1
|
Burin T, Grohar MC, Jakopic J, Veberic R, Hudina M. Fermented olives ( Olea europaea L.): A detailed insight into morphological changes and phenolic profile from harvest to jar. Food Chem X 2025; 26:102309. [PMID: 40092413 PMCID: PMC11910130 DOI: 10.1016/j.fochx.2025.102309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/11/2025] [Accepted: 02/20/2025] [Indexed: 03/19/2025] Open
Abstract
The aim of this research was to determine the changes in fruit quality parameters, antioxidant capacity and phenolic content during natural fermentation of five olive cultivars. During processing, the fruit weight and firmness decreased and dry matter increased in all cultivars. Nine phenolic compounds were studied in detail during natural fermentation for the first time. 'Istrska belica' have the highest contents of phenolics, which require the longest processing period. Oleuropein content decreased during processing in all cultivars, resulting in fruit browning, a decrease in antioxidant capacity and an increase in other derived phenolic compounds. We found that the contents of bitter phenolic compounds stabilized a few months before the end of processing and the bitter taste in the final products did not differ between cultivars, although their content varied between cultivars. Understanding phenolic variations during the olive processing could reduce processing time and increase phenolic content in the final product.
Collapse
Affiliation(s)
- Tea Burin
- University of Ljubljana, Biotechnical Faculty, Department of Agronomy, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Mariana Cecilia Grohar
- University of Ljubljana, Biotechnical Faculty, Department of Agronomy, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Jerneja Jakopic
- University of Ljubljana, Biotechnical Faculty, Department of Agronomy, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Robert Veberic
- University of Ljubljana, Biotechnical Faculty, Department of Agronomy, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Metka Hudina
- University of Ljubljana, Biotechnical Faculty, Department of Agronomy, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Mermigka G, Vavouraki AI, Nikolaou C, Cheiladaki I, Vourexakis M, Goumas D, Ververidis F, Trantas E. An Engineered Plant Metabolic Pathway Results in High Yields of Hydroxytyrosol Due to a Modified Whole-Cell Biocatalysis in Bioreactor. Metabolites 2023; 13:1126. [PMID: 37999222 PMCID: PMC10672836 DOI: 10.3390/metabo13111126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
Hydroxytyrosol (HT) is a phenolic substance primarily present in olive leaves and olive oil. Numerous studies have shown its advantages for human health, making HT a potentially active natural component with significant added value. Determining strategies for its low-cost manufacturing by metabolic engineering in microbial factories is hence still of interest. The objective of our study was to assess and improve HT production in a one-liter bioreactor utilizing genetically modified Escherichia coli strains that had previously undergone fed-batch testing. Firstly, we compared the induction temperatures in small-scale whole-cell biocatalysis studies and then examined the optimal temperature in a large volume bioreactor. By lowering the induction temperature, we were able to double the yield of HT produced thereby, reaching 82% when utilizing tyrosine or L-DOPA as substrates. Hence, without the need to further modify our original strains, we were able to increase the HT yield.
Collapse
Affiliation(s)
- Glykeria Mermigka
- Laboratory of Biological and Biotechnological Applications (LBBA), Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University (HMU), GR71410 Heraklion, Greece; (G.M.); (A.I.V.); (C.N.); (I.C.); (M.V.); (D.G.)
- Agri-Food and Life Sciences Institute (Agro-Health), HMU Research and Innovation Center, GR71410 Heraklion, Greece
| | - Aikaterini I. Vavouraki
- Laboratory of Biological and Biotechnological Applications (LBBA), Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University (HMU), GR71410 Heraklion, Greece; (G.M.); (A.I.V.); (C.N.); (I.C.); (M.V.); (D.G.)
| | - Chrysoula Nikolaou
- Laboratory of Biological and Biotechnological Applications (LBBA), Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University (HMU), GR71410 Heraklion, Greece; (G.M.); (A.I.V.); (C.N.); (I.C.); (M.V.); (D.G.)
| | - Ioanna Cheiladaki
- Laboratory of Biological and Biotechnological Applications (LBBA), Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University (HMU), GR71410 Heraklion, Greece; (G.M.); (A.I.V.); (C.N.); (I.C.); (M.V.); (D.G.)
| | - Michail Vourexakis
- Laboratory of Biological and Biotechnological Applications (LBBA), Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University (HMU), GR71410 Heraklion, Greece; (G.M.); (A.I.V.); (C.N.); (I.C.); (M.V.); (D.G.)
| | - Dimitrios Goumas
- Laboratory of Biological and Biotechnological Applications (LBBA), Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University (HMU), GR71410 Heraklion, Greece; (G.M.); (A.I.V.); (C.N.); (I.C.); (M.V.); (D.G.)
