion, combined and individual expression of RUVBL1 and HNRNPU proteins, as well as R + H + mRNA status, may serve as potential prognostic biomarkers for NSCLC. This study adds to the previous observations that RUVBL1 and HNRNPU might be novel and promising therapeutic targets and markers for prognostic evaluation.
Collapse
Affiliation(s)
- Justyna Durślewicz
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
| | - Jakub Jóźwicki
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
| | - Anna Klimaszewska-Wiśniewska
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
| | - Aleksandra Zielińska
- Department of Pathology, Chair of Oncology, Medical University of Lodz, Lodz, Poland
| | - Paulina Antosik
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
| | - Marcin Braun
- Department of Pathology, Chair of Oncology, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
15
|
Wang Q, Sun Y, Fan R, Wang M, Ren C, Jiang A, Yang T. Role of inflammatory factors in the etiology and treatment of recurrent implantation failure. Reprod Biol 2022; 22:100698. [PMID: 36162310 DOI: 10.1016/j.repbio.2022.100698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 10/14/2022]
Abstract
Recurrent implantation failure (RIF) is characterized by the absence of implantation after high-grade embryos are transferred to the endometrium by at least three in vitro fertilization cycles. It is one of the most important factors contributing to reproductive failure. After numerous barriers have been overcome to obtain good-quality embryos, RIF causes extreme distress and frustration in women and couples. In recent years, significant progress has been made in understanding how inflammatory factors, which include pro-inflammatory factors, anti-inflammatory factors, chemokines, and other molecules, contribute to RIF. Immunological abnormalities, hypercoagulability, and reproductive diseases are considered potential causes of RIF. In alloimmune disorders, inflammatory factors can affect the success rate of embryo implantation by altering T helper (Th)1/Th2 and Th17/regulatory T cell ratios and causing imbalances of uterine natural killer cells and macrophages. Autoimmune disorders can also lead to RIF. Inflammatory factors also play key roles in RIF-related disorders such as hypercoagulability, chronic endometritis, adenomyosis, hydrosalpinx, and endometriosis. This review focuses on the roles of inflammatory factors in RIF, including immune factors, blood hypercoagulable states, and reproductive diseases such as chronic endometritis, adenomyosis, hydrosalpinx, and endometriosis. It also summarizes the different treatments according to the causes of RIF and discusses the efficacy of sirolimus, peripheral blood mononuclear cells, low-dose aspirin combined with low-molecular-weight heparin, blocking interleukin-22, and gonadotropin-releasing hormone agonists in the treatment of RIF.
Collapse
Affiliation(s)
- Qian Wang
- Center of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Yujun Sun
- Center of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Reiqi Fan
- Center of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Mengxue Wang
- Center of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Chune Ren
- Center of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Aifang Jiang
- Center of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Tingting Yang
- Center of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China.
| |
Collapse
|
16
|
Mechanism Study of Cinnamomi Ramulus and Paris polyphylla Sm. Drug Pair in the Treatment of Adenomyosis by Network Pharmacology and Experimental Validation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2624434. [PMID: 36016675 PMCID: PMC9398691 DOI: 10.1155/2022/2624434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/28/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022]
Abstract
Objective. To explore the molecular mechanism of the Cinnamomi ramulus and Paris polyphylla Sm. (C-P) drug pair in the treatment of adenomyosis (AM) based on network pharmacology and animal experiments. Methods. Via a network pharmacology strategy, a drug-component-target-disease network (D-C-T-D) and protein–protein interaction (PPI) network were constructed to explore the core components and key targets of C-P drug pair therapy for AM, and the core components and key targets were verified by molecular docking. Based on the results of network pharmacology, animal experiments were performed for further verification. The therapeutic effect of the C-P drug pair on uterine ectopic lesions was evaluated in a constructed AM rat model. Results. A total of 30 components and 45 corresponding targets of C-P in the treatment of AM were obtained through network pharmacology. In the D-C-T-D network and PPI network, 5 core components and 10 key targets were identified. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that the PI3K signaling pathway was the most significantly enriched nontumor pathway. Molecular docking showed that most of the core components and key targets docked completely. Animal experiments showed that the C-P drug pair significantly ameliorated the pathological changes of endometriotic lesions in AM model rats and inhibited PI3K and Akt gene expression, and PI3K and Akt protein phosphorylation. In addition, treatment with the C-P drug pair promoted AM cell apoptosis; upregulated the protein expression of Bax, Caspase-3, and cleaved Caspase-9; and restrained Bcl-2 expression. Conclusions. We propose that the pharmacological mechanism of the C-P drug pair in the treatment of AM is related to inhibition of the PI3K/Akt pathway and promotion of apoptosis in AM ectopic lesions.
