1
|
Salehi S. A comprehensive review on using injectable chitosan microgels for osteochondral tissue repair. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025; 36:647-662. [PMID: 39460952 DOI: 10.1080/09205063.2024.2419715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Restoring cartilage to healthy state is challenging due to low cell density and hence low regenerative capacity. The current platforms are not compatible with clinical translation and require dedicated handling of trained personnel. However, by engineering and implanting cell microaggregates in higher concentrations, efficient formation of new cartilage can be achieved, even in the absence of exogenous growth factors. Therefore, one-step surgeries are preferable for novel treatments and we need cell laden microgels allowing the formation of microaggregaets in vivo. Injectability is a key parameter for in situ forming the shape and minimally invasive clinical applications. Hydrogels as bioinks can restore damaged tissues to their primary shape. Chitosan is a polysaccharide derived from chitin with abundant usage in tissue engineering. This review highlights the use of chitosan as an injectable hydrogel for osteochondral defects. Several studies focused on encapsulating mesenchymal stem cells within chitosan hydrogels have been categorized and incorporating microfluidic devices has been identified in the forefront to form microgels. Additionally, the printability is another convenience of chitosan for using in 3D printing for cartilage tissue engineering which is described in this review.
Collapse
Affiliation(s)
- Sarah Salehi
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
2
|
Zheng Z, Yu D, Wang H, Wu H, Tang Z, Wu Q, Cao P, Chen Z, Huang H, Li X, Liu C, Guo Z. Advancement of 3D biofabrication in repairing and regeneration of cartilage defects. Biofabrication 2025; 17:022003. [PMID: 39793203 DOI: 10.1088/1758-5090/ada8e1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/10/2025] [Indexed: 01/13/2025]
Abstract
Three-dimensional (3D) bioprinting, an additive manufacturing technology, fabricates biomimetic tissues that possess natural structure and function. It involves precise deposition of bioinks, including cells, and bioactive factors, on basis of computer-aided 3D models. Articular cartilage injuries, a common orthopedic issue. Current repair methods, for instance microfracture procedure (MF), autologous chondrocyte implantation (ACI), and osteochondral autologous transfer surgery have been applied in clinical practice. However, each procedure has inherent limitation. For instance, MF surgery associates with increased subchondral cyst formation and brittle subchondral bone. ACI procedure involves two surgeries, and associate with potential risks infection and delamination of the regenerated cartilage. In addition, chondrocyte implantation's efficacy depends on the patient's weight, joint pathology, gender-related histological changes of cartilage, and hormonal influences that affect treatment and prognosis. So far, it is a still a grand challenge for achieving a clinical satisfactory in repairing and regeneration of cartilage defects using conditional strategies. 3D biofabrication provide a potential to fabricate biomimetic articular cartilage construct that has shown promise in specific cartilage repair and regeneration of patients. This review reported the techniques of 3D bioprinting applied for cartilage repair, and analyzed their respective merits and demerits, and limitations in clinical application. A summary of commonly used bioinks has been provided, along with an outlook on the challenges and prospects faced by 3D bioprinting in the application of cartilage tissue repair. It provided an overall review of current development and promising application of 3D biofabrication technology in articular cartilage repair.
Collapse
Affiliation(s)
- Zenghui Zheng
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, People's Republic of China
- School of Clinical Medicine, Xi'an Medical University, Xi 'an 710021, People's Republic of China
| | - Dongmei Yu
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, People's Republic of China
- Institute of Orthopaedics and Musculoskeletal Science, University College London, The Royal National Orthopaedic Hospital, Stanmore HA7 4LP, United Kingdom
| | - Haoyu Wang
- Institute of Orthopaedics and Musculoskeletal Science, University College London, The Royal National Orthopaedic Hospital, Stanmore HA7 4LP, United Kingdom
| | - Hao Wu
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, People's Republic of China
| | - Zhen Tang
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, People's Republic of China
| | - Qi Wu
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, People's Republic of China
| | - Pengfei Cao
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, People's Republic of China
- School of Clinical Medicine, Xi'an Medical University, Xi 'an 710021, People's Republic of China
| | - Zhiyuan Chen
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, People's Republic of China
- School of Clinical Medicine, Xi'an Medical University, Xi 'an 710021, People's Republic of China
| | - Hai Huang
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, People's Republic of China
| | - Xiaokang Li
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, People's Republic of China
| | - Chaozong Liu
- Institute of Orthopaedics and Musculoskeletal Science, University College London, The Royal National Orthopaedic Hospital, Stanmore HA7 4LP, United Kingdom
| | - Zheng Guo
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, People's Republic of China
| |
Collapse
|
3
|
Wang X, He W, Huang H, Han J, Wang R, Li H, Long Y, Wang G, Han X. Recent Advances in Hydrogel Technology in Delivering Mesenchymal Stem Cell for Osteoarthritis Therapy. Biomolecules 2024; 14:858. [PMID: 39062572 PMCID: PMC11274544 DOI: 10.3390/biom14070858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/06/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Osteoarthritis (OA), a chronic joint disease affecting over 500 million individuals globally, is characterized by the destruction of articular cartilage and joint inflammation. Conventional treatments are insufficient for repairing damaged joint tissue, necessitating novel therapeutic approaches. Mesenchymal stem cells (MSCs), with their potential for differentiation and self-renewal, hold great promise as a treatment for OA. However, challenges such as MSC viability and apoptosis in the ischemic joint environment hinder their therapeutic effectiveness. Hydrogels with biocompatibility and degradability offer a three-dimensional scaffold that support cell viability and differentiation, making them ideal for MSC delivery in OA treatment. This review discusses the pathological features of OA, the properties of MSCs, the challenges associated with MSC therapy, and methods for hydrogel preparation and functionalization. Furthermore, it highlights the advantages of hydrogel-based MSC delivery systems while providing insights into future research directions and the clinical potential of this approach.
