1
|
Cai XY, Huang GQ, Zhou YM, Li DJ. Targeting Calprotectin S100A8/A9 to Overcome AML Progression in DNMT3A-Mutant Cells. Curr Med Sci 2025:10.1007/s11596-025-00042-2. [PMID: 40266434 DOI: 10.1007/s11596-025-00042-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 04/24/2025]
Abstract
OBJECTIVE To investigate the effects of calprotectin (S100A8/A9) on the biological activity of acute myeloid leukemia (AML) cells harboring a DNA methyltransferase 3A (DNMT3A) mutation and to explore the underlying molecular mechanisms involved. METHODS AML monoclonal cell lines harboring the DNMT3AR882H mutation were generated via lentiviral transduction and limiting dilution. RNA sequencing was used for differential gene expression analysis, followed by bioinformatic pathway enrichment and gene correlation analyses. The biological effects of paquinimod, a selective S100A8/A9 inhibitor, on DNMT3AR882H AML cells were assessed via Cell Counting Kit (CCK-8) proliferation assays, Annexin V/PI staining, cell cycle analysis, cell adhesion assays, and transwell migration assays. RESULTS Differential gene expression analysis revealed 442 upregulated and 535 downregulated genes in DNMT3A-mutated (DNMT3Amut) cells compared with those in DNMT3A wild-type (DNMT3Awt) cells, with the S100A8/A9 complex recurrently enriched in Reactome pathway analysis. Compared with healthy controls, patients with AML presented increased expression of S100A8 and S100A9 and increased expression of DNMT3Amut cells relative to DNMT3Awt cells, which was correlated with poor prognosis in patients with AML. There were no notable differences in proliferation among the DNMT3Amut, DNMT3Awt, and empty vector cells under normal or starvation conditions. However, paquinimod treatment notably inhibited the proliferation, migration, and adhesion of DNMT3Amut AML cells in a dose-dependent manner, causing G0/G1 cell cycle arrest, whereas no significant effects on apoptosis were observed. Paquinimod also downregulated key adhesion molecules, including intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), monocyte chemoattractant protein-1 (MCP-1), and matrix metalloproteinase-2 (MMP-2). Additionally, S100A8 and S100A9 expression was upregulated in a dose-dependent manner in response to cytarabine treatment. CONCLUSION Elevated S100A8/A9 expression contributes to the abnormal proliferation, migration, adhesion, and chemoresistance of DNMT3Amut AML cells. Targeting S100A8/A9 alone or in combination with other treatments represents a promising therapeutic strategy for DNMT3Amut AML.
Collapse
Affiliation(s)
- Xiao-Ya Cai
- Department of Hematology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gui-Qin Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ye-Ming Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Deng-Ju Li
- Department of Hematology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
2
|
Selheim F, Aasebø E, Reikvam H, Bruserud Ø, Hernandez-Valladares M. Proteomic Comparison of Acute Myeloid Leukemia Cells and Normal CD34 + Bone Marrow Cells: Studies of Leukemia Cell Differentiation and Regulation of Iron Metabolism/Ferroptosis. Proteomes 2025; 13:11. [PMID: 39982321 PMCID: PMC11843884 DOI: 10.3390/proteomes13010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/05/2025] [Accepted: 02/14/2025] [Indexed: 02/22/2025] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive bone marrow malignancy that can be cured only by intensive chemotherapy possibly combined with allogeneic stem cell transplantation. We compared the pretreatment proteomic profiles of AML cells derived from 50 patients at the time of first diagnosis with normal CD34+ bone marrow cells. A comparison based on all AML and CD34+ normal cell populations identified 121 differentially abundant proteins that showed at least 2-fold differences, and these proteins included several markers of neutrophil differentiation (e.g., TLR2, the integrins ITGM and ITGX, and downstream mediators including RHO GTPase, S100A8, S100A9, S100A22). However, the expression of these 121 proteins varied between patients, and a subset of 28 patients was characterized by increased long-term AML-free survival, signs of myeloid AML cell differentiation, and favorable genetic abnormalities. These two main patient subsets (28 with differentiation versus 22 with fewer signs of differentiation) also differed with regard to the phosphorylation of 16 differentially abundant proteins. Furthermore, we also classified our patients based on their expression of 16 proteins involved in the regulation of iron metabolism/ferroptosis and showing differential expression when comparing AML cells and normal CD34+ cells. Among the 22 patients with less favorable prognosis, we could then identify a genetically heterogeneous subset characterized by adverse prognosis (i.e., death from primary resistance/relapse) and an iron metabolism/ferroptosis protein profile showing similarities with normal CD34+ cells. We conclude that proteomic profiles differ between AML and normal CD34+ cells; especially, proteomic differences reflecting differentiation and regulation of iron metabolism/ferroptosis are associated with risk of relapse after intensive conventional therapy.
