1
|
Semple JW, Schifferli A, Cooper N, Saad H, Mytych DT, Chea LS, Newland A. Immune thrombocytopenia: Pathophysiology and impacts of Romiplostim treatment. Blood Rev 2024; 67:101222. [PMID: 38942688 DOI: 10.1016/j.blre.2024.101222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/04/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune bleeding disease caused by immune-mediated platelet destruction and decreased platelet production. ITP is characterized by an isolated thrombocytopenia (<100 × 109/L) and increased risk of bleeding. The disease has a complex pathophysiology wherein immune tolerance breakdown leads to platelet and megakaryocyte destruction. Therapeutics such as corticosteroids, intravenous immunoglobulins (IVIg), rituximab, and thrombopoietin receptor agonists (TPO-RAs) aim to increase platelet counts to prevent hemorrhage and increase quality of life. TPO-RAs act via stimulation of TPO receptors on megakaryocytes to directly stimulate platelet production. Romiplostim is a TPO-RA that has become a mainstay in the treatment of ITP. Treatment significantly increases megakaryocyte maturation and growth leading to improved platelet production and it has recently been shown to have additional immunomodulatory effects in treated patients. This review will highlight the complex pathophysiology of ITP and discuss the usage of Romiplostim in ITP and its ability to potentially immunomodulate autoimmunity.
Collapse
Affiliation(s)
- John W Semple
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden, Clinical Immunology and Transfusion Medicine, Office of Medical Services, Region Skåne, Lund, Sweden; Departments of Pharmacology, Medicine and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, USA.
| | - Alexandra Schifferli
- Department of Hematology/Oncology, University Children's Hospital Basel, Basel, Switzerland
| | | | | | | | | | - Adrian Newland
- Barts and The London School of Medicine and Dentistry, London, UK.
| |
Collapse
|
2
|
Ye Q, Ying Q, Chen Y, Liao C, Li A. HLA-DRB5 promotes immune thrombocytopenia via activating CD8 + T cells. Open Med (Wars) 2024; 19:20240955. [PMID: 38799252 PMCID: PMC11117455 DOI: 10.1515/med-2024-0955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/22/2024] [Accepted: 03/22/2024] [Indexed: 05/29/2024] Open
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease characterized by a low platelet (PLT) count and a high risk of bleeding, the clinical treatment for which still needs to be upgraded. Based on the critical role of human leukocyte antigen class II heterodimer β5 (HLA-DRB5) in immune system, we herein investigated its effect on ITP. ITP murine models were established by the injection of guinea pig anti-mouse platelet serum (GP-APS), and the PLT of mouse peripheral blood was counted during the modeling. Quantitative real-time reverse transcription polymerase chain reaction, western blot and immunofluorescence assay was performed to quantify expressions of HLA-DRB5, major histocompatibility complex II (MHC-II) and co-stimulatory molecules (CD80, CD86). Flow cytometry was conducted to analyze the percentage of CD8+ T cells. As a result, the PLT count was decreased in mouse peripheral blood. Expressions of HLA-DRB5, MHC-II and co-stimulatory molecules, as well as the percentage of CD8+ T cells were elevated in peripheral blood of ITP mice. HLA-DRB5 knockdown mitigated ITP by increasing peripheral PLT level, downregulating expressions of MHC-II and co-stimulatory molecules and inactivating CD8+ T cells. Collectively, the downregulation of HLA-DRB5 restores the peripheral PLT count in ITP mice by reducing MHC-II-mediated antigen presentation of macrophages to inhibit the activation of CD8+ T cells.