Collapse
Affiliation(s)
- Xiangjiang Wang
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Wentao He
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Hao Huang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Collage of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Jiali Han
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Ruren Wang
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Hongyi Li
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Ying Long
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Guiqing Wang
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Xianjing Han
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| |
Collapse
|
4
|
Bhardwaj N, Dey S, Bhar B, Mandal BB. Bioprinted in vitrotissue models: an emerging platform for developing therapeutic interventions and disease modelling. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2023; 6:012003. [PMID: 40516029 DOI: 10.1088/2516-1091/ad10b4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/29/2023] [Indexed: 06/16/2025]
Abstract
In the past decade, the use of three-dimensional (3D) bioprinting technology for the development ofin vitrotissue models has attracted a great deal of attention. This is due to its remarkable precision in constructing different functional tissues and organs, enabling studies of their biology. In addition, this high-throughput technology has been extended to therapeutics, as it provides an alternative functional platform for rapid drug screening and disease modelling. Functional tissue models fabricated using 3D bioprinting mimic native tissues and help in the development of platforms for personalized drug screening and disease modelling due to their high throughput and ease of customization. Moreover, bioprinted 3D tissue models mimic native tissues more closely and provide added advantages over earlier conventional tissue models, such as monoculture, co-culture, explants, etc. In this context, this review article provides an overview of different bioprintedin vitrotissue models of skin, bone, neural tissue, vascular tissue, cartilage, liver and cardiac tissue. This article explores advancements and innovations in these models in terms of developing improved therapeutic interventions. Herein, we provide an insight into the development of different bioprinted tissue models for applications in drug screening and disease modelling. The needs and advantages of bioprinted tissue models as compared with conventionalin vitromodels are discussed. Furthermore, the different biomaterials, cell sources and bioprinting techniques used to develop tissue models are briefly reviewed. Thereafter, different bioprinted tissue models, namely skin, liver, vascular, cardiac, cartilage, bone and neural tissue, are discussed in detail with a special emphasis on drug screening and disease modelling. Finally, challenges and future prospects are highlighted and discussed. Taken together, this review highlights the different approaches and strategies used for the development of different 3D bioprintedin vitrotissue models for improved therapeutic interventions.
Collapse
Affiliation(s)
- Nandana Bhardwaj
- Department of Science and Mathematics, Indian Institute of Information Technology Guwahati, Bongora, Guwahati, 781015 Assam, India
| | - Souradeep Dey
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039 Assam, India
| | - Bibrita Bhar
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039 Assam, India
| | - Biman B Mandal
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039 Assam, India
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039 Assam, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, 781039 Assam, India
| |
Collapse
|
5
|
Yang X, Liu P, Zhang Y, Lu J, Zhao H. Bioprinting-Enabled Biomaterials: A Cutting-Edge Strategy for Future Osteoarthritis Therapy. Int J Nanomedicine 2023; 18:6213-6232. [PMID: 37933298 PMCID: PMC10625743 DOI: 10.2147/ijn.s432468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023] Open
Abstract
Bioprinting is an advanced technology that allows for the precise placement of cells and biomaterials in a controlled manner, making significant contributions in regenerative medicine. Notably, bioprinting-enabled biomaterials have found extensive application as drug delivery systems (DDS) in the treatment of osteoarthritis (OA). Despite the widespread utilization of these biomaterials, there has been limited comprehensive research summarizing the recent advances in this area. Therefore, this review aims to explore the noteworthy developments and challenges associated with utilizing bioprinting-enabled biomaterials as effective DDS for the treatment of OA. To begin, we provide an overview of the complex pathophysiology of OA, highlighting the shortcomings of current treatment modalities. Following this, we conduct a detailed examination of various bioprinting technologies and discuss the wide range of biomaterials employed in DDS applications for OA therapy. Finally, by placing emphasis on their transformative potential, we discuss the incorporation of crucial cellular components such as chondrocytes and mesenchymal stem cells into bioprinted constructs, which play a pivotal role in promoting tissue regeneration and repair.