Collapse
Affiliation(s)
- Frode Selheim
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; (F.S.); (M.H.-V.)
| | - Elise Aasebø
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; (E.A.); (H.R.)
| | - Håkon Reikvam
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; (E.A.); (H.R.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5009 Bergen, Norway
| | - Øystein Bruserud
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; (E.A.); (H.R.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5009 Bergen, Norway
| | - Maria Hernandez-Valladares
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; (F.S.); (M.H.-V.)
- Department of Physical Chemistry, University of Granada, Avenida de la Fuente Nueva S/N, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
3
|
Miao C, Zhang Y, Yu M, Wei Y, Dong C, Pei G, Xiao Y, Yang J, Yao Z, Wang Q. HSPA8 regulates anti-bacterial autophagy through liquid-liquid phase separation. Autophagy 2023; 19:2702-2718. [PMID: 37312409 PMCID: PMC10472862 DOI: 10.1080/15548627.2023.2223468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/22/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023] Open
Abstract
HSPA8 (heat shock protein family A (Hsp70) member 8) plays a significant role in the autophagic degradation of proteins, however, its effect on protein stabilization and anti-bacterial autophagy remains unknown. Here, it is discovered that HSPA8, as a binding partner of RHOB and BECN1, induce autophagy for intracellular bacteria clearance. Using its NBD and LID domains, HSPA8 physically binds to RHOB residues 1-42 and 89-118 as well as to BECN1 ECD domain, preventing RHOB and BECN1 degradation. Intriguingly, HSPA8 contains predicted intrinsically disordered regions (IDRs), and drives liquid-liquid phase separation (LLPS) to concentrate RHOB and BECN1 into HSPA8-formed liquid-phase droplets, resulting in improved RHOB and BECN1 interactions. Our study reveals a novel role and mechanism of HSPA8 in modulating anti-bacterial autophagy, and highlights the effect of LLPS-related HSPA8-RHOB-BECN1 complex on enhancing protein interaction and stabilization, which improves the understanding of autophagy-mediated defense against bacteria.
Collapse
Affiliation(s)
- Chunhui Miao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, the Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yajie Zhang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, the Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Mingyu Yu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, the Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yuting Wei
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, the Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Cheng Dong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Geng Pei
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center of Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yawen Xiao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, the Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jianming Yang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, the Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhi Yao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, the Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Quan Wang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, the Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
4
|
Razmkhah F, Kim S, Lim S, Dania AJ, Choi J. S100A8 and S100A9 in Hematologic Malignancies: From Development to Therapy. Int J Mol Sci 2023; 24:13382. [PMID: 37686186 PMCID: PMC10488294 DOI: 10.3390/ijms241713382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
S100A8 and S100A9 are multifunctional proteins that can initiate various signaling pathways and modulate cell function both inside and outside immune cells, depending on their receptors, mediators, and molecular environment. They have been reported as dysregulated genes and proteins in a wide range of cancers, including hematologic malignancies, from diagnosis to response to therapy. The role of S100A8 and S100A9 in hematologic malignancies is highlighted due to their ability to work together or as antagonists to modify cell phenotype, including viability, differentiation, chemosensitivity, trafficking, and transcription strategies, which can lead to an oncogenic phase or reduced symptoms. In this review article, we discuss the critical roles of S100A8, S100A9, and calprotectin (heterodimer or heterotetramer forms of S100A8 and S100A9) in forming and promoting the malignant bone marrow microenvironment. We also focus on their potential roles as biomarkers and therapeutic targets in various stages of hematologic malignancies from diagnosis to treatment.