Collapse
|
17
|
Rabadia JP, Desai TR, Thite VS. Plumeria acuminata: A Systematic in vivo Evaluation for Its Anti-ovulatory and Anti-Implantation Features. CURRENT DRUG THERAPY 2022. [DOI: 10.2174/1574885517666220426101516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Fertility control becomes necessary for under-developed and developing nations for the betterment of the economy, environment, and society. Plant Plumeria acuminata, “Temple tree or Frangipani”, of the Apocynaceae family has exhibited several activities similar to contraceptive medicine and is widely distributed in India.
Objective:
Present investigation aimed to study the anti-ovulatory and anti-implantation activities of ethanolic extract from P. acuminata leaves and roots in Wistar rats.
Methods:
Ethanolic extracts of P. acuminata leaves and roots were subjected to qualitative phytochemical analysis and acute toxicity test. Immature female rats were used to explore anti-ovulatory characteristics administering HCG as a standard ovulation-inducing drug. Mated females were used for exploring anti-implantation characteristics. Levonorgestrel and Ethinylestradiol were administered as standard anti-implantation drugs. Morphological, hematological, hormonal, and histological examinations were performed.
Results:
LD50 value i.e., 2000 mg/kg from acute toxicity test resulted in the selection of 100, 200, and 400 mg/kg dose values for both leaf and root extracts. Treatment with these brought ~2-54%, ~5-48%, and ~1-68% changes respectively in the hormonal, growth factors’ and cytokines’ profile. Ovarian histology revealed restricted follicle maturation and ovulation whereas uterine histology unveiled a ~5-28% decrease in the endometrium thickness making it unreceptive for implantation after treatment with PAL and PAR extracts.
Conclusion:
Anti-ovulatory and anti-implantation results obtained here can be attributed to the presence of plumericin, sterol as well as triterpene groups of phytochemicals from ethanolic extracts of leaves and roots, making them potent contestants for studies on future contraceptive medicines.
Collapse
Affiliation(s)
- Jay P Rabadia
- Department of Pharmacology, School of Pharmacy, R K University, Rajkot, Gujarat, India. 360020
- Sun Pharmaceutical Industries Limited, Vadodara, Gujarat, India. 390020
| | - Tushar R Desai
- Department of Pharmacology, School of Pharmacy, R K University, Rajkot, Gujarat, India. 360020
| | - Vihang S Thite
- Sun Pharmaceutical Industries Limited, Vadodara, Gujarat, India. 390020
| |
Collapse
|
18
|
Tian J, Kang N, Wang J, Sun H, Yan G, Huang C, Mei J. Transcriptome analysis of eutopic endometrium in adenomyosis after GnRH agonist treatment. Reprod Biol Endocrinol 2022; 20:13. [PMID: 35022045 PMCID: PMC8753928 DOI: 10.1186/s12958-021-00881-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/18/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Adenomyosis is a chronic gynecological disease characterized by invasion of the uterine endometrium into the muscle layer. In assisted reproductive technology (ART), gonadotropin-releasing hormone agonist (GnRHa) is often used to improve pregnancy rates in patients with adenomyosis, but the underlying mechanisms are poorly understood. METHODS Eutopic endometrial specimens were collected from patients with adenomyosis before and after GnRHa treatment in the midsecretory phase. RNA sequencing (RNA-Seq) of these specimens was performed for transcriptome analysis. The differentially expressed genes (DEGs) of interest were confirmed by real-time PCR and immunohistochemistry. RESULTS A total of 132 DEGs were identified in the endometrium of patients with adenomyosis after GnRHa treatment compared with the control group. Bioinformatics analysis predicted that immune system-associated signal transduction changed significantly after GnRHa treatment. Chemokine (C-C motif) ligand 21 (CCL21) was found to be highly expressed in the eutopic endometrium after GnRHa treatment, which may be involved in the improvement of endometrial receptivity in adenomyosis. CONCLUSION This study suggests that molecular regulation related to immune system-associated signal transduction is an important mechanism of GnRHa treatment in adenomyosis. Immunoreactive CCL21 is thought to regulate inflammatory events and participate in endometrial receptivity in adenomyosis.