Collapse
Affiliation(s)
- Xinquan Yang
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710054, People’s Republic of China
| | - Peilong Liu
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710054, People’s Republic of China
| | - Yan Zhang
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710054, People’s Republic of China
| | - Jun Lu
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710054, People’s Republic of China
| | - Hongmou Zhao
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710054, People’s Republic of China
| |
Collapse
|
6
|
Mainardi VL, Rubert M, Sabato C, de Leeuw A, Arrigoni C, Dubini G, Candrian C, Müller R, Moretti M. Culture of 3D Bioprinted Bone Constructs Requires an Increased Fluid Dynamic Stimulation. Acta Biomater 2022; 153:374-385. [PMID: 36108964 DOI: 10.1016/j.actbio.2022.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/05/2022] [Accepted: 09/07/2022] [Indexed: 11/01/2022]
Abstract
In vitro flow-induced mechanical stimulation of developing bone tissue constructs has been shown to favor mineral deposition in scaffolds seeded with cells directly exposed to the fluid flow. However, the effect of fluid dynamic parameters, such as shear stress (SS), within 3D bioprinted constructs is still unclear. Thus, this study aimed at correlating the SS levels and the mineral deposition in 3D bioprinted constructs, evaluating the possible dampening effect of the hydrogel. Human mesenchymal stem cells (hMSCs) were embedded in 3D bioprinted porous structures made of alginate and gelatin. 3D bioprinted constructs were cultured in an osteogenic medium assessing the influence of different flow rates (0, 0.7 and 7 ml/min) on calcium and collagen deposition through histology, and bone volume (BV) through micro-computed tomography. Uniform distribution of calcium and collagen was observed in all groups. Nevertheless, BV significantly increased in perfused groups as compared to static control, ranging from 0.35±0.28 mm3, 11.90±8.74 mm3 and 25.81±5.02 mm3 at week 3 to 2.28±0.78 mm3, 22.55±2.45 mm3 and 46.05±5.95 mm3 at week 6 in static, 0.7 and 7 ml/min groups, respectively. SS values on construct fibers in the range 10-100 mPa in 7 ml/min samples were twice as high as those in 0.7 ml/min samples showing the same trend of BV. The obtained results suggest that it is necessary to enhance the flow-induced mechanical stimulation of cell-embedding hydrogels to increase the amount of mineral deposited by hMSCs, compared to what is generally reported for the development of in vitro bone constructs. STATEMENT OF SIGNIFICANCE: : Culture of 3D Bioprinted Bone Constructs Requires an Increased Fluid Dynamic Stimulation, In this study, we evaluated for the first time how the hydrogel structure dampens the effect of flow-induced mechanical stimulation during the culture of 3D bioprinted bone tissue constructs. By combining computational and experimental techniques we demonstrated that those shear stress thresholds generally considered for culturing cells seeded on scaffold surface, are no longer applicable when cells are embedded in 3D bioprinted constructs. Significantly, more bone volume was formed in constructs exposed to shear stress values generally considered as detrimental than in constructs exposed shear stress values generally considered as beneficial after 3 weeks and 6 weeks of dynamic culture using a perfusion bioreactor.
Collapse
Affiliation(s)
- V L Mainardi
- Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale (EOC), Bellinzona 6500, Switzerland; Laboratory of Biological Structures Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan 20133, Italy; Laboratory for Bone Biomechanics, Institute for Biomechanics, ETH Zurich, Zurich 8093, Switzerland
| | - M Rubert
- Laboratory for Bone Biomechanics, Institute for Biomechanics, ETH Zurich, Zurich 8093, Switzerland
| | - C Sabato
- Laboratory of Biological Structures Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan 20133, Italy; Laboratory for Bone Biomechanics, Institute for Biomechanics, ETH Zurich, Zurich 8093, Switzerland
| | - A de Leeuw
- Laboratory for Bone Biomechanics, Institute for Biomechanics, ETH Zurich, Zurich 8093, Switzerland
| | - C Arrigoni
- Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale (EOC), Bellinzona 6500, Switzerland
| | - G Dubini
- Laboratory of Biological Structures Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan 20133, Italy
| | - C Candrian
- Servizio di Traumatologia e Ortopedia, Ente Ospedaliero Cantonale (EOC), Lugano 6900, Switzerland; Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano 6900, Switzerland
| | - R Müller
- Laboratory for Bone Biomechanics, Institute for Biomechanics, ETH Zurich, Zurich 8093, Switzerland.