Collapse
Affiliation(s)
| | | | | | | | - Jaebok Choi
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (F.R.); (S.K.); (S.L.); (A.-J.D.)
| |
Collapse
|
5
|
Hejazi MJ, Tamaddon G, Kohan N, Sharifi M. S100A8 inhibition in leukemic lymphoblasts induces sensitivity to chemotherapy and inhibition of disease relapse. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:117. [PMID: 35674832 DOI: 10.1007/s12032-022-01709-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/12/2022] [Indexed: 11/29/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common malignancy in children and relapsed B-ALL is the leading cause of mortality in children with leukemia due to a lack of response to treatment. S100A8 is a low molecular weight calcium-binding intracellular protein that is expressed in certain cells, and its increased expression is seen in most tumors as well as in relapsed childhood B-ALL cases. The present study indicates the important role of S100A8 in improving viability and resistance to chemotherapy in relapsed B-ALL lymphoblasts. S100A8 levels were compared in B-ALL and relapsed B-ALL lymphoblasts that were sensitive and resistant to Vincristine, respectively. S100A8 was inhibited in the lymphoblasts of two patients by antisense locked nucleic acid (LNA) GapmeRs and the decreased expression of S100A8 was evaluated using quantitative real-time PCR and ELISA. Then, the S100A8 antisense LNA GapmeRs-transfected cells were treated with Vincristine and the expression levels of S100A8 mRNA and S100A8 protein were re-determined. At all of these stages, cell viability and LC50 were assessed by MTT assay. The results showed that S100A8 levels in relapsed B-ALL lymphoblasts were significantly higher than B-ALL lymphoblasts. Moreover, the increase in S100A8 expression was proportionate to the increase in Vincristine resistance in these cells. The S100A8 knockdown procedure using antisense LNA GapmeRs decreased the cell viability and increased vincristine sensitivity in lymphoblasts of two patients, and it also increased the sensitivity to chemotherapy in relapsed B-ALL lymphoblasts. According to the findings of the present study, S100A8 is effective in developing lymphoblast resistance to chemotherapy, and its enhanced expression may contribute to shifting B-ALL into the relapse phase of the illness. As a result, S100A8 may be a valuable target for managing and improving relapses B-ALL.
Collapse
Affiliation(s)
- Mohamad Javad Hejazi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, 81744-176, Isfahan, Iran
| | - Gholamhossein Tamaddon
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Kohan
- Amir Oncology Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, 81744-176, Isfahan, Iran.
| |
Collapse
|
6
|
Gilteritinib-induced upregulation of S100A9 is mediated through BCL6 in acute myeloid leukemia. Blood Adv 2021; 5:5041-5046. [PMID: 34614509 PMCID: PMC9153019 DOI: 10.1182/bloodadvances.2021005614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022] Open
Abstract
S100A9 overexpression promotes gilteritinib resistance in FLT3-ITD+ AML cells. Gilteritinib-induced upregulation of S100A9 is mediated through loss of BCL6 enrichment at the S100A9 promoter.
Drug resistance and relapse are common challenges in acute myeloid leukemia (AML), particularly in an aggressive subset bearing internal tandem duplications (ITDs) of the FLT3 receptor (FLT3-ITD+). The tyrosine kinase inhibitor gilteritinib is approved for the treatment of relapse/refractory AML with FLT3 mutations, yet resistance to gilteritinib remains a clinical concern, and the underlying mechanisms remain incompletely understood. Using transcriptomic analyses and functional validation studies, we identified the calcium-binding proteins S100A8 and S100A9 (S100A8/A9) as contributors to gilteritinib resistance in FLT3-ITD+ AML. Exposure of FLT3-ITD+ AML cells to gilteritinib increased S100A8/A9 expression in vivo and in vitro and decreased free calcium levels, and genetic manipulation of S100A9 was associated with altered sensitivity to gilteritinib. Using a transcription factor screen, we identified the transcriptional corepressor BCL6, as a regulator of S100A9 expression and found that gilteritinib decreased BCL6 binding to the S100A9 promoter, thereby increasing S100A9 expression. Furthermore, pharmacological inhibition of BCL6 accelerated the growth rate of gilteritinib-resistant FLT3-ITD+ AML cells, suggesting that S100A9 is a functional target of BCL6. These findings shed light on mechanisms of resistance to gilteritinib through regulation of a target that can be therapeutically exploited to enhance the antileukemic effects of gilteritinib.
