1
|
Uddin Rabbi MB, Haque S, Bedoura S. Advancements in synthesis, immobilization, characterization, and multifaceted applications of silver nanoparticles: A comprehensive review. Heliyon 2024; 10:e40931. [PMID: 39759340 PMCID: PMC11700253 DOI: 10.1016/j.heliyon.2024.e40931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025] Open
Abstract
Silver nanoparticles (AgNPs) have attracted significant interest in recent years owing to their unique physicochemical properties, including antimicrobial reduction capabilities, photocatalytic activity, self-cleaning features, superhydrophobicity, and electrical conductivity. Their characteristics render them highly advantageous for various textile, electronics, food and agriculture, water treatment, and biomedical applications. This detailed analysis explores the recent benefits and drawbacks of various synthesis methods, immobilization techniques, and characterization of AgNPs while emphasizing novel strategies that improve their functionality across different substrates. A comprehensive analysis is conducted on various synthesis methods, including physical, chemical, and biological approaches. Additionally, immobilization techniques such as in-situ synthesis, pad-dry-cure, and printing on diverse substrates are thoroughly examined for their role in enhancing the functionality of textile substrates. Advanced characterization techniques, encompassing spectroscopic and microscopic methods, have been reviewed to provide a comprehensive understanding of AgNPs' structural and functional properties. This review highlights the progress made in synthesizing AgNPs, focusing on the ability to control their size and shape for targeted applications. Improved immobilization methods have significantly enhanced the stability of AgNPs in intricate environments. In contrast, advanced characterization techniques facilitate a more accurate control and assessment of the properties of AgNPs. The utilization of AgNPs as an antimicrobial agent for surface and food protection, medical devices, antiviral agents, and therapeutic tools showcases their extensive influence across the field. The cytotoxic effects of AgNPs on the human body have been thoroughly examined. This review examines recent advancements in AgNPs to encourage additional research and the development of innovative formulations. It also highlights future perspectives and research directions to effectively and sustainably utilize the potential of AgNPs.
Collapse
Affiliation(s)
- Md. Belal Uddin Rabbi
- Department of Wet Process Engineering, Bangladesh University of Textiles, Dhaka, 1208, Bangladesh
| | - Sadia Haque
- Department of Wet Process Engineering, Bangladesh University of Textiles, Dhaka, 1208, Bangladesh
| | - Sultana Bedoura
- Department of Dyes and Chemical Engineering, Bangladesh University of Textiles, Dhaka, 1208, Bangladesh
| |
Collapse
|
2
|
Wang Y, Wu R, Zhang Y, Cheng S, Zhang Y. High quantum yield nitrogen doped carbon dots for Ag+ sensing and bioimaging. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
3
|
Light-Emitting-Diode-Assisted, Fungal-Pigment-Mediated Biosynthesis of Silver Nanoparticles and Their Antibacterial Activity. Polymers (Basel) 2022; 14:polym14153140. [PMID: 35956655 PMCID: PMC9370687 DOI: 10.3390/polym14153140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 02/06/2023] Open
Abstract
Nanoparticle synthesis, such as green synthesis of silver nanoparticles (AgNPs) using biogenic extracts, is affected by light, which changes the characteristics of particles. However, the effect of light-emitting diodes (LEDs) on AgNP biosynthesis using fungal pigment has not been examined. In this study, LEDs of different wavelengths were used in conjunction with Talaromyces purpurogenus extracellular pigment for AgNP biosynthesis. AgNPs were synthesized by mixing 10 mL of fungal pigment with AgNO3, followed by 24 h exposure to LEDs of different wavelengths, such as blue, green, orange, red, and infrared. All treatments increased the yield of AgNPs. The solutions exposed to blue, green, and infrared LEDs exhibited a significant increase in AgNP synthesis. All AgNPs were then synthesized to determine the optimum precursor (AgNO3) concentration and reaction rate. The results indicated 5 mM AgNO3 as the optimum precursor concentration; furthermore, AgNPs-blue LED had the highest reaction rate. Dynamic light scattering analysis, zeta potential measurement, transmission electron microscopy, and Fourier transform infrared spectroscopy were used to characterize the AgNPs. All LED-synthesized AgNPs exhibited an antimicrobial potential against Escherichia coli and Staphylococcus aureus. The combination of LED-synthesized AgNPs and the antibiotic streptomycin demonstrated a synergistic antimicrobial activity against both bacterial species.