Collapse
Affiliation(s)
- Jiao Tian
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
| | - Nannan Kang
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
| | - Junxia Wang
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
| | - Haixiang Sun
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
| | - Guijun Yan
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
| | - Chenyang Huang
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China.
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China.
| | - Jie Mei
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China.
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
19
|
He B, Teng XM, Hao F, Zhao M, Chen ZQ, Li KM, Yan Q. Decreased intracellular IL-33 impairs endometrial receptivity in women with adenomyosis. Front Endocrinol (Lausanne) 2022; 13:928024. [PMID: 35937844 PMCID: PMC9353328 DOI: 10.3389/fendo.2022.928024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
Adenomyosis is a common benign uterine lesion that is associated with female infertility, reduced clinical pregnancy rate and high miscarriage risk. While it has been known that the impaired endometrial receptivity is implicated in infertility in patients with adenomyosis, the underlying mechanism remains unclear. In the present study, we showed that intracellular protein level of IL-33 was downregulated in the endometrium of patients with adenomyosis, and IL-33 expression status was shown to be positively correlated with that of HOXA10, an endometrial receptivity marker. The subsequent analysis indicated IL-33 overexpression led to the increase of HOXA10 expression and enhancement of embryo implantation in vitro, which was accompanied with induction of STAT3 phosphorylation. Meanwhile, cryptotanshinone, a potent STAT3 inhibitor, was found to significantly suppress the increase of HOXA10 expression and embryo implantation caused by IL-33 overexpression in vitro, revealing the critical role of STAT3 activity. Consistently, the positive relationship between IL33 and HOXA10 expression in the endometrium was verified in the analysis of adenomyosis mouse model.
Collapse
Affiliation(s)
- Bin He
- Reproductive Medical Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiao-Ming Teng
- Reproductive Medical Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fan Hao
- Reproductive Medical Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mei Zhao
- Reproductive Medical Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhi-Qin Chen
- Reproductive Medical Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kun-Ming Li
- Reproductive Medical Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Qiang Yan, ; Kun-Ming Li,
| | - Qiang Yan
- Reproductive Medical Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Qiang Yan, ; Kun-Ming Li,
| |
Collapse
|
20
|
Xue P, Zhou W, Fan W, Jiang J, Kong C, Zhou W, Zhou J, Huang X, Yang H, Han Q, Zhang B, Xu L, Yu B, Chen L. Increased METTL3-mediated m 6A methylation inhibits embryo implantation by repressing HOXA10 expression in recurrent implantation failure. Reprod Biol Endocrinol 2021; 19:187. [PMID: 34906165 PMCID: PMC8670269 DOI: 10.1186/s12958-021-00872-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Recurrent implantation failure (RIF) is a major limitation of assisted reproductive technology, which is associated with impaired endometrial receptivity. Although N6-methyladenosine (m6A) has been demonstrated to be involved in various biological processes, its potential role in the endometrium of women with RIF has been poorly studied. METHODS Global m6A levels and major m6A methyltransferases/demethylases mRNA levels in mid-secretory endometrium from normal and RIF women were examined by colorimetric m6A quantification strategy and quantitative real-time PCR, respectively. The effects of METTL3-mediated m6A modification on embryo attachment were evaluated by an vitro model of a confluent monolayer of Ishikawa cells co-cultured with BeWo spheroids, and the expression levels of homeo box A10 (HOXA10, a well-characterized marker of endometrial receptivity) and its downstream targets were evaluated by quantitative real-time PCR and Western blotting in METTL3-overexpressing Ishikawa cells. The molecular mechanism for METTL3 regulating HOXA10 expression was determined by methylated RNA immunoprecipitation assay and transcription inhibition assay. RESULTS