Collapse
|
7
|
Panina SB, Pei J, Kirienko NV. Mitochondrial metabolism as a target for acute myeloid leukemia treatment. Cancer Metab 2021; 9:17. [PMID: 33883040 PMCID: PMC8058979 DOI: 10.1186/s40170-021-00253-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemias (AML) are a group of aggressive hematologic malignancies resulting from acquired genetic mutations in hematopoietic stem cells that affect patients of all ages. Despite decades of research, standard chemotherapy still remains ineffective for some AML subtypes and is often inappropriate for older patients or those with comorbidities. Recently, a number of studies have identified unique mitochondrial alterations that lead to metabolic vulnerabilities in AML cells that may present viable treatment targets. These include mtDNA, dependency on oxidative phosphorylation, mitochondrial metabolism, and pro-survival signaling, as well as reactive oxygen species generation and mitochondrial dynamics. Moreover, some mitochondria-targeting chemotherapeutics and their combinations with other compounds have been FDA-approved for AML treatment. Here, we review recent studies that illuminate the effects of drugs and synergistic drug combinations that target diverse biomolecules and metabolic pathways related to mitochondria and their promise in experimental studies, clinical trials, and existing chemotherapeutic regimens.
Collapse
Affiliation(s)
| | - Jingqi Pei
- Department of BioSciences, Rice University, Houston, TX, USA
| | | |
Collapse
|
8
|
Rajagopal P, Jayandharan GR, Krishnan UM. Evaluation of the Anticancer Activity of pH-Sensitive Polyketal Nanoparticles for Acute Myeloid Leukemia. Mol Pharm 2021; 18:2015-2031. [PMID: 33780253 DOI: 10.1021/acs.molpharmaceut.0c01243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Polyketals are a class of acid-responsive polymers that have been relatively less explored for drug delivery applications compared to polyesters. The degradation of these polymers is accelerated in an acidic medium and does not result in acidic byproducts. Their biocompatibility depends on the diol used for the synthesis. The present work aims to synthesize, characterize, and fabricate nanospheres of an aliphatic polyketal for delivery of the nucleotide analogue cytarabine toward the treatment of acute myeloid leukemia (AML). The internalization mechanism of the nanospheres was probed, and its implication on the nuclear localization and escape from the endo-lysosomal compartments were studied. The drug-loaded polyketal nanoparticles reduced the cell viability to a greater extent compared with the free drug. The effect of the drug-loaded polyketal nanoparticles on the differential gene expression of leukemic cells was investigated for the first time to understand their therapeutic implications. It was found that treatment with drug-loaded polyketal nanoparticles downregulated AML-specific genes involved in cell proliferation and recurrence compared to the free drug. The protein expression studies were performed for selected genes obtained from gene expression analysis. Biodistribution studies showed that the poly(cyclohexane-1,4-diyl acetone dimethylene ketal) (PCADK) nanoparticles exhibit prolonged circulation time. Overall, our results suggest that polyketal-based delivery of cytarabine represents a more effective alternative strategy for AML therapy.