Collapse
|
4
|
Lopez-Carrizales M, Perez-Diaz M, Mendoza-Mendoza E, Peralta-Rodríguez R, Ojeda-Galván HJ, Portales Perez DP, Magaña-Aquino M, Sánchez-Sánchez R, Martinez-Gutierrez F. Green, novel, and one-step synthesis of silver oxide nanoparticles: antimicrobial activity, synergism with antibiotics, and cytotoxic studies. NEW J CHEM 2022. [DOI: 10.1039/d2nj02902b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Silver oxide nanoparticles (Ag2ONPs) were synthesized by a one-step, green, and novel method. Ag2ONPs were characterized independently as well as in mixtures with common antibiotics. The antibacterial activity of Ag2ONPs...
Collapse
|
5
|
Cruz-Ramírez OU, Valenzuela-Salas LM, Blanco-Salazar A, Rodríguez-Arenas JA, Mier-Maldonado PA, García-Ramos JC, Bogdanchikova N, Pestryakov A, Toledano-Magaña Y. Antitumor Activity against Human Colorectal Adenocarcinoma of Silver Nanoparticles: Influence of [Ag]/[PVP] Ratio. Pharmaceutics 2021; 13:1000. [PMID: 34371692 PMCID: PMC8308985 DOI: 10.3390/pharmaceutics13071000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Silver nanoparticles (AgNPs) not only have shown remarkable results as antimicrobial and antiviral agents but also as antitumor agents. This work reports the complete characterization of five polyvinylpyrrolidone-coated AgNP (PVP-AgNP) formulations, their cytotoxic activity against human colon tumor cells (HCT-15), their cytotoxic effect on primary mouse cultures, and their lethal dose on BALB/c mice. The evaluated AgNP formulations have a composition within the ranges Ag: 1.14-1.32% w/w, PVP: 19.6-24.5% and H2O: 74.2-79.2% with predominant spherical shape within an average size range of 16-30 nm according to transmission electron microscopy (TEM). All formulations assessed increase mitochondrial ROS concentration and induce apoptosis as the leading death pathway on HCT-15 cells. Except for AgNP1, the growth inhibition potency of AgNP formulations of human colon tumor cancer cells (HCT-15) is 34.5 times higher than carboplatin, one of the first-line chemotherapy agents. Nevertheless, 5-10% of necrotic events, even at the lower concentration evaluated, were observed. The cytotoxic selectivity was confirmed by evaluating the cytotoxic effect on aorta, spleen, heart, liver, and kidney primary cultures from BALB/c mice. Despite the cytotoxic effects observed in vitro, the lethal dose and histopathological analysis showed the low toxicity of these formulations (all of them on Category 4 of the Globally Harmonized System of Classification and Labelling of Chemicals) and minor damage observed on analyzed organs. The results provide an additional example of the rational design of safety nanomaterials with antitumor potency and urge further experiments to complete the preclinical studies for these AgNP formulations.
Collapse
Affiliation(s)
- Omar Ulises Cruz-Ramírez
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada 22860, Mexico; (O.U.C.-R.); (N.B.)
| | - Lucía Margarita Valenzuela-Salas
- Facultad de Ciencias de la Salud Unidad Valle de las Palmas, Universidad Autónoma de Baja California, Tijuana 22260, Mexico; (L.M.V.-S.); (P.A.M.-M.)
| | - Alberto Blanco-Salazar
- Programa de Maestría y Doctorado en Ciencias e Ingeniería, Facultad de Ciencias, Universidad Autónoma de Baja California, Ensenada 22860, Mexico; (A.B.-S.); (J.A.R.-A.)
- Escuela de Ciencias de la Salud Unidad Valle Dorado, Universidad Autónoma de Baja California, Ensenada 22890, Mexico
| | - José Antonio Rodríguez-Arenas
- Programa de Maestría y Doctorado en Ciencias e Ingeniería, Facultad de Ciencias, Universidad Autónoma de Baja California, Ensenada 22860, Mexico; (A.B.-S.); (J.A.R.-A.)
- Escuela de Ciencias de la Salud Unidad Valle Dorado, Universidad Autónoma de Baja California, Ensenada 22890, Mexico
| | - Paris A. Mier-Maldonado
- Facultad de Ciencias de la Salud Unidad Valle de las Palmas, Universidad Autónoma de Baja California, Tijuana 22260, Mexico; (L.M.V.-S.); (P.A.M.-M.)
| | - Juan Carlos García-Ramos
- Escuela de Ciencias de la Salud Unidad Valle Dorado, Universidad Autónoma de Baja California, Ensenada 22890, Mexico
| | - Nina Bogdanchikova
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada 22860, Mexico; (O.U.C.-R.); (N.B.)