| | - M Moretti
- Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale (EOC), Bellinzona 6500, Switzerland; Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano 6900, Switzerland; Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, Milan 20161, Italy.
| |
Collapse
|
7
|
Bednarczyk E. Chondrocytes In Vitro Systems Allowing Study of OA. Int J Mol Sci 2022; 23:ijms231810308. [PMID: 36142224 PMCID: PMC9499487 DOI: 10.3390/ijms231810308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/17/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoarthritis (OA) is an extremely complex disease, as it combines both biological-chemical and mechanical aspects, and it also involves the entire joint consisting of various types of tissues, including cartilage and bone. This paper describes the methods of conducting cell cultures aimed at searching for the mechanical causes of OA development, therapeutic solutions, and methods of preventing the disease. It presents the systems for the cultivation of cartilage cells depending on the level of their structural complexity, and taking into account the most common solutions aimed at recreating the most important factors contributing to the development of OA, that is mechanical loads. In-vitro systems used in tissue engineering to investigate the phenomena associated with OA were specified depending on the complexity and purposefulness of conducting cell cultures.
Collapse
Affiliation(s)
- Ewa Bednarczyk
- Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Narbutta 85, 02-524 Warsaw, Poland
| |
Collapse
|
8
|
Li M, Sun D, Zhang J, Wang Y, Wei Q, Wang Y. Application and development of 3D bioprinting in cartilage tissue engineering. Biomater Sci 2022; 10:5430-5458. [DOI: 10.1039/d2bm00709f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioprinting technology can build complex tissue structures and has the potential to fabricate engineered cartilage with bionic structures for achieving cartilage defect repair/regeneration.
Collapse
Affiliation(s)
- Mingyang Li
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Daocen Sun
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Juan Zhang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yanmei Wang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qinghua Wei
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yanen Wang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
9
|
Nazbar A, Samani S, Yazdian Kashani S, Amanzadeh A, Shoeibi S, Bonakdar S. Molecular imprinting as a simple way for the long-term maintenance of the stemness and proliferation potential of adipose-derived stem cells: an in vitro study. J Mater Chem B 2022; 10:6816-6830. [DOI: 10.1039/d2tb00279e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Culturing adipose-derived stem cells (ADSCs) on the biomimetic ADSC-imprinted substrate is a simple way for long-term maintenance of their stemness and proliferation potential.
Collapse
Affiliation(s)
- Abolfazl Nazbar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| | - Saeed Samani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Yazdian Kashani
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Amir Amanzadeh
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| | - Shahram Shoeibi
- Food and Drug Laboratory Research Center (FDLRC), Iran Food and Drug Administration (IFDA), MOH & ME, Tehran, Iran
| | - Shahin Bonakdar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
10
|
Chen T, Weng W, Liu Y, Aspera-Werz RH, Nüssler AK, Xu J. Update on Novel Non-Operative Treatment for Osteoarthritis: Current Status and Future Trends. Front Pharmacol 2021; 12:755230. [PMID: 34603064 PMCID: PMC8481638 DOI: 10.3389/fphar.2021.755230] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/06/2021] [Indexed: 12/27/2022] Open
Abstract
Osteoarthritis (OA) is a leading cause of pain and disability which results in a reduced quality of life. Due to the avascular nature of cartilage, damaged cartilage has a finite capacity for healing or regeneration. To date, conservative management, including physical measures and pharmacological therapy are still the principal choices offered for OA patients. Joint arthroplasties or total replacement surgeries are served as the ultimate therapeutic option to rehabilitate the joint function of patients who withstand severe OA. However, these approaches are mainly to relieve the symptoms of OA, instead of decelerating or reversing the progress of cartilage damage. Disease-modifying osteoarthritis drugs (DMOADs) aiming to modify key structures within the OA joints are in development. Tissue engineering is a promising strategy for repairing cartilage, in which cells, genes, and biomaterials are encompassed. Here, we review the current status of preclinical investigations and clinical translations of tissue engineering in the non-operative treatment of OA. Furthermore, this review provides our perspective on the challenges and future directions of tissue engineering in cartilage regeneration.