Collapse
Affiliation(s)
- Pratheppa Rajagopal
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University Thanjavur 613401, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, India
| | - Giridhara R Jayandharan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India.,The Mehta Family Centre for Engineering In Medicine, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University Thanjavur 613401, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, India.,School of Arts, Science & Humanities, SASTRA Deemed University, Thanjavur 613401, India
| |
Collapse
|
9
|
Pathogenic Roles of S100A8 and S100A9 Proteins in Acute Myeloid and Lymphoid Leukemia: Clinical and Therapeutic Impacts. Molecules 2021; 26:molecules26051323. [PMID: 33801279 PMCID: PMC7958135 DOI: 10.3390/molecules26051323] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
Deregulations of the expression of the S100A8 and S100A9 genes and/or proteins, as well as changes in their plasma levels or their levels of secretion in the bone marrow microenvironment, are frequently observed in acute myeloblastic leukemias (AML) and acute lymphoblastic leukemias (ALL). These deregulations impact the prognosis of patients through various mechanisms of cellular or extracellular regulation of the viability of leukemic cells. In particular, S100A8 and S100A9 in monomeric, homodimeric, or heterodimeric forms are able to modulate the survival and the sensitivity to chemotherapy of leukemic clones through their action on the regulation of intracellular calcium, on oxidative stress, on the activation of apoptosis, and thanks to their implications, on cell death regulation by autophagy and pyroptosis. Moreover, biologic effects of S100A8/9 via both TLR4 and RAGE on hematopoietic stem cells contribute to the selection and expansion of leukemic clones by excretion of proinflammatory cytokines and/or immune regulation. Hence, the therapeutic targeting of S100A8 and S100A9 appears to be a promising way to improve treatment efficiency in acute leukemias.
Collapse
|
10
|
Zha J, Lai Q, Deng M, Shi P, Zhao H, Chen Q, Wu H, Xu B. Disruption of CTCF Boundary at HOXA Locus Promote BET Inhibitors' Therapeutic Sensitivity in Acute Myeloid Leukemia. Stem Cell Rev Rep 2020; 16:1280-1291. [PMID: 33057942 DOI: 10.1007/s12015-020-10057-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 12/14/2022]
Abstract
Both HOX gene expression and CTCF regulation have been well demonstrated to play a critical role in regulating maintenance of leukemic stem cells (LSCs) that are known to be resistant to BET inhibitor (BETi). To investigate the regulatory role of CTCF boundary in aberrant HOX gene expression and the therapeutic sensitivity of BETi in AML, we employed CRISPR-Cas9 genome editing technology to delete 47 base pairs of the CTCF binding motif which is located between HOXA7 and HOXA9 genes (CBS7/9) in different subtypes of AML with either MLL-rearrangement or NPM1 mutation. Our results revealed that HOXA9 is significantly downregulated in response to the CBS7/9 deletion. Moreover, CBS7/9 boundary deletion sensitized the BETi treatment reaction in both MOLM-13 and OCI-AML3 cells. To further examine whether BETi therapeutic sensitivity in AML is depended on the expression level of the HOXA9 gene, we overexpressed the HOXA9 in the CBS7/9 deleted AML cell lines, which can rescue and restore the resistance to BETi treatment of the CBS7/9 KO cells by activating MAPK signaling pathway. Deletion of CBS7/9 specifically decreased the recruitment of BRD4 and RNA pol II to the posterior HOXA genes, in which, a transcription elongation factor ELL3 is the key factor in regulating HOXA gene transcription monitored by CBS7/9 chromatin boundary. Thus, disruption of CBS7/9 boundary perturbs HOXA9 transcription and regulates BETi sensitivity in AML treatment. Moreover, alteration of CTCF boundaries in the oncogene loci may provide a novel strategy to overcome the drug resistance of LSCs. Graphical abstract.
Collapse
Affiliation(s)
- Jie Zha
- Department of Hematology, the First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, Fujian, China
- Key Laboratory for Diagnosis and Treatment of Hematological Malignancy of Xiamen, Xiamen, 361003, China
| | - Qian Lai
- Department of Hematology, the First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, Fujian, China
- Key Laboratory for Diagnosis and Treatment of Hematological Malignancy of Xiamen, Xiamen, 361003, China
| | - Manman Deng
- Department of Hematology, the First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, Fujian, China
- Key Laboratory for Diagnosis and Treatment of Hematological Malignancy of Xiamen, Xiamen, 361003, China
| | - Pengcheng Shi
- Department of Hematology, Nanfang Hospital. Southern Medical University, Guangzhou, 510515, China
| | - Haijun Zhao
- Department of Hematology, the First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, Fujian, China
- Key Laboratory for Diagnosis and Treatment of Hematological Malignancy of Xiamen, Xiamen, 361003, China
| | - Qinwei Chen
- Department of Hematology, the First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, Fujian, China
- Key Laboratory for Diagnosis and Treatment of Hematological Malignancy of Xiamen, Xiamen, 361003, China
| | - Hua Wu
- Department of Nuclear Medicine, the First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Bing Xu
- Department of Hematology, the First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen, 361003, Fujian, China.