| | - Alexey Pestryakov
- Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia;
| | - Yanis Toledano-Magaña
- Escuela de Ciencias de la Salud Unidad Valle Dorado, Universidad Autónoma de Baja California, Ensenada 22890, Mexico
| |
Collapse
|
6
|
Devanesan S, Ponmurugan K, AlSalhi MS, Al-Dhabi NA. Cytotoxic and Antimicrobial Efficacy of Silver Nanoparticles Synthesized Using a Traditional Phytoproduct, Asafoetida Gum. Int J Nanomedicine 2020; 15:4351-4362. [PMID: 32606682 PMCID: PMC7310983 DOI: 10.2147/ijn.s258319] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/09/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose The present study synthesized silver nanoparticles (AgNPs) using the aqueous extract of a traditional medicinal product consisting of an oleoresin (a combination of macromolecules of carbohydrates and proteins) exuded from the rhizome of the plant Ferula foetida (asafoetida gum) and evaluated its biological properties. Materials and Methods The silver nanoparticles synthesized using asafoetida gum (As-AgNPs) were characterized using UV/Vis spectroscopy, fourier infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD) and transmission electron microscopy (TEM) and EADX. The cytotoxicity and antimicrobial activity As-AgNPs were evaluated against MCF-7 cell lines and selected microbial pathogens, respectively. Results The synthesized silver nanoparticles were crystalline in nature with a spherical shape. The average particle size was 5.6–8.6 nm. The cytotoxicity of the synthesized As-AgNPs was evaluated against MCF-7 cell lines, and the As-AgNPs were found to be effective in inhibiting the multiplication of cancer cells. The As-AgNPs exhibited significant antimicrobial activity towards E. coli, K. pneumoniae and C. albicans. The MIC of the synthesized As-AgNPs was 7.80 μg/mL for E. coli ATCC 25922, Salmonella sp. WS50- and S. typhi; 15.60 μg/mL for S. typhimurium and S. aureus WS10, and 31.20 μg/mL for K. pneumoniae and S. aureus ATCC 43300-MRSA. In addition, MIC values of 15.60 μg/mL for C. albicans ATCC8436 and 31.20 μg/mL for C. krusei ATCC6258 were obtained. Conclusion As asafoetida is a good traditional medicine, its involvement in the synthesis of AgNPs led the silver nanoparticles to exhibit good cytotoxic and antimicrobial effects.
Collapse
Affiliation(s)
- Sandhanasamy Devanesan
- Research Chair in Laser Diagnosis of Cancer, Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, Saudi Arabia.,Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Karuppiah Ponmurugan
- Department of Botany and Microbiology, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamad S AlSalhi
- Research Chair in Laser Diagnosis of Cancer, Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, Saudi Arabia.,Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Bin-Jumah M, Al-Abdan M, Albasher G, Alarifi S. Effects of Green Silver Nanoparticles on Apoptosis and Oxidative Stress in Normal and Cancerous Human Hepatic Cells in vitro. Int J Nanomedicine 2020; 15:1537-1548. [PMID: 32210550 PMCID: PMC7074819 DOI: 10.2147/ijn.s239861] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 01/23/2020] [Indexed: 12/18/2022] Open
Abstract
Introduction Extensive use of metallic nanomaterials in different areas of agriculture and commercial products induce significant harmful effects on human health and the environment. In the current study, we synthesized an eco-friendly approach silver nanoparticles (AgNPs) using root extracts of Beta vulgaris L. Methods The synthesized green silver nanoparticles (gAgNPs) were characterized by dynamic light scattering (DLS) and high-resolution transmission electron microscope (HR-TEM). The gAgNPs had a round shape and the mean size was 20−50 nm. The cytotoxic effects of gAgNPs were determined in human hepatic normal (CHANG) and cancer (HUH-7) cells by using tetrazolium salt (MTT) and lactate dehydrogenase (LDH) assays for 24 h. Results and Discussion It was clear from the observations of this experiment that higher concentrations of gAgNPs reduce cell viability. The production of reactive oxygen species (ROS) was evaluated by using DCFDA. The gAgNPs induced more ROS in the HuH-7 cells than in the CHANG cells. The fragmentation of DNA was evaluated by alkaline single-cell gel electrophoresis and the maximum DNA strand breakage was found at a higher concentration exposure of gAgNPs for 24 h. It is important to notice that the HuH-7 cells showed an increased sensitivity to gAgNPs than the CHANG cells. The apoptotic and necrotic effects of gAgNPs on both the cells were evaluated using annexin-V-FITC and propidium iodide staining. An increased count of apoptotic and necrotic cells was found following a higher concentration exposure of gAgNPs. The apoptotic protein expression in these cells due to gAgNPs exposure was determined using immunoblotting techniques and the level of Bcl2 was decreased. However, the expression of BAX and protein was increased in both cells. Conclusion Therefore, it can be concluded that higher concentrations of gAgNPs may induce significant cytotoxicity and cause DNA damage and apoptosis.