Global m6A methylation and METTL3 expression were significantly increased in the endometrial tissues from women with RIF compared with the controls. Overexpression of METTL3 in Ishikawa cells significantly decreased the ration of BeWo spheroid attachment, and inhibited HOXA10 expression with downstream decreased β3-integrin and increased empty spiracles homeobox 2 expression. METTL3 catalyzed the m6A methylation of HOXA10 mRNA and contributed to its decay with shortened half-life. Enforced expression of HOXA10 in Ishikawa cells effectively rescued the impairment of METTL3 on the embryo attachment in vitro. CONCLUSION Increased METTL3-mediated m6A modification represents an adverse impact on embryo implantation by inhibiting HOXA10 expression, contributing to the pathogenesis of RIF.
Collapse
Affiliation(s)
- Pingping Xue
- Department of Reproductive Medicine Center, Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, 213000, China
| | - Wenbo Zhou
- Department of Medical Genetics, Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, 213000, China
| | - Wenqiang Fan
- Department of Mammary Surgery, Changzhou No.2 People's Hospital Affiliated to Nanjing Medical University, Changzhou, 213000, China
| | - Jianya Jiang
- Department of Reproductive Medicine Center, Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, 213000, China
| | - Chengcai Kong
- Department of Reproductive Medicine Center, Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, 213000, China
| | - Wei Zhou
- Department of Reproductive Medicine Center, Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, 213000, China
| | - Jianmei Zhou
- Department of Reproductive Medicine Center, Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, 213000, China
| | - Xiaoyang Huang
- Department of Reproductive Medicine Center, Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, 213000, China
| | - Haiyan Yang
- Department of Reproductive Medicine Center, Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, 213000, China
| | - Qian Han
- Department of Reproductive Medicine Center, Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, 213000, China
| | - Bin Zhang
- Department of Medical Genetics, Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, 213000, China
| | - Lingyun Xu
- Department of Mammary Surgery, Changzhou No.2 People's Hospital Affiliated to Nanjing Medical University, Changzhou, 213000, China.
| | - Bin Yu
- Department of Medical Genetics, Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, 213000, China.
| | - Li Chen
- Department of Reproductive Medicine Center, Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, 213000, China.
| |
Collapse
|
21
|
Zhu M, Yi S, Huang X, Meng J, Sun H, Zhou J. Human chorionic gonadotropin improves endometrial receptivity by increasing the expression of homeobox A10. Mol Hum Reprod 2021; 26:413-424. [PMID: 32502249 DOI: 10.1093/molehr/gaaa026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 03/20/2020] [Indexed: 12/25/2022] Open
Abstract
Homeobox A10 (HOXA10) is a characterized marker of endometrial receptivity. The mechanism by which hCG intrauterine infusion promotes embryo implantation is still unclear. This study seeks to investigate whether hCG improves endometrial receptivity by increasing expression of HOXA10. HOXA10 expression with human chorionic gonadotropin stimulation was analyzed in vitro and in vivo. Our results demonstrate that HOXA10 was decreased in the endometria of recurrent implantation failure patients compared to that in the healthy control fertile group, also we observed that hCG intrauterine infusion increased endometrial HOXA10 expression. HOXA10, blastocyst-like spheroid expansion area was increased, whereas DNA (cytosine-5-)-methyltransferase 1 was decreased when human endometrial stromal cells (hESCs) were treated with 0.2 IU/ml of hCG for 48 h. HOXA10 promoter methylation was also reduced after hCG treatment. Collagen XV (ColXV) can repress the expression of DNA (cytosine-5-)-methyltransferase 1, and hCG treatment increased the expression of ColXV. However, when the hESCs were treated with LH/hCG receptor small interfering RNA to knock down LH/hCG receptor, hCG treatment failed to repress DNA (cytosine-5-)-methyltransferase 1 expression or to increase ColXV expression. Our findings suggest that hCG may promote embryo implantation by increasing the expression of HOXA10.