Collapse
Affiliation(s)
- Qidong Ye
- Department of Pediatrics, The First Affiliated Hospital of Ningbo University, Haishu District, Ningbo, Zhejiang, 315010, China
| | - Qianqian Ying
- Department of Pediatrics, The First Affiliated Hospital of Ningbo University, Haishu District, Ningbo, Zhejiang, 315010, China
| | - Ying Chen
- Department of Pediatrics, The First Affiliated Hospital of Ningbo University, Haishu District, Ningbo, Zhejiang, 315010, China
| | - Cong Liao
- Department of Pediatrics, The First Affiliated Hospital of Ningbo University, Haishu District, Ningbo, Zhejiang, 315010, China
| | - Anrong Li
- Department of Pediatrics, The First Affiliated Hospital of Ningbo University, Haishu District, Ningbo, Zhejiang, 315010, China
| |
Collapse
|
3
|
Huong NT, Son NT. Icaritin: A phytomolecule with enormous pharmacological values. PHYTOCHEMISTRY 2023:113772. [PMID: 37356700 DOI: 10.1016/j.phytochem.2023.113772] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 05/24/2023] [Accepted: 06/10/2023] [Indexed: 06/27/2023]
Abstract
Pharmacological studies on flavonoids have always drawn much interest for many years. Icaritin (ICT), a representative flavone containing an 8-prenyl group, is a principal compound detected in medicinal plants of the genus Epimedum, the family Berberidaceae. Experimental results in the phytochemistry and pharmacology of this molecule are abundant now, but a deep overview has not been carried out. The goal of this review is to provide an insight into the natural observation, biosynthesis, biotransformation, synthesis, pharmacology, and pharmacokinetics of prenyl flavone ICT. The relevant data on ICT was collected from bibliographic sources, like Google Scholar, Web of Science, Sci-Finder, and various published journals. "Icaritin" alone or in combination is the main keyword to seek for references, and references have been updated till now. ICT is among the characteristic phytomolecules of Epimedum plants. Bacteria monitored its biosynthesis and biotransformation, while this agent was rapidly synthesized from phloroglucinol by microwave-assistance Claisen rearrangement. ICT is a potential agent in numerous in vitro and in vivo pharmacological records, which demonstrated its role in cancer treatments via apoptotic-related mechanisms. It also brings in various health benefits since it reduced harmful effects on the liver, lung, heart, bone, blood, and skin, and improved immune responses. Pharmacokinetic outcomes indicated that its metabolic pathway involved hydration, hydroxylation, dehydrogenation, glycosylation, and glucuronidation. Molecule mechanisms of action at a cellular level are predominant, but clinical studies are expected to get more. Structure-activity relationship records seem insufficient, and the studies on nano-combined approaches to improve its soluble property in living bodied medium are needed.
Collapse
Affiliation(s)
- Nguyen Thi Huong
- Faculty of Chemical Technology, Hanoi University of Industry, Hanoi, Viet Nam
| | - Ninh The Son
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, Viet Nam.
| |
Collapse
|
4
|
Fan J, Miao Y, Zhao Y, Guan Y, Zhang L, Pan L, Feng Q, Yao J, Sun C. Icaritin inhibits oxidative stress in murine astrocytes by binding to Orai1 to block store-operated calcium channel. Chem Biol Drug Des 2023; 101:873-882. [PMID: 36527176 DOI: 10.1111/cbdd.14193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/18/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Previous study has shown that icaritin (ICT) has meaningful protective effect on cerebral ischemic stroke, and this study aimed to investigate its mechanism from the aspect of protecting astrocytes from oxidative stress. Murine primary astrocytes were pretreated by ICT and exposed to H2 O2 to induce oxidative stress. The results indicated that ICT inhibited H2 O2 -induced astrocytes apoptosis, decreased Bax and cleaved caspase-3, and increased Bcl-2. In addition, ICT inhibited H2 O2 -induced oxidative stress, increased mitochondrial membrane potential (ΔΨm ), and maintained mitochondrial morphology. ICT decreased the synthesis of malondialdehyde and increased the activity of glutathione peroxidase, catalase, and superoxide dismutase. Moreover, ICT suppressed the transient and resting intracellular Ca2+ overload. Further investigation revealed that ICT could target the combination with Orai1 to block store-operated calcium channel induced by H2 O2 . However, ICT did not enhance the protective effect of RO2959, a selective blocker of Orai1. These results indicate that ICT can play a neuroprotective role against oxidative stress injury by binding to Orai1 to block SOCC.