Collapse
Affiliation(s)
- May Bin-Jumah
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Monera Al-Abdan
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Grumezescu AM, Stoica AE, Dima-Bălcescu MȘ, Chircov C, Gharbia S, Baltă C, Roșu M, Herman H, Holban AM, Ficai A, Vasile BS, Andronescu E, Chifiriuc MC, Hermenean A. Electrospun Polyethylene Terephthalate Nanofibers Loaded with Silver Nanoparticles: Novel Approach in Anti-Infective Therapy. J Clin Med 2019; 8:E1039. [PMID: 31315266 PMCID: PMC6679131 DOI: 10.3390/jcm8071039] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/04/2019] [Accepted: 07/07/2019] [Indexed: 12/29/2022] Open
Abstract
Polyethylene terephthalate (PET) is a major pollutant polymer, due to its wide use in food packaging and fiber production industries worldwide. Currently, there is great interest for recycling the huge amount of PET-based materials, derived especially from the food and textile industries. In this study, we applied the electrospinning technique to obtain nanostructured fibrillary membranes based on PET materials. Subsequently, the recycled PET networks were decorated with silver nanoparticles through the chemical reduction method for antimicrobial applications. After the characterization of the materials in terms of crystallinity, chemical bonding, and morphology, the effect against Gram-positive and Gram-negative bacteria, as well as fungal strains, was investigated. Furthermore, in vitro and in vivo biocompatibility tests were performed in order to open up potential biomedical applications, such as wound dressings or implant coatings. Silver-decorated fibers showed lower cytotoxicity and inflammatory effects and increased antibiofilm activity, thus highlighting the potential of these systems for antimicrobial purposes.
Collapse
Affiliation(s)
- Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 050094 Bucharest, Romania
- ICUB, Research Institute of Bucharest University, University of Bucharest, 030018 Bucharest, Romania
| | - Alexandra Elena Stoica
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Faculty of Engineering in Foreign Languages, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | | | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Faculty of Engineering in Foreign Languages, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Sami Gharbia
- Institute of Life Sciences, Vasile Goldis Western University of Arad, 310414 Arad, Romania
| | - Cornel Baltă
- Institute of Life Sciences, Vasile Goldis Western University of Arad, 310414 Arad, Romania
| | - Marcel Roșu
- Institute of Life Sciences, Vasile Goldis Western University of Arad, 310414 Arad, Romania
| | - Hildegard Herman
- Institute of Life Sciences, Vasile Goldis Western University of Arad, 310414 Arad, Romania
| | - Alina Maria Holban
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, 050107 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Bogdan Stefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania.
| | - Mariana Carmen Chifiriuc
- ICUB, Research Institute of Bucharest University, University of Bucharest, 030018 Bucharest, Romania
| | - Anca Hermenean
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Faculty of Medicine, Vasile Goldis Western University of Arad, 310045 Arad, Romania
| |
Collapse
|
9
|
Ahmad S, Munir S, Zeb N, Ullah A, Khan B, Ali J, Bilal M, Omer M, Alamzeb M, Salman SM, Ali S. Green nanotechnology: a review on green synthesis of silver nanoparticles - an ecofriendly approach. Int J Nanomedicine 2019; 14:5087-5107. [PMID: 31371949 PMCID: PMC6636611 DOI: 10.2147/ijn.s200254] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 03/26/2019] [Indexed: 12/19/2022] Open
Abstract
Background: Nanotechnology explores a variety of promising approaches in the area of material sciences on a molecular level, and silver nanoparticles (AgNPs) are of leading interest in the present scenario. This review is a comprehensive contribution in the field of green synthesis, characterization, and biological activities of AgNPs using different biological sources. Methods: Biosynthesis of AgNPs can be accomplished by physical, chemical, and green synthesis; however, synthesis via biological precursors has shown remarkable outcomes. In available reported data, these entities are used as reducing agents where the synthesized NPs are characterized by ultraviolet-visible and Fourier-transform infrared spectra and X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Results: Modulation of metals to a nanoscale drastically changes their chemical, physical, and optical properties, and is exploited further via antibacterial, antifungal, anticancer, antioxidant, and cardioprotective activities. Results showed excellent growth inhibition of the microorganism. Conclusion: Novel outcomes of green synthesis in the field of nanotechnology are appreciable where the synthesis and design of NPs have proven potential outcomes in diverse fields. The study of green synthesis can be extended to conduct the in silco and in vitro research to confirm these findings.