Collapse
Affiliation(s)
- Mengchen Zhu
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, P.R. China
| | - Shanling Yi
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, P.R. China
| | - Xiaomin Huang
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, P.R. China
| | - Junan Meng
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, P.R. China
| | - Haixiang Sun
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, P.R. China
| | - Jianjun Zhou
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, P.R. China
| |
Collapse
|
22
|
Gonçalves ZS, Jesus ON, Lima LKS, Corrêa RX. Responses of Passiflora spp. to cowpea aphid-borne mosaic virus reveal infection in asymptomatic plants and new species with probable immunity. Arch Virol 2021; 166:2419-2434. [PMID: 34132915 DOI: 10.1007/s00705-021-05131-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 04/24/2021] [Indexed: 11/27/2022]
Abstract
Passion fruit woodiness disease (PWD), caused by cowpea aphid-borne mosaic virus (CABMV), produces socioeconomic problems in Brazil. The objectives of this study were to i) evaluate the temporal progression of PWD, ii) identify Passiflora genotypes with resistance to CABMV, and iii) detect virus infection in asymptomatic plants by reverse transcription quantitative polymerase chain reaction (RT-qPCR) in cases where standard RT-PCR detection failed. The experiment was conducted in a greenhouse using 128 genotypes belonging to 12 species and three hybrids (inter- and intraspecific) of Passiflora, evaluated at five time points after inoculation. Progression rates and disease severity were lower in P. cincinnata, P. gibertii, P. miersii, and P. mucronata than in P. edulis, P. alata, Passiflora sp., and hybrids. Of the genotypes tested, 20.31% were resistant, especially the accessions of P. suberosa, P. malacophylla, P. setacea, P. pohlii, and P. bahiensis, which remained asymptomatic throughout the experiment. The absence of symptoms does not imply immunity of plants to the virus, since RT-qPCR analysis confirmed infection by the virus in asymptomatic plants of P. cincinnata, P. gibertii, P. miersii, P. mucronata, P. setacea, P. malacophylla, and P. suberosa. Even after four inoculations, the virus was not detected by RT-qPCR in the upper leaves in plants of the species P. pohlii and P. bahiensis, indicating that these species are probably immune to CABMV.
Collapse
Affiliation(s)
- Zanon Santana Gonçalves
- Departamento de Ciências Biológicas, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, UESC, Rodovia Jorge Amado, Km 16, Salobrinho, Ilhéus, BA, 45662-900, Brazil
| | - Onildo Nunes Jesus
- Embrapa Mandioca e Fruticultura, Rua Embrapa, s/n, Chapadinha, Caixa Postal 007, Cruz das Almas, BA, 44380-000, Brazil.