Collapse
Affiliation(s)
- Jianwei Fan
- Lunan Pharmaceutical Group Co. Ltd., Linyi, China
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Yu Miao
- Lunan Pharmaceutical Group Co. Ltd., Linyi, China
| | - Yun Zhao
- Lunan Pharmaceutical Group Co. Ltd., Linyi, China
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Yongxia Guan
- Lunan Pharmaceutical Group Co. Ltd., Linyi, China
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Li Zhang
- Lunan Pharmaceutical Group Co. Ltd., Linyi, China
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Lihong Pan
- Lunan Pharmaceutical Group Co. Ltd., Linyi, China
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Qun Feng
- Lunan Pharmaceutical Group Co. Ltd., Linyi, China
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Jingchun Yao
- Lunan Pharmaceutical Group Co. Ltd., Linyi, China
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Chenghong Sun
- Lunan Pharmaceutical Group Co. Ltd., Linyi, China
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| |
Collapse
|
5
|
Wang Y, Huang T, Li H, Fu J, Ao H, Lu L, Han M, Guo Y, Yue F, Wang X. Hydrous icaritin nanorods with excellent stability improves the in vitro and in vivo activity against breast cancer. Drug Deliv 2020; 27:228-237. [PMID: 32003229 PMCID: PMC7034031 DOI: 10.1080/10717544.2020.1716877] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Due to their various biological activities that are beneficial to human health and antitumor effect, flavonoid compounds have attracted much attention in recent years. Hydrous icaritin (HICT) was such a flavonoid that can inhibit the growth of breast cancer and cancer stem cells. In order to overcome the insolubility problem, HICT was fabricated into nanorods (NRs) through anti-solvent precipitation in this paper using D-α tocopherol acid polyethylene glycol succinate and sodium oleate as a co-stabilizer meanwhile using the mixture of ethanol and acetone (1:2, v/v) as the organic solvent. The obtained HICT NRs showed an average particle size 222.0 nm with a small polydispersity index value of 0.124 and a high zeta potential of – 49.5 mV. HICT NRs could maintain similar particle size in various physiological medium and could be directly lyophilized without the addition of any cytoprotectants and then reconstituted into a colloidal system of similar size. The resultant HICT NRs had a high drug loading content of 55.6% and released HICT in a steady and constant pattern. MTT assay indicated NRs enhanced HICT’s antitumor activity to ninefold against MCF-7 breast carcinoma cells. In vivo studies demonstrated oral administration free HICT had almost no tumor inhibitory effect while HICT NRs showed a tumor inhibition rate of 47.8%. When intravenously injected, HICT NRs displayed similar therapeutic efficacy to paclitaxel injections (70.4% vs. 74.5%, TIR). This may be partly due to the high accumulation of the injected HICT NRs in tumor ranking only second to that in the liver but much higher than in other organs. These results demonstrated that HICT NRs could be a promising antitumor agent for the treatment of breast cancer in clinic.
Collapse
Affiliation(s)
- Yian Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China
| | - Tiantian Huang
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, PR China
| | - Haowen Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China
| | - Jingxin Fu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China
| | - Hui Ao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China
| | - Likang Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China
| | - Feng Yue
- Guangdong Jiabo Pharmaceutical Co. Ltd., Guangdong, PR China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China
| |
Collapse
|
6
|
Qin SK, Li Q, Ming Xu J, Liang J, Cheng Y, Fan Y, Jiang J, Ye H, Tao H, Li L, Zheng L, Wei Z, Li S, Meng K, Ye B, Sun Y. Icaritin-induced immunomodulatory efficacy in advanced hepatitis B virus-related hepatocellular carcinoma: Immunodynamic biomarkers and overall survival. Cancer Sci 2020; 111:4218-4231. [PMID: 32889778 PMCID: PMC7648021 DOI: 10.1111/cas.14641] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/27/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
Advanced hepatitis B virus (HBV)-related hepatocellular carcinoma HCC with poor prognosis is often associated with chronic inflammation, immune tolerance, and marked heterogeneity. The interleukin-6 (IL-6)/JAK/STAT3 signal pathways play multiple regulatory roles in modulating inflammation and immunity in cancers. Polarization of myeloid-derived suppressor cells (MDSCs) is involved in HBV-related immunosuppression and CD8+ T-cell activation through ERK/IL-6/STAT3. Icaritin is a small molecule that has displayed anticancer activities through IL-6/JAK/STAT3 pathways in tumor cells and immune cells including CD8+ T cells, MDSCs, neutrophils, and macrophages. This study aimed to confirm icaritin immunomodulation in advanced HBV-related HCC patients with poor prognosis. Immunomodulation of MDSCs was evaluated in BALB/c mice in vivo. Immunomodulation of serum cytokines and a panel of immune checkpoint proteins were assessed in HBV-related, histologically confirmed HCC patients. Poor prognostic characteristics included HBV infection, bulky tumors, Child-Pugh B classification, and metastasis. Clinical end-points included safety, tumor response, and overall survival (OS). Icaritin treatment-induced dynamics of serum cytokines IL-6, IL-8, IL-10, and tumor necrosis factor-α, and soluble immune checkpoint proteins TIM3, LAG3, CD28, CD80, and CTLA-4 were assessed. No grade III/IV treatment-related adverse events were observed. Time-to-progression was significantly associated with the prognostic factors. Improved survival was observed in the advanced HCC patients with dynamic changes of cytokines, immune checkpoint proteins, and immune cells. Median OS (329-565 days) was significantly correlated with baseline hepatitis B surface antigen positivity, cytokines, tumor neoantigens, and Stenotrophomonas maltophilia infection. Composite biomarker scores of high-level α-fetoprotein and T helper type I (Th1)/Th2 cytokines associated with favorable survival warrant further clinical development of icaritin as an alternative immune-modulatory regimen to treat advanced HCC patients with poor prognosis.