Collapse
Affiliation(s)
- Tao Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Weidong Weng
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Yang Liu
- Department of Clinical Sciences, Orthopedics, Faculty of Medicine, Lund University, Lund, Sweden
| | - Romina H. Aspera-Werz
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas K Nüssler
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Jianzhong Xu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Yazdian Kashani S, Keshavarz Moraveji M, Bonakdar S. Computational and experimental studies of a cell-imprinted-based integrated microfluidic device for biomedical applications. Sci Rep 2021; 11:12130. [PMID: 34108580 PMCID: PMC8190060 DOI: 10.1038/s41598-021-91616-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/27/2021] [Indexed: 02/05/2023] Open
Abstract
It has been proved that cell-imprinted substrates molded from template cells can be used for the re-culture of that cell while preserving its normal behavior or to differentiate the cultured stem cells into the template cell. In this study, a microfluidic device was presented to modify the previous irregular cell-imprinted substrate and increase imprinting efficiency by regular and objective cell culture. First, a cell-imprinted substrate from template cells was prepared using a microfluidic chip in a regular pattern. Another microfluidic chip with the same pattern was then aligned on the cell-imprinted substrate to create a chondrocyte-imprinted-based integrated microfluidic device. Computational fluid dynamics (CFD) simulations were used to obtain suitable conditions for injecting cells into the microfluidic chip before performing experimental evaluations. In this simulation, the effect of input flow rate, number per unit volume, and size of injected cells in two different chip sizes were examined on exerted shear stress and cell trajectories. This numerical simulation was first validated with experiments with cell lines. Finally, chondrocyte was used as template cell to evaluate the chondrogenic differentiation of adipose-derived mesenchymal stem cells (ADSCs) in the chondrocyte-imprinted-based integrated microfluidic device. ADSCs were positioned precisely on the chondrocyte patterns, and without using any chemical growth factor, their fibroblast-like morphology was modified to the spherical morphology of chondrocytes after 14 days of culture. Both immunostaining and gene expression analysis showed improvement in chondrogenic differentiation compared to traditional imprinting methods. This study demonstrated the effectiveness of cell-imprinted-based integrated microfluidic devices for biomedical applications.
Collapse
Affiliation(s)
- Sepideh Yazdian Kashani
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, 1591634311, Iran
| | - Mostafa Keshavarz Moraveji
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, 1591634311, Iran.
| | - Shahin Bonakdar
- National Cell Bank Department, Pasteur Institute of Iran, P.O. Box 13169-43551, Tehran, Iran.
| |
Collapse
|
12
|
Li X, Lv HF, Zhao R, Ying MF, Samuriwo A, Zhao YZ. Recent developments in bio-scaffold materials as delivery strategies for therapeutics for endometrium regeneration. Mater Today Bio 2021; 11:100101. [PMID: 34036261 PMCID: PMC8138682 DOI: 10.1016/j.mtbio.2021.100101] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Intrauterine adhesions (IUAs) refer to the repair disorder after endometrial injury and may lead to uterine infertility, recurrent miscarriage, abnormal menstrual bleeding, and other obstetric complications. It is a pressing public health issue among women of childbearing age. Presently, there are limited clinical treatments for IUA, and there is no sufficient evidence that these treatment modalities can effectively promote regeneration after severe endometrial injury or improve pregnancy outcome. The inhibitory pathological micro-environment is the main factor hindering the repair of endometrial damaged tissues. To address this, tissue engineering and regenerative medicine have been achieving promising developments. Particularly, biomaterials have been used to load stem cells or therapeutic factors or construct an in situ delivery system as a treatment strategy for endometrial injury repair. This article comprehensively discusses the characteristics of various bio-scaffold materials and their application as stem cell or therapeutic factor delivery systems constructed for uterine tissue regeneration.
Collapse
Key Words
- Asherman's syndrome/endometrium regeneration
- BMNCs, autologous bone marrow mononuclear cells
- BMSCs, bone marrow mesenchymal stem cells
- Biological scaffold material
- D&C, Dilatation and curettage
- ECM, extracellular matrix
- En-PSC, endometrial perivascular cells
- IUA, Intrauterine adhesions
- KGF, Keratinocyte growth factor
- MSC-Sec, Mesenchymal stem cell-secretome
- SDF-1α, stromal cell-derived factor-1α
- Scaffold-based therapeutics delivery systems
- Stem cell
- Therapeutic factor
- UCMSCs, umbilical cord derived mesenchymal stem cells
- VEGF, vascular endothelial growth factor
- bFGF, basic fibroblast growth factors
- dEMSCs, endometrial stromal cells
- hESCs, human embryonic stem cells
Collapse
Affiliation(s)
- X. Li
- Department of Pharmacy, Xiasha Campus, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University (Hangzhou Xiasha Hospital), Hangzhou 310018, China
| | - H.-F. Lv
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310053, China
- Corresponding author.