- Agri-Food and Life Sciences Institute (Agro-Health), HMU Research and Innovation Center, GR71410 Heraklion, Greece
| | - Filippos Ververidis
- Laboratory of Biological and Biotechnological Applications (LBBA), Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University (HMU), GR71410 Heraklion, Greece; (G.M.); (A.I.V.); (C.N.); (I.C.); (M.V.); (D.G.)
- Agri-Food and Life Sciences Institute (Agro-Health), HMU Research and Innovation Center, GR71410 Heraklion, Greece
| | - Emmanouil Trantas
- Laboratory of Biological and Biotechnological Applications (LBBA), Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University (HMU), GR71410 Heraklion, Greece; (G.M.); (A.I.V.); (C.N.); (I.C.); (M.V.); (D.G.)
- Agri-Food and Life Sciences Institute (Agro-Health), HMU Research and Innovation Center, GR71410 Heraklion, Greece
| |
Collapse
|
3
|
Simos YV, Zerikiotis S, Lekkas P, Zachariou C, Halabalaki M, Ververidis F, Trantas EA, Tsamis K, Peschos D, Angelidis C, Vezyraki P. Hydroxytyrosol produced by engineered Escherichia coli strains activates Nrf2/HO-1 pathway: An in vitro and in vivo study. Exp Biol Med (Maywood) 2023; 248:1598-1612. [PMID: 37691393 PMCID: PMC10676126 DOI: 10.1177/15353702231187647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 06/05/2023] [Indexed: 09/12/2023] Open
Abstract
This study explores the biological effects of hydroxytyrosol (HT), produced by the metabolic engineering of Escherichia coli, in a series of in vitro and in vivo experiments. In particular, a metabolically engineered Escherichia coli strain capable of producing HT was constructed and utilized. HEK293 and HeLa cells were exposed to purified HT to determine non-toxic doses that can offer protection against oxidative stress (activation of Nrf2/HO-1 signaling pathway). Male CD-1 mice were orally supplemented with HT to evaluate (1) renal and hepatic toxicity, (2) endogenous system antioxidant response, and (3) activation of Nrf2/HO-1 system in the liver. HT protected cells from oxidative stress through the activation of Nrf2 regulatory network. Activation of Nrf2 signaling pathway was also observed in the hepatic tissue of the mice. HT supplementation was safe and produced differential effects on mice's endogenous antioxidant defense system. HT biosynthesized from genetically modified Escherichia coli strains is an alternative method to produce high-quality HT that exerts favorable effects in the regulation of the organism's response to oxidative stress. Nonetheless, further investigation of the multifactorial action of HT on the antioxidant network regulation is needed.
Collapse
Affiliation(s)
- Yannis V Simos
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece
| | - Stelios Zerikiotis
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece
| | - Panagiotis Lekkas
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece
| | - Christianna Zachariou
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, Athens 11527, Greece
| | - Filippos Ververidis
- Laboratory of Biological and Biotechnological Applications, Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Estavromenos, Heraklion 71410, Crete, Greece
- Agri-Food and Life Sciences Institute, Research Center of the Hellenic Mediterranean University, Estavromenos, Heraklion 71410, Crete, Greece
| | - Emmanouil A Trantas
- Laboratory of Biological and Biotechnological Applications, Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Estavromenos, Heraklion 71410, Crete, Greece
- Agri-Food and Life Sciences Institute, Research Center of the Hellenic Mediterranean University, Estavromenos, Heraklion 71410, Crete, Greece
| | - Konstantinos Tsamis
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece
| | - Dimitrios Peschos
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece
| | - Charalampos Angelidis
- Department of Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece
| | - Patra Vezyraki
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece
| |
Collapse
|
4
|
Yan Y, Bai Y, Zheng X, Cai Y. Production of hydroxytyrosol through whole-cell bioconversion from L-DOPA using engineered Escherichia coli. Enzyme Microb Technol 2023; 169:110280. [PMID: 37413913 DOI: 10.1016/j.enzmictec.2023.110280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/01/2023] [Accepted: 06/22/2023] [Indexed: 07/08/2023]
Abstract
Hydroxytyrosol (HT), a polyphenolic molecule of high value, is used in the nutraceutical, cosmetic, food, and livestock nutrition industries. As a natural product, HT is chemically manufactured or extracted from olives; nevertheless, the increasing demand mandates the exploration and development of alternative sources, such as heterologous production by recombinant bacteria. In order to achieve this purpose, we have molecularly modified Escherichia coli to carry two plasmids. For conversion of L-DOPA (Levodopa) into HT efficiently, it is necessary to enhance the expression of DODC (DOPA decarboxylase), ADH (alcohol dehydrogenases), MAO (Monoamine oxidase) and GDH (glucose dehydrogenases). The step that significantly affects the rate of ht biosynthesis is likely to be associated with the reaction facilitated by DODC enzymatic activity, as suggested by the result of in vitro catalytic experiment and HPLC. Then Pseudomonas putida, Sus scrofa, Homo sapiens and Levilactobacillus brevis DODC were taken into comparsion. The DODC from H. sapiens is superior to that of P. putida, S. scrofa or L. brevis for HT production. Seven promoters were introduced to increase the expression levels of catalase (CAT) to remove the byproduct H2O2 and optimized coexpression strains were obtained after screening. After the 10-hour operation, the optimized whole-cell biocatalyst produced HT at a maximum titer of 4.84 g/L with over 77.5% molar substrate conversion rate.