Collapse
Affiliation(s)
- Shu-Kui Qin
- Clinical Oncology Department, Nanjing Jinling Hospital, Nanjing, China
| | - Qing Li
- National Cancer Center/National Clinical Research Center, Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jian Ming Xu
- The 5th Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Jun Liang
- Clinical Oncology Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ying Cheng
- Clinical Oncology Department, Jilin Cancer Hospital, Changchun, China
| | - Ying Fan
- National Cancer Center/National Clinical Research Center, Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jun Jiang
- National Cancer Center/National Clinical Research Center, Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hao Ye
- Research & Development Department, SinoTech Genomics, Shanghai, China
| | - Huimin Tao
- School of Life Science, Sun Yat-Sen University, Guangzhou, China
| | - Lian Li
- School of Life Science, Sun Yat-Sen University, Guangzhou, China
| | - Limin Zheng
- School of Life Science, Sun Yat-Sen University, Guangzhou, China
| | - Zhaohui Wei
- Biostatistical Department, Tigermed Consulting Co., Ltd., Shanghai, China
| | - Shu Li
- Research & Clinical Development, Shenogen Pharma Group, Beijing, China
| | - Kun Meng
- Research & Clinical Development, Shenogen Pharma Group, Beijing, China
| | - Bin Ye
- Research & Clinical Development, Shenogen Pharma Group, Beijing, China
| | - Yan Sun
- National Cancer Center/National Clinical Research Center, Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Bailly C. Molecular and cellular basis of the anticancer activity of the prenylated flavonoid icaritin in hepatocellular carcinoma. Chem Biol Interact 2020; 325:109124. [PMID: 32437694 DOI: 10.1016/j.cbi.2020.109124] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
Abstract
The prenylated flavonoid icaritin (ICT) is currently undergoing phase 3 clinical trial for the treatment of advanced hepatocellular carcinoma (HCC), based on a solid array of preclinical and clinical data. The antitumor activity originates from the capacity of the drug to modulate several signaling effectors in cancer cells, mainly the estrogen receptor splice variant ERα36, the transcription factors STAT3 and NFκB, and the chemokine receptor CXCR4. Recent studies have implicated additional components, including different microRNAs, the generation of reactive oxygen species and the targeting of sphingosine kinase-1. ICT also engages the RAGE-HMGB1 signaling route and modulates the apoptosis/autophagy crosstalk to promote its anticancer activity. In addition, ICT exerts profound changes on the tumor microenvironment to favor an immune-response. Collectively, these multiple biochemical and cellular characteristics confer to ICT a robust activity profile which can be exploited to treat HCC, as well as other cancers, including glioblastoma and onco-hematological diseases such as chronic myeloid leukemia. This review provides an update of the pharmacological properties of ICT and its metabolic characteristics. It also addresses the design of derivatives, including both natural products and synthetic molecules, such as SNG1153 also in clinical trial. The prenylated flavonoid ICT deserves attention as a multifunctional natural product potentially useful to improve the treatment of advanced hepatocellular carcinoma.
Collapse
|