| | - R. Zhao
- Department of Pharmacy, Xiasha Campus, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University (Hangzhou Xiasha Hospital), Hangzhou 310018, China
| | - M.-f. Ying
- Department of Pharmacy, Xiasha Campus, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University (Hangzhou Xiasha Hospital), Hangzhou 310018, China
| | - A.T. Samuriwo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Y.-Z. Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Corresponding author.
| |
Collapse
|
13
|
Monaco G, El Haj AJ, Alini M, Stoddart MJ. Ex Vivo Systems to Study Chondrogenic Differentiation and Cartilage Integration. J Funct Morphol Kinesiol 2021; 6:E6. [PMID: 33466400 PMCID: PMC7838775 DOI: 10.3390/jfmk6010006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 12/21/2022] Open
Abstract
Articular cartilage injury and repair is an issue of growing importance. Although common, defects of articular cartilage present a unique clinical challenge due to its poor self-healing capacity, which is largely due to its avascular nature. There is a critical need to better study and understand cellular healing mechanisms to achieve more effective therapies for cartilage regeneration. This article aims to describe the key features of cartilage which is being modelled using tissue engineered cartilage constructs and ex vivo systems. These models have been used to investigate chondrogenic differentiation and to study the mechanisms of cartilage integration into the surrounding tissue. The review highlights the key regeneration principles of articular cartilage repair in healthy and diseased joints. Using co-culture models and novel bioreactor designs, the basis of regeneration is aligned with recent efforts for optimal therapeutic interventions.
Collapse
Affiliation(s)
- Graziana Monaco
- AO Research Institute Davos, Clavadelerstrasse 8, CH-7270 Davos Platz, Switzerland; (G.M.); (M.A.)
- School of Pharmacy & Bioengineering Research, University of Keele, Keele ST5 5BG, UK;
| | - Alicia J. El Haj
- School of Pharmacy & Bioengineering Research, University of Keele, Keele ST5 5BG, UK;
- Healthcare Technology Institute, Translational Medicine, School of Chemical Engineering, University of Birmingham, Birmingham B15 2TH, UK
| | - Mauro Alini
- AO Research Institute Davos, Clavadelerstrasse 8, CH-7270 Davos Platz, Switzerland; (G.M.); (M.A.)
| | - Martin J. Stoddart
- AO Research Institute Davos, Clavadelerstrasse 8, CH-7270 Davos Platz, Switzerland; (G.M.); (M.A.)
- School of Pharmacy & Bioengineering Research, University of Keele, Keele ST5 5BG, UK;
| |
Collapse
|
14
|
Yazdian Kashani S, Keshavarz Moraveji M, Taghipoor M, Kowsari-Esfahan R, Hosseini AA, Montazeri L, Dehghan MM, Gholami H, Farzad-Mohajeri S, Mehrjoo M, Majidi M, Renaud P, Bonakdar S. An integrated microfluidic device for stem cell differentiation based on cell-imprinted substrate designed for cartilage regeneration in a rabbit model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 121:111794. [PMID: 33579444 DOI: 10.1016/j.msec.2020.111794] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/30/2020] [Accepted: 12/02/2020] [Indexed: 01/12/2023]
Abstract
Separating cells from the body and cultivating them in vitro will alter the function of cells. Therefore, for optimal cell culture in the laboratory, conditions similar to those of their natural growth should be provided. In previous studies, it has been shown that the use of cellular shape at the culture surface can regulate cellular function. In this work, the efficiency of the imprinting method increased by using microfluidic chip design and fabrication. In this method, first, a cell-imprinted substrate of chondrocytes was made using a microfluidic chip. Afterwards, stem cells were cultured on a cell-imprinted substrate using a second microfluidic chip aligned with the substrate. Therefore, stem cells were precisely placed on the chondrocyte patterns on the substrate and their fibroblast-like morphology was changed to chondrocyte's spherical morphology after 14-days culture in the chip without using any chemical growth factor. After chondrogenic differentiation and in vitro assessments (real-time PCR and immunocytotoxicity), differentiated stem cells were transferred on a collagen-hyaluronic acid scaffold and transplanted in articular cartilage defect of the rabbit. After 6 months, the post-transplantation analysis showed that the articular cartilage defect had been successfully regenerated in differentiated stem cell groups in comparison with the controls. In conclusion, this study showed the potency of the imprinting method for inducing chondrogenicity in stem cells, which can be used in clinical trials due to the safety of the procedure.