| | - Lucas Kennedy Silva Lima
- Embrapa Mandioca e Fruticultura, Rua Embrapa, s/n, Chapadinha, Caixa Postal 007, Cruz das Almas, BA, 44380-000, Brazil
| | - Ronan Xavier Corrêa
- Departamento de Ciências Biológicas, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, UESC, Rodovia Jorge Amado, Km 16, Salobrinho, Ilhéus, BA, 45662-900, Brazil
| |
Collapse
|
23
|
Mikhaleva LM, Radzinsky VE, Orazov MR, Khovanskaya TN, Sorokina AV, Mikhalev SA, Volkova SV, Shustova VB, Sinelnikov MY. Current Knowledge on Endometriosis Etiology: A Systematic Review of Literature. Int J Womens Health 2021; 13:525-537. [PMID: 34104002 PMCID: PMC8179825 DOI: 10.2147/ijwh.s306135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/04/2021] [Indexed: 12/30/2022] Open
Abstract
Objective To review the mechanisms of endometriosis development, including those related to epigenetic mutations, cellular dysregulation, inflammatory processes, and oxidative stress. Methods A systematic literature review regarding current aspects of endometriosis etiology, genesis and development was performed using the PubMed, Google Scholar, and eLibrary databases. Keywords included endometriosis, etiology, development, genesis, associations and mechanisms. A multilingual search was performed. Results Several mechanisms underline the pathophysiological pathways for endometriosis development. Epigenetic mutations, external and internal influences, and chronic conditions have a significant impact on endometriosis development, survival and regulation. Several historically valid theories on endometriosis development were discussed, as well as updated findings. Conclusion Despite recent advances, fundamental problems in understanding endometriosis remain unresolved. The identification of unknown circulating epithelial progenitors or stem cells that are responsible for epithelial growth in both the endometrium and endometriotic foci seems to be the next step in solving these questions.
Collapse
Affiliation(s)
- Lyudmila M Mikhaleva
- Laboratory of Clinical Morphology, Research Institute of Human Morphology, Moscow, Russia
| | | | | | - Tatyana N Khovanskaya
- Laboratory of Clinical Morphology, Research Institute of Human Morphology, Moscow, Russia
| | - Anastasia V Sorokina
- Laboratory of Clinical Morphology, Research Institute of Human Morphology, Moscow, Russia
| | | | | | - Victoria B Shustova
- Laboratory of Clinical Morphology, Research Institute of Human Morphology, Moscow, Russia
| | - Mikhail Y Sinelnikov
- Laboratory of Clinical Morphology, Research Institute of Human Morphology, Moscow, Russia
| |
Collapse
|
24
|
Aljubran F, Nothnick WB. Long non-coding RNAs in endometrial physiology and pathophysiology. Mol Cell Endocrinol 2021; 525:111190. [PMID: 33549604 PMCID: PMC7946759 DOI: 10.1016/j.mce.2021.111190] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/29/2020] [Accepted: 01/24/2021] [Indexed: 12/12/2022]
Abstract
The endometrium is an essential component of the female uterus which provides the environment for pregnancy establishment and maintenance. Abnormalities of the endometrium not only lead to difficulties in establishing and maintaining pregnancy but also play a causative role in diseases of endometrial origin including endometriosis and endometrial cancer. Non-coding RNAs are proposed to play a role in regulating the genome in both normal endometrial physiology and pathophysiology. In this review, we first provide a general overview of non-coding RNAs and reproductive physiology of the endometrium. We then discuss the role on non-coding RNAs in normal endometrial physiology and pathophysiology of endometrial infertility. We then conclude with non-coding RNAs in the pathophysiology of endometriosis and endometrial cancer.
Collapse
Affiliation(s)
- Fatimah Aljubran
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Warren B Nothnick
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA; Department of Obstetrics & Gynecology, University of Kansas Medical Center, Kansas City, KS, USA; Institute for Reproduction and Perinatal Research, Center for Reproductive Sciences, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
25
|
Guo S, Zhang D, Lu X, Zhang Q, Gu R, Sun B, Sun Y. Hypoxia and its possible relationship with endometrial receptivity in adenomyosis: a preliminary study. Reprod Biol Endocrinol 2021; 19:7. [PMID: 33419445 PMCID: PMC7791798 DOI: 10.1186/s12958-020-00692-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 12/26/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Adenomyosis (AM) is an important cause of female infertility. However, the underlying mechanism remains unclear. This report describes a preliminary study of hypoxia and its possible association with endometrial receptivity in AM. METHODS The study was divided into in vitro and in vivo experiments. In vitro, expression levels of the endometrial receptivity markers HOXA10 and HOXA11 in the implantation period were examined using real-time PCR and western blotting. Endometrial expression of hypoxia-inducible factor (HIF)-1α, HIF-2α, and HIF-3α was determined using immunohistochemistry. In vivo, using an AM mouse model established by oral administration of tamoxifen, we inhibited expression of HIF-2α using an HIF-2α antagonist (PT2399; 30 mg/kg body weight, twice daily by oral gavage for 2 days) and then examined expression levels of Hoxa10 and Hoxa11 using real-time PCR and western blotting. RESULTS Endometrial mRNA and protein expression levels of HOXA10 and HOXA11 were significantly lower in patients with AM than in control patients. Expression of HIF-2α was significantly higher in the AM group than in the control group, whereas that of HIF-1α and HIF-3α was equivalent in both groups. In vivo analysis showed that administration of the HIF-2α antagonist resulted in increased expression of Hoxa10 and Hoxa11 at both the mRNA and protein levels in AM model mice. CONCLUSIONS HIF-2α overexpression may be one reason for decreased endometrial receptivity in AM. The current findings provide insight into HIF-2α-mediated AM-related infertility and suggest that PT2399 has potential as a treatment for AM. TRIAL REGISTRATION This trial was retrospectively registered.