Collapse
Affiliation(s)
- Yi Yan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yajun Bai
- College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Xiaohui Zheng
- College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
5
|
Liu Y, Song D, Hu H, Yang R, Lyu X. De Novo Production of Hydroxytyrosol by Saccharomyces cerevisiae-Escherichia coli Coculture Engineering. ACS Synth Biol 2022; 11:3067-3077. [PMID: 35952699 DOI: 10.1021/acssynbio.2c00300] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Hydroxytyrosol is a valuable plant-derived phenolic compound with excellent pharmacological activities for application in the food and health care industries. Microbial biosynthesis provides a promising approach for sustainable production of hydroxytyrosol via metabolic engineering. However, its efficient production is limited by the machinery and resources available in the commonly used individual microbial platform, for example, Escherichia coli, Saccharomyces cerevisiae. In this study, a S. cerevisiae-E. coli coculture system was designed for de novo biosynthesis of hydroxytyrosol by taking advantage of their inherent metabolic properties, whereby S. cerevisiae was engineered for de novo production of tyrosol based on an endogenous Ehrlich pathway, and E. coli was dedicated to converting tyrosol to hydroxytyrosol by use of native hydroxyphenylacetate 3-monooxygenase (EcHpaBC). To enhance hydroxytyrosol production, intra- and intermodule engineering was employed in this microbial consortium: (I) in the upstream S. cerevisiae strain, multipath regulations combining with a glucose-sensitive GAL regulation system were engineered to enhance the precursor supply, resulting in significant increase of tyrosol production (from 17.60 mg/L to 461.07 mg/L); (II) Echpabc was overexpressed in the downstream E. coli strain, improving the conversion rate of tyrosol to hydroxytyrosol from 0.03% to 86.02%; (III) and last, intermodule engineering with this coculture system was performed by optimization of the initial inoculation ratio of each population and fermentation conditions, achieving 435.32 mg/L of hydroxytyrosol. This S. cerevisiae-E. coli coculture strategy provides a new opportunity for de novo production of hydroxytyrosol from inexpensive feedstock.
Collapse
Affiliation(s)
- Yingjie Liu
- School of Food Science and Technology, Jiangnan University, 214122, Wuxi, P. R. China
| | - Dong Song
- Jiangxi Baiyue Food Co. Ltd, Pingxiang, Jiangxi 337000, P. R. China
| | - Haitao Hu
- School of Food Science and Technology, Jiangnan University, 214122, Wuxi, P. R. China
| | - Ruijin Yang
- School of Food Science and Technology, Jiangnan University, 214122, Wuxi, P. R. China.,Jiangnan University (Rugao) Institute of Food Biotechnology, 226503, Nantong, P. R. China
| | - Xiaomei Lyu
- School of Food Science and Technology, Jiangnan University, 214122, Wuxi, P. R. China.,Jiangnan University (Rugao) Institute of Food Biotechnology, 226503, Nantong, P. R. China
| |
Collapse
|
6
|
Liu Y, Liu H, Hu H, Ng KR, Yang R, Lyu X. De Novo Production of Hydroxytyrosol by Metabolic Engineering of Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7490-7499. [PMID: 35649155 DOI: 10.1021/acs.jafc.2c02137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydroxytyrosol is an olive-derived phenolic compound of increasing commercial interest due to its health-promoting properties. In this study, a high-yield hydroxytyrosol-producing Saccharomyces cerevisiae cell factory was established via a comprehensive metabolic engineering scheme. First, de novo biosynthetic pathway of hydroxytyrosol was constructed in yeast by gene screening and overexpression of different phenol hydroxylases, among which paHD (from Pseudomonas aeruginosa) displayed the best catalytic performance. Next, hydroxytyrosol precursor supply was enhanced via a multimodular engineering approach: elimination of tyrosine feedback inhibition through genomic integration of aro4K229L and aro7G141S, construction of an aromatic aldehyde synthase (AAS)-based tyrosine metabolic pathway, and redistribution of metabolic flux between glycolytic pathway and pentose phosphate pathway (PPP) by introducing the exogenous gene Bbxfpkopt. As a result, the titer of hydroxytyrosol was improved by 6.88-fold. Finally, a glucose-responsive dynamic regulation system based on GAL80 deletion was implemented, resulting in the final hydroxytyrosol yields of 308.65 mg/L and 167.98 mg/g cell mass, the highest known from de novo production in S. cerevisiae to date.