Collapse
Affiliation(s)
- Shabir Ahmad
- Department of Chemistry, Islamia College University, Peshawar25120, Pakistan
| | - Sidra Munir
- Department of Chemistry, Islamia College University, Peshawar25120, Pakistan
| | - Nadia Zeb
- Department of Chemistry, Islamia College University, Peshawar25120, Pakistan
- Department of Chemistry, Government Girls Degree College, Peshawar, Pakistan
| | - Asad Ullah
- Department of Chemistry, Islamia College University, Peshawar25120, Pakistan
| | - Behramand Khan
- Department of Chemistry, Islamia College University, Peshawar25120, Pakistan
| | - Javed Ali
- Department of Chemistry, Kohat University of Science and Technology, Kohat, Pakistan
| | - Muhammad Bilal
- Department of Chemistry, Kohat University of Science and Technology, Kohat, Pakistan
| | - Muhammad Omer
- Institute of Chemical Sciences, University of Swat, Swat, 19201, Pakistan
| | - Muhammad Alamzeb
- Department of Chemistry, University of Kotli 11100, Azad Jammu and Kashmir, Pakistan
| | | | - Saqib Ali
- Department of Chemistry, University of Kotli 11100, Azad Jammu and Kashmir, Pakistan
| |
Collapse
|
10
|
Das G, Patra JK, Basavegowda N, Vishnuprasad CN, Shin HS. Comparative study on antidiabetic, cytotoxicity, antioxidant and antibacterial properties of biosynthesized silver nanoparticles using outer peels of two varieties of Ipomoea batatas (L.) Lam. Int J Nanomedicine 2019; 14:4741-4754. [PMID: 31456635 PMCID: PMC6620772 DOI: 10.2147/ijn.s210517] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 05/06/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Ipomoea batatas (L.) Lam.(Ib) has high content of various beneficial nutrients which helps in improving and maintaining human health. It is well known as a functional food and also a valuable source of unique natural products. It contains various phenolic and flavonoid bioactive compounds. METHODS In this study, using the outer peel of two varieties of Ib : Korean red skin sweet potato and Korean pumpkin sweet potato, silver nanoparticles (AgNPs) were synthesized (termed Ib1-AgNps and Ib2-AgNps), respectively. Characterization of Ib1-AgNPs and Ib2-AgNPs was carried out through scanning electron microscopy, Fourier-transform infrared (FT-IR) spectroscopy, energy-dispersive X-ray analysis, X-ray powder diffraction and UV-Vis spectroscopy. Further, the bio-potential of the synthesized AgNPs was investigated by antidiabetic (α-glucosidase assay), antioxidant (free radical scavenging assays), antibacterial (disc diffusion method) and cytotoxicity assays (cell viability against HepG2 cells). RESULTS FT-IR spectroscopy revealed the contribution of bioactive compounds existing in Ib1 and Ib2 extracts, in the biosynthesis and equilibrium of the AgNPs. Although the Ib2-AgNPs had a higher atomic percentage of Ag in comparison with Ib1-AgNPs, in the antidiabetic assay, the inhibition percentage of α-glucosidase was higher for AgNPs of Ib1 than Ib2, at all three concentrations examined. From the cytotoxicity results, HepG2 cancer cells were more sensitive to the Ib1-AgNPs in comparison to the Ib2-AgNPs-treated HepG2 cells. The antioxidant prospective was higher in Ib2-AgNPs than Ib1-AgNPs. Moreover, the Ib2-AgNPs showed inhibitory action against all five tested pathogenic bacteria, producing an inhibition zone of 8.74-11.52 mm while Ib1-AgNPs had an inhibitory effect on four of them, with an 8.67-11.23 (mm) inhibition zone. CONCLUSIONS Overall, the results concluded that the Ib2-AgNPs exhibited relatively higher functional activity than Ib1-AgNPs, which might be credited to the greater abundance of bioactive compounds existing in Ib2 extract that acted as reducing as well as capping agents in the synthesis of Ib2-AgNPs. Overall, the current study highlights a novel cost-effective and eco-friendly AgNPs synthesis using food waste peels with biocompatibility and could be potentially utilized in biomedical and pharmaceutical industries.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University, Seoul, Gyeonggi-do10326, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University, Seoul, Gyeonggi-do10326, Republic of Korea
| | - Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Chethala N Vishnuprasad
- Centre for Ayurveda Biology and Holistic Nutrition, The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru560064, India
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University, Seoul, Gyeonggi‐do10326, Republic of Korea
| |
Collapse
|