Collapse
Affiliation(s)
- Song Guo
- Gynecology Department, The First Affiliated Hospital of Shandong First Medical University, NO.16766 Jingshi Road, Jinan, 250014, China
| | - Di Zhang
- Obstetrics Department, Shandong Provincial Third Hospital, No.12 Central Wuying Hill Road, Jinan, 250000, China
| | - Xiaowei Lu
- Reproductive Medicine Centre, Obstetrics and Gynecology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Qian Zhang
- Gynecology Department, The First Affiliated Hospital of Shandong First Medical University, NO.16766 Jingshi Road, Jinan, 250014, China
| | - Ruihuan Gu
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, NO.588 Fangxie Road, Shanghai, 200011, China
| | - Binghui Sun
- Gynecology Department, The First Affiliated Hospital of Shandong First Medical University, NO.16766 Jingshi Road, Jinan, 250014, China.
| | - Yijuan Sun
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, NO.588 Fangxie Road, Shanghai, 200011, China.
| |
Collapse
|
26
|
Skp2 Deteriorates the Uterine Receptivity by Interacting with HOXA10 and Promoting its Degradation. Reprod Sci 2020; 28:1069-1078. [PMID: 33104986 DOI: 10.1007/s43032-020-00367-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/19/2020] [Indexed: 10/23/2022]
Abstract
Receptive endometrium plays a core role in successful embryo implantation, and about one-third of repeated embryo implantation failures are attributed to endometrial receptive defects. S-phase kinase-associated protein 2 (SKP2), a member of the F-box protein family, plays an important role in many cellular processes, including cell proliferation and apoptosis. However, its role in endometrial receptivity is still unclear. Here, we identified SKP2 was obviously upregulated in the patients with infertility. Functional study showed that SKP2 overexpression inhibited endometrial epithelial cell (EEC) proliferation, whereas SKP2 knockdown promoted the proliferation of EECs. In addition, the overexpression of SKP2 also repressed adhesion rate of embryonic cells to EECs. In vivo studies further suggested that the upregulation of SKP2 obviously suppressed endometrium receptivity formation and embryo implantation potential. Mechanistical study clarified that SKP2 directly interacted with HOXA10 and decreased protein stability through promoting the ubiquitin-mediated proteasome degradation of HOXA10. In conclusion, the current study documented that the high expression of SKP2 deteriorates endometrial receptivity formation by decreasing the HOXA10 expression and suggested that SKP2 may be defined as a marker of endometrial receptivity, and as a target for the diagnosis and treatment of infertility.