Collapse
Affiliation(s)
- Yingjie Liu
- School of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
| | - Han Liu
- School of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
| | - Haitao Hu
- School of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
| | - Kuan Rei Ng
- Food Science and Technology Programme, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Ruijin Yang
- School of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
| | - Xiaomei Lyu
- School of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
| |
Collapse
|
7
|
Bisquert R, Planells-Cárcel A, Valera-García E, Guillamón JM, Muñiz-Calvo S. Metabolic engineering of Saccharomyces cerevisiae for hydroxytyrosol overproduction directly from glucose. Microb Biotechnol 2021; 15:1499-1510. [PMID: 34689412 PMCID: PMC9049601 DOI: 10.1111/1751-7915.13957] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/04/2021] [Accepted: 10/12/2021] [Indexed: 11/29/2022] Open
Abstract
Hydroxytyrosol (HT) is one of the most powerful dietary antioxidants with numerous applications in different areas, including cosmetics, nutraceuticals and food. In the present work, heterologous hydroxylase complex HpaBC from Escherichia coli was integrated into the Saccharomyces cerevisiae genome in multiple copies. HT productivity was increased by redirecting the metabolic flux towards tyrosol synthesis to avoid exogenous tyrosol or tyrosine supplementation. After evaluating the potential of our selected strain as an HT producer from glucose, we adjusted the medium composition for HT production. The combination of the selected modifications in our engineered strain, combined with culture conditions optimization, resulted in a titre of approximately 375 mg l−1 of HT obtained from shake‐flask fermentation using a minimal synthetic‐defined medium with 160 g l−1 glucose as the sole carbon source. To the best of our knowledge, this is the highest HT concentration produced by an engineered S. cerevisiae strain.
Collapse
Affiliation(s)
- Ricardo Bisquert
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, IATA-CSIC, Agustín Escardino 7, Paterna, Valencia, 46980, Spain
| | - Andrés Planells-Cárcel
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, IATA-CSIC, Agustín Escardino 7, Paterna, Valencia, 46980, Spain
| | - Elena Valera-García
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, IATA-CSIC, Agustín Escardino 7, Paterna, Valencia, 46980, Spain
| | - José Manuel Guillamón
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, IATA-CSIC, Agustín Escardino 7, Paterna, Valencia, 46980, Spain
| | - Sara Muñiz-Calvo
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, IATA-CSIC, Agustín Escardino 7, Paterna, Valencia, 46980, Spain
| |
Collapse
|
8
|
Effect of Processing on Phenolic Composition of Olive Oil Products and Olive Mill By-Products and Possibilities for Enhancement of Sustainable Processes. Processes (Basel) 2021. [DOI: 10.3390/pr9060953] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The bio-functional properties of olive oil products and by-products rely greatly on the proportions and types of the endogenous phenolics that may favorably/unfavorably change during various processing conditions. The olive oil industrial activities typically produce (i) olive oils, the main/marketable products, and (ii) olive mill by-products. The mechanical processing of olive oil extraction is making progress in some areas. However, the challenges inherent in the existing system, taking into consideration, the susceptibilities of phenolics and their biosynthetic variations during processing, hamper efforts to ascertain an ideal approach. The proposed innovative means, such as inclusion of emerging technologies in extraction system, show potential for sustainable development of olive oil processing. Another crucial factor, together with the technological advancements of olive oil extraction, is the valorization of olive mill by-products that are presently underused while having great potential for extended/high-value applications. A sustainable re-utilization of these valuable by-products helps contribute to (i) food and nutrition security and (ii) economic and environmental sustainability. This review discusses typical processing factors responsible for the fate of endogenous phenolics in olive oil products/by-products and provides an overview of the possibilities for the sustainable processing to (i) produce phenolic-rich olive oil and (ii) optimally valorize the by-products.