- Key Laboratory for Diagnosis and Treatment of Hematological Malignancy of Xiamen, Xiamen, 361003, China.
| |
Collapse
|
11
|
Hua X, Zhang H, Jia J, Chen S, Sun Y, Zhu X. Roles of S100 family members in drug resistance in tumors: Status and prospects. Biomed Pharmacother 2020; 127:110156. [PMID: 32335300 DOI: 10.1016/j.biopha.2020.110156] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023] Open
Abstract
Chemotherapy and targeted therapy can significantly improve survival rates in cancer, but multiple drug resistance (MDR) limits the efficacy of these approaches. Understanding the molecular mechanisms underlying MDR is crucial for improving drug efficacy and clinical outcomes of patients with cancer. S100 proteins belong to a family of calcium-binding proteins and have various functions in tumor development. Increasing evidence demonstrates that the dysregulation of various S100 proteins contributes to the development of drug resistance in tumors, providing a basis for the development of predictive and prognostic biomarkers in cancer. Therefore, a combination of biological inhibitors or sensitizers of dysregulated S100 proteins could enhance therapeutic responses. In this review, we provide a detailed overview of the mechanisms by which S100 family members influence resistance of tumors to cancer treatment, with a focus on the development of effective strategies for overcoming MDR.
Collapse
Affiliation(s)
- Xin Hua
- Southeast University Medical College, Nanjing, 210009, China.
| | - Hongming Zhang
- Department of Respiratory Medicine, Yancheng Third People's Hospital, Southeast University Medical College, Yancheng, 224000, China.
| | - Jinfang Jia
- Southeast University Medical College, Nanjing, 210009, China.
| | - Shanshan Chen
- Southeast University Medical College, Nanjing, 210009, China.
| | - Yue Sun
- Southeast University Medical College, Nanjing, 210009, China.
| | - Xiaoli Zhu
- Southeast University Medical College, Nanjing, 210009, China; Department of Respiratory Medicine, Zhongda Hospital of Southeast University Medical College, Nanjing, 210009, China.
| |
Collapse
|
12
|
Mu G, Chen F. Oncogenic Roles Of A Histone Methyltransferase SETDB2 In AML1-ETO Positive AML. Cancer Manag Res 2020; 12:783-792. [PMID: 32099474 PMCID: PMC7007814 DOI: 10.2147/cmar.s227036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/04/2019] [Indexed: 12/16/2022] Open
Abstract
Introduction AML1-ETO produced by t(8;21) abnomality has multiple effects on the leukemogenesis of acute myeloid leukemia (AML). SET domain, bifurcated 2 (SETDB2) can mediate gene silencing by trimethylation of the ninth lysine residue of histone H3 protein (H3K9) of the promoter and has been confirmed as an oncogene in many cancers. The role of SETDB2 in AML1-ETO positive AML is not clear. Methods Quantitative reverse transcription PCR was performed to measure SETDB2 expression in bone marrow from AML patients and healthy people. Kaplan-Meier analysis was performed to investigate the effect of SETDB2 on prognosis of AML patients. Dual luciferase reporter gene assay, chromatin immunoprecipitation were performed to investigate the regulatory mechanism of AML1-ETO on SETDB2. CCK-8 and colony formation assay were performed to measure the effect of SETDB2 on leukemic cells. Results SETDB2 is highly expressed in AML1-ETO positive AML. The overall survival, event-free and relapse-free survival rate of patients with high SETDB2 expression was lower than those of patients with low SETDB2 expression. SETDB2 is epigenetically upregulated by AML1-ETO fusion protein. Downregulation of SETDB2 expression significantly inhibits the proliferation and clonality of leukemic cells and promotes the sensitivity of leukemic cells to an epigenetic inhibitor JQ1. Conclusion AML1-ETO/SETDB2 is a novel epigenetic pathway of leukemogenesis and SETDB2 is a potential therapeutic target of t(8;21) AML.