Collapse
|
27
|
Determining the Molecular Background of Endometrial Receptivity in Adenomyosis. Biomolecules 2020; 10:biom10091311. [PMID: 32933042 PMCID: PMC7563201 DOI: 10.3390/biom10091311] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/02/2020] [Accepted: 09/09/2020] [Indexed: 12/26/2022] Open
Abstract
Background: Adenomyosis is a gynaecological condition with limited evidence of negative impact to endometrial receptivity. It is commonly associated with endometriosis, which has been shown to alter endometrial expression patterns. Therefore, the candidate genes identified in endometriosis could serve as a source to study endometrial function in adenomyosis. Methods: Transcripts/proteins associated with endometrial receptivity in women with adenomyosis or endometriosis and healthy women were obtained from publications and their nomenclature was adopted according to the HUGO Gene Nomenclature Committee (HGNC). Retrieved genes were analysed for enriched pathways using Cytoscape/Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and Reactome tools to prioritise candidates for endometrial receptivity. These were used for validation on women with (n = 9) and without (n = 13) adenomyosis. Results: Functional enrichment analysis of 173, 42 and 151 genes associated with endometriosis, adenomyosis and healthy women, respectively, revealed signalling by interleukins and interleukin-4 and interleukin-13 signalling pathways, from which annotated LIF, JUNB, IL6, FOS, IL10 and SOCS3 were prioritised. Selected genes showed downregulated expression levels in adenomyosis compared to the control group, but without statistical significance. Conclusion: This is the first integrative study providing putative candidate genes and pathways characterising endometrial receptivity in women with adenomyosis in comparison to healthy women and women with endometriosis.
Collapse
|
28
|
Zhong H, Sun Q, Chen P, Xiong F, Li G, Wan C, Yao Z, Zeng Y. Detection of IL-6, IL-10, and TNF-α level in human single-blastocyst conditioned medium using ultrasensitive Single Molecule Array platform and its relationship with embryo quality and implantation: a pilot study. J Assist Reprod Genet 2020; 37:1695-1702. [PMID: 32415642 DOI: 10.1007/s10815-020-01805-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 05/01/2020] [Indexed: 02/06/2023] Open
Abstract
PURPOSE The purpose was to investigate the association between embryonic development or implantation and the content of interleukin-6 and 10 (IL-6, IL-10) and tumor necrosis factor-α (TNF-α) in single-blastocyst conditioned medium (SBCM). METHODS Thirty-eight SBCM samples (SBCMs) were collected from blastocysts with different morphological scores. IL-6, IL-10, and TNF-α concentration in 38 SBCMs was detected by Single Molecule Array and compared according to the blastocyst quality: top-quality (TQ) and non-top quality (NTQ), or blastulation time: day 5 (D5) and day 6 (D6). In another experiment, 61 SBCMs were collected from TQ blastocyst transplanted on D5, and IL-6 concentration in SBCM was compared based on whether embryos are implanted or not (implanted and non-implanted). RESULTS In the first experiment, IL-6, IL-10, and TNF-α concentration was not significantly different between the TQ-SBCM and NTQ-SBCM. The D6-SBCM had a higher IL-6 concentration compared with the D5-SBCM, while IL-10 and TNF-α concentration was not significantly different between the D5-SBCM and D6-SBCM. The IL-6 concentration in D5-NTQ or D6-TQ SBCM was higher than that in D5-TQ or D6-NTQ SBCM (P < 0.05), respectively. Furthermore, the spearman analysis demonstrated that IL-6 concentration in SBCM was negatively correlated with the blastocyst quality on D5 and positively correlated with the blastocyst quality on D6. In the second experiment, no significant difference in IL-6 concentration was found between SBCM from implanted and non-implanted blastocyst. CONCLUSION IL-6 concentration in SBCM was associated with embryo quality depending on the blastulation time, although it might not be associated with the blastocyst implantation.
Collapse
Affiliation(s)
- Huixian Zhong
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, 518045, Guangdong, People's Republic of China
| | - Qing Sun
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, 518045, Guangdong, People's Republic of China
| | - Peilin Chen
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, 518045, Guangdong, People's Republic of China
| | - Feng Xiong
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, 518045, Guangdong, People's Republic of China
| | - Guangui Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, 518045, Guangdong, People's Republic of China
| | - Caiyun Wan
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, 518045, Guangdong, People's Republic of China
| | - Zhihong Yao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, 518045, Guangdong, People's Republic of China
| | - Yong Zeng
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, 518045, Guangdong, People's Republic of China.
| |
Collapse
|