Collapse
Affiliation(s)
- Sepideh Yazdian Kashani
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 1591634311 Tehran, Iran
| | - Mostafa Keshavarz Moraveji
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 1591634311 Tehran, Iran.
| | - Mojtaba Taghipoor
- School of Mechanical Engineering, Sharif University of Technology, 11155-9567 Tehran, Iran
| | - Reza Kowsari-Esfahan
- National Cell Bank Department, Pasteur Institute of Iran, P.O. Box 13169-43551, Tehran, Iran
| | | | - Leila Montazeri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Mehdi Dehghan
- Institute of Biomedical Research, University of Tehran, Tehran, Iran; Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hossein Gholami
- Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Saeed Farzad-Mohajeri
- Institute of Biomedical Research, University of Tehran, Tehran, Iran; Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Morteza Mehrjoo
- National Cell Bank Department, Pasteur Institute of Iran, P.O. Box 13169-43551, Tehran, Iran
| | - Mohammad Majidi
- National Cell Bank Department, Pasteur Institute of Iran, P.O. Box 13169-43551, Tehran, Iran
| | - Philippe Renaud
- Laboratory of Microsystems (LMIS4), École Polytechnique FÉdÉrale de Lausanne, Station 17, CH-1015 Lausanne, Switzerland
| | - Shahin Bonakdar
- National Cell Bank Department, Pasteur Institute of Iran, P.O. Box 13169-43551, Tehran, Iran.
| |
Collapse
|
15
|
Chen J, Shen Y, Shen Z, Cheng L, Zhou S. Tissue engineering of the larynx: A contemporary review. J Clin Lab Anal 2020; 35:e23646. [PMID: 33320365 PMCID: PMC7891509 DOI: 10.1002/jcla.23646] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022] Open
Abstract
Objective Tissue engineering has been a topic of extensive research in recent years and has been applied to the regeneration and restoration of many organs including the larynx. Currently, research investigating tissue engineering of the larynx is either ongoing or in the preclinical trial stage. Methods A literature search was performed on the Advanced search field of PubMed using the keywords: “(laryncheal tissue engineering) AND (cartilage regeneration OR scaffolds OR stem cells OR biomolecules).” After applying the selection criteria, 65 articles were included in the study. Results The present review focuses on the rapidly expanding field of tissue‐engineered larynx, which aims to provide stem cell–based scaffolds combined with biological active factors such as growth factors for larynx reconstruction and regeneration. The trend in recent studies is to use new techniques for scaffold construction, such as 3D printing, are developed. All of these strategies have been instrumental in guiding optimization of the tissue‐engineered larynx, leading to a level of clinical induction beyond the in vivo animal experimental phase. Conclusions This review summarizes the current progress and outlines the necessary basic components of regenerative laryngeal medicine in preclinical fields. Finally, it considers the design of scaffolds, support of growth factors, and cell therapies toward potential clinical application.
Collapse
Affiliation(s)
- Jingjing Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital, Ningbo University, Ningbo, 315040, China.,Department of Otorhinolaryngology- Head and Neck Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yi Shen
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital, Ningbo University, Ningbo, 315040, China
| | - Zhisen Shen
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital, Ningbo University, Ningbo, 315040, China
| | - Lixin Cheng
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital, Ningbo University, Ningbo, 315040, China
| | - Shuihong Zhou
- Department of Otorhinolaryngology- Head and Neck Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| |
Collapse
|
16
|
|
17
|
Richard C, Neild A, Cadarso VJ. The emerging role of microfluidics in multi-material 3D bioprinting. LAB ON A CHIP 2020; 20:2044-2056. [PMID: 32459222 DOI: 10.1039/c9lc01184f] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
To assist the transition of 3D bioprinting technology from simple lab-based tissue fabrication, to fully functional and implantable organs, the technology must not only provide shape control, but also functional control. This can be accomplished by replicating the cellular composition of the native tissue at the microscale, such that cell types interact to provide the desired function. There is therefore a need for precise, controllable, multi-material printing that could allow for high, possibly even single cell, resolution. This paper aims to draw attention to technological advancements made in 3D bioprinting that target the lack of multi-material, and/or multi cell-type, printing capabilities of most current devices. Unlike other reviews in the field, which largely focus on variations in single-material 3D bioprinting involving the standard methods of extrusion-based, droplet-based, laser-based, or stereolithographic methods; this review concentrates on sophisticated multi-material 3D bioprinting using multi-cartridge printheads, co-axial nozzles and microfluidic-enhanced printing nozzles.