Collapse
Affiliation(s)
- Guangfu Mu
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Fangping Chen
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, People's Republic of China
| |
Collapse
|
13
|
Alanazi B, Munje CR, Rastogi N, Williamson AJK, Taylor S, Hole PS, Hodges M, Doyle M, Baker S, Gilkes AF, Knapper S, Pierce A, Whetton AD, Darley RL, Tonks A. Integrated nuclear proteomics and transcriptomics identifies S100A4 as a therapeutic target in acute myeloid leukemia. Leukemia 2020; 34:427-440. [PMID: 31611628 PMCID: PMC6995695 DOI: 10.1038/s41375-019-0596-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/18/2019] [Accepted: 09/30/2019] [Indexed: 12/20/2022]
Abstract
Inappropriate localization of proteins can interfere with normal cellular function and drive tumor development. To understand how this contributes to the development of acute myeloid leukemia (AML), we compared the nuclear proteome and transcriptome of AML blasts with normal human CD34+ cells. Analysis of the proteome identified networks and processes that significantly affected transcription regulation including misexpression of 11 transcription factors with seven proteins not previously implicated in AML. Transcriptome analysis identified changes in 40 transcription factors but none of these were predictive of changes at the protein level. The highest differentially expressed protein in AML nuclei compared with normal CD34+ nuclei (not previously implicated in AML) was S100A4. In an extended cohort, we found that over-expression of nuclear S100A4 was highly prevalent in AML (83%; 20/24 AML patients). Knock down of S100A4 in AML cell lines strongly impacted their survival whilst normal hemopoietic stem progenitor cells were unaffected. These data are the first analysis of the nuclear proteome in AML and have identified changes in transcription factor expression or regulation of transcription that would not have been seen at the mRNA level. These data also suggest that S100A4 is essential for AML survival and could be a therapeutic target in AML.
Collapse
Affiliation(s)
- Bader Alanazi
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Chinmay R Munje
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
- Paul O'Gorman Leukaemia Research Centre, University of Glasgow, Glasgow, G12 0ZD, UK
| | - Namrata Rastogi
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Andrew J K Williamson
- Stoller Biomarker Discovery Centre, The University of Manchester, Manchester, M20 3LJ, UK
| | - Samuel Taylor
- Stoller Biomarker Discovery Centre, The University of Manchester, Manchester, M20 3LJ, UK
| | - Paul S Hole
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Marie Hodges
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
- Cardiff Experimental and Cancer Medicine Centre (ECMC), School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Michelle Doyle
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
- Cardiff Experimental and Cancer Medicine Centre (ECMC), School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Sarah Baker
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
- Cardiff Experimental and Cancer Medicine Centre (ECMC), School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Amanda F Gilkes
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
- Cardiff Experimental and Cancer Medicine Centre (ECMC), School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Steven Knapper
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Andrew Pierce
- Stoller Biomarker Discovery Centre, The University of Manchester, Manchester, M20 3LJ, UK
| | - Anthony D Whetton
- Stoller Biomarker Discovery Centre, The University of Manchester, Manchester, M20 3LJ, UK
| | - Richard L Darley
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Alex Tonks
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK.
| |
Collapse
|
14
|
Shallis RM, Bewersdorf JP, Boddu PC, Zeidan AM. Hedgehog pathway inhibition as a therapeutic target in acute myeloid leukemia. Expert Rev Anticancer Ther 2019; 19:717-729. [PMID: 31422721 DOI: 10.1080/14737140.2019.1652095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: The Hedgehog (HH) pathway constitutes a collection of signaling molecules which critically influence embryogenesis. In adults, however, the HH pathway remains integral to the proliferation, maintenance, and apoptosis of adult stem cells including hematopoietic stem cells. Areas covered: We discuss the current understanding of the HH pathway as it relates to normal hematopoiesis, the pathology of acute myeloid leukemia (AML), the rationale for and data from combination therapies including HH pathway inhibitors, and ultimately the prospects that might offer promise in targeting this pathway in AML. Expert opinion: Efforts to target the HH pathway have been focused on impeding this disposition and restoring chemosensitivity to conventional myeloid neoplasm therapies. The year 2018 saw the first approval of a HH pathway inhibitor (glasdegib) for AML, though for an older population and in combination with an uncommonly-used therapy. Several other clinical trials with agents targeting modulators of HH signaling in AML and MDS are underway. Further study and understanding of the interplay between the numerous aspects of HH signaling and how it relates to the augmented survival of AML will provide a more reliable substrate for therapeutic strategies in patients with this poor-risk disease.