Collapse
Affiliation(s)
- Cynthia Richard
- Laboratory for Micro Systems, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
| | | | | |
Collapse
|
18
|
Zhong YC, Wang SC, Han YH, Wen Y. Recent Advance in Source, Property, Differentiation, and Applications of Infrapatellar Fat Pad Adipose-Derived Stem Cells. Stem Cells Int 2020; 2020:2560174. [PMID: 32215015 PMCID: PMC7081037 DOI: 10.1155/2020/2560174] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/12/2020] [Accepted: 02/20/2020] [Indexed: 12/18/2022] Open
Abstract
Infrapatellar fat pad (IPFP) can be easily obtained during knee surgery, which avoids the damage to patients for obtaining IPFP. Infrapatellar fat pad adipose-derived stem cells (IPFP-ASCs) are also called infrapatellar fat pad mesenchymal stem cells (IPFP-MSCs) because the morphology of IPFP-ASCs is similar to that of bone marrow mesenchymal stem cells (BM-MSCs). IPFP-ASCs are attracting more and more attention due to their characteristics suitable to regenerative medicine such as strong proliferation and differentiation, anti-inflammation, antiaging, secreting cytokines, multipotential capacity, and 3D culture. IPFP-ASCs can repair articular cartilage and relieve the pain caused by osteoarthritis, so most of IPFP-related review articles focus on osteoarthritis. This article reviews the anatomy and function of IPFP, as well as the discovery, amplification, multipotential capacity, and application of IPFP-ASCs in order to explain why IPFP-ASC is a superior stem cell source in regenerative medicine.
Collapse
Affiliation(s)
- Yu-chen Zhong
- Department of Histology and Embryology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China
- Class 4, Phase 102, China Medical University, Shenyang 110122, China
| | - Shi-chun Wang
- Department of Histology and Embryology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China
- Class 4, Phase 102, China Medical University, Shenyang 110122, China
| | - Yin-he Han
- Department of Histology and Embryology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China
| | - Yu Wen
- Department of Histology and Embryology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China
| |
Collapse
|
19
|
Kou L, Jiang X, Xiao S, Zhao YZ, Yao Q, Chen R. Therapeutic options and drug delivery strategies for the prevention of intrauterine adhesions. J Control Release 2019; 318:25-37. [PMID: 31830539 DOI: 10.1016/j.jconrel.2019.12.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/15/2022]
Abstract
Intrauterine adhesions (IUAs) are bands of fibrous tissue that form in the endometrial cavity and associated with the increased risk of abnormal menstruation, recurrent pregnancy loss, secondary infertility, and pregnancy complications. Physical barriers, including intrauterine device and hydrogel, were clinical available to prevent the post-operational IUAs. But physically separation of the injured endometrium relies on the own limited healing power and often ends with recurrence. In recent years, the mechanisms driving IUAs treatment has validated the application of hormones, and further stem cell therapy has also led to the development of novel therapeutic agents with promising efficacy in pre-clinical and initial clinical studies. Still, it is challenging to delivery the therpaeutic factors to the injured uterus. Herein, in this review, we discuss the traditional intervention methods for the prevention of IUAs, as well as novel therapeutics and delivery strategies that will most likely change the treatment paradigms for better clinical outcomes. The combination strategy that using physical barriers as the delivery carriers for therapeutics might provide new alternatives for the prevention of IUAs.
Collapse
Affiliation(s)
- Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xue Jiang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Shuyi Xiao
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Ruijie Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
20
|
Gulyas M, Csiszer M, Mehes E, Czirok A. Software tools for cell culture-related 3D printed structures. PLoS One 2018; 13:e0203203. [PMID: 30180178 PMCID: PMC6122815 DOI: 10.1371/journal.pone.0203203] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/16/2018] [Indexed: 02/05/2023] Open
Abstract
Three-dimensional (3D) printing technology allowed fast and cheap prototype fabrication in numerous segments of industry and it also became an increasingly versatile experimental platform in life sciences. Yet, general purpose software tools to control printer hardware are often suboptimal for bioprinting applications. Here we report a package of open source software tools that we developed specifically to meet bioprinting requirements: Machine movements can be (i) precisely specified using high level programming languages, and (ii) easily distributed across a batch of tissue culture dishes. To demonstrate the utility of the reported technique, we present custom fabricated, biocompatible 3D-printed plastic structures that can control cell spreading area or medium volume, and exhibit excellent optical properties even at 50 ul sample volumes. We expect our software tools to be helpful not only to manufacture customized in vitro experimental chambers, but for applications involving printing cells and extracellular matrices as well.
Collapse
Affiliation(s)
- Marton Gulyas
- Department of Biological Physics, Eotvos University, Budapest, Hungary
| | - Miklos Csiszer
- Department of Biological Physics, Eotvos University, Budapest, Hungary
| | - Elod Mehes
- Department of Biological Physics, Eotvos University, Budapest, Hungary
| | - Andras Czirok
- Department of Biological Physics, Eotvos University, Budapest, Hungary
- Department of Anatomy & Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States of America
- * E-mail:
| |
Collapse
|