Collapse
Affiliation(s)
- Rory M Shallis
- Division of Hematology, Department of Medicine, Yale University School of Medicine , New Haven , CT , USA
| | - Jan Philipp Bewersdorf
- Division of Hematology, Department of Medicine, Yale University School of Medicine , New Haven , CT , USA
| | - Prajwal C Boddu
- Division of Hematology, Department of Medicine, Yale University School of Medicine , New Haven , CT , USA
| | - Amer M Zeidan
- Division of Hematology, Department of Medicine, Yale University School of Medicine , New Haven , CT , USA.,Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University , New Haven , CT , USA
| |
Collapse
|
15
|
Liao NC, Shih YL, Chou JS, Chen KW, Chen YL, Lee MH, Peng SF, Leu SJ, Chung JG. Cardamonin Induces Cell Cycle Arrest, Apoptosis and Alters Apoptosis Associated Gene Expression in WEHI-3 Mouse Leukemia Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:635-656. [DOI: 10.1142/s0192415x19500332] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Cardamonin, the chalcone class, is one of the natural components from the spicy herbaceous plant (Alpinia conchigera Griff) and has anticancer activities in many human cancer cell lines. There is, however, no information to show that cardamonin induces cell apoptosis and alters apoptosis associated gene expressions in mouse leukemia cells. Thus, we investigated the effects of cardamonin on the apoptotic cell death and associated gene expression in mouse leukemia WEHI-3 cells in vitro. Results indicated that cardamonin decreased total viable cell number via induced cell morphological changes and apoptotic cell death in WEHI-3 cells that were assay by contrast-phase microscopy and flow cytometry examinations, respectively. The flow cytometry assay indicated that cardamonin increased reactive oxygen species (ROS) and Ca[Formula: see text] production, decreased the levels of mitochondrial membrane potential ([Formula: see text] and increased caspase-3, -8 and -9 activities in WEHI-3 cells. Western blotting was performed to analyze expression of relevant pro- and anti-apoptotic proteins and results showed that cardamonin decreased anti-apoptotic protein of Bcl-2 but increased pro-apoptotic protein of Bax in WEHI-3 cells. Furthermore, cardamonin increased cytochrome c, AIF and Endo G release, increased GRP78, caspase-12 that were associated with ER stress and increased Fas, Fas-Ligand and FADD expression. Furthermore, cardamonin increased the gene expressions of DAP (death-associated protein), TMBIM4 transmembrane (BAX inhibitor motif containing 4), ATG5 (autophagy related 5) but decreased the gene expression of DDIT3 (DNA-damage inducible transcript 3), DDIT4 (DNA-damage-inducible transcript 4), BAG6 (BCL2-associated athanogene 6), BCL2L13 [BCL2-like 13 (apoptosis facilitator)] and BRAT1 (BRCA1-associated ATM activator 1) that are associated with apoptosis pathways. Based on those findings, we may suggest cardamonin induced apoptotic cell death through Fas and Fas-Ligand-, caspase- and mitochondria-dependently pathways and also affects the apoptotic gene expression in WEHI-3 cells in vitro.
Collapse
Affiliation(s)
- Nien-Chieh Liao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Yung-Luen Shih
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan
| | - Jiann-Shang Chou
- Department of Anatomic Pathology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Kuo-Wei Chen
- Division of Hematology and Oncology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Yung-Liang Chen
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University, Hsinchu, Taiwan
| | - Mei-Hui Lee
- Department of Genetic Counseling Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Shu-Fen Peng
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Sy-Jye Leu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|