Collapse
|
9
|
Anissi J, Sendide K, Ouardaoui A, Benlemlih M, El Hassouni M. Production of hydroxytyrosol from hydroxylation of tyrosol by Rhodococcus pyridinivorans 3HYL DSM109178. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1903884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Jaouad Anissi
- School of Engineering BIOMEDTECH, EUROMED University of Fes, Fez, Morocco
| | - Khalid Sendide
- Faculty of Sciences Dhar El Mahraz, Biotechnology, Environment, Agri-Food and Health Laboratory, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Abdelkrim Ouardaoui
- Faculty of Sciences Dhar El Mahraz, Biotechnology, Environment, Agri-Food and Health Laboratory, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mohammed Benlemlih
- Laboratory of Biotechnology, School of Science and Engineering, Al Akhawayn University, Ifrane, Morocco
| | - Mohammed El Hassouni
- Laboratory of Biotechnology, School of Science and Engineering, Al Akhawayn University, Ifrane, Morocco
| |
Collapse
|
10
|
Sun L, Xin F, Alper HS. Bio-synthesis of food additives and colorants-a growing trend in future food. Biotechnol Adv 2021; 47:107694. [PMID: 33388370 DOI: 10.1016/j.biotechadv.2020.107694] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/24/2020] [Accepted: 12/27/2020] [Indexed: 02/07/2023]
Abstract
Food additives and colorants are extensively used in the food industry to improve food quality and safety during processing, storage and packing. Sourcing of these molecules is predominately through three means: extraction from natural sources, chemical synthesis, and bio-production, with the first two being the most utilized. However, growing demands for sustainability, safety and "natural" products have renewed interest in using bio-based production methods. Likewise, the move to more cultured foods and meat alternatives requires the production of new additives and colorants. The production of bio-based food additives and colorants is an interdisciplinary research endeavor and represents a growing trend in future food. To highlight the potential of microbial hosts for food additive and colorant production, we focus on current advances for example molecules based on their utilization stage and bio-production yield as follows: (I) approved and industrially produced with high titers; (II) approved and produced with decent titers (in the g/L range), but requiring further engineering to reduce production costs; (III) approved and produced with very early stage titers (in the mg/L range); and (IV) new/potential candidates that have not been approved but can be sourced through microbes. Promising approaches, as well as current challenges and future directions will also be thoroughly discussed for the bioproduction of these food additives and colorants.
Collapse
Affiliation(s)
- Lichao Sun
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| | - Fengjiao Xin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| | - Hal S Alper
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX 78712, United States; McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712, United States.
| |
Collapse
|
11
|
Deri-Zenaty B, Bachar S, Rebroš M, Fishman A. A coupled enzymatic reaction of tyrosinase and glucose dehydrogenase for the production of hydroxytyrosol. Appl Microbiol Biotechnol 2020; 104:4945-4955. [PMID: 32285177 DOI: 10.1007/s00253-020-10594-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/22/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022]
Abstract
Hydroxytyrosol (HT) is a diphenolic compound prevalent mainly in olives with pronounced antioxidant activity and proven benefits for human health. Current production limitations have motivated studies concerning the hydroxylation of tyrosol to HT with tyrosinase; however, accumulation of the diphenol is restricted due to its rapid subsequent oxidation to 3,4-quinone-phenylethanol. In this study, a continuous two-enzyme reaction system of sol-gel-immobilized tyrosinase and glucose dehydrogenase (GDH) was developed for the synthesis of HT. Purified tyrosinase from Bacillus megaterium (TyrBm) and E. coli cell extract expressing GDH from B. megaterium were encapsulated in a sol-gel matrix based on triethoxysilane precursors. While tyrosinase oxidized tyrosol to 3,4-quinone-phenylethanol, GDH catalyzed the simultaneous reduction of the cofactor NAD+ to NADH, which was the reducing agent enabling the accumulation of HT. Using 50 mM tyrosol, the immobilized system under optimized conditions, enabled a final HT yield of 7.68 g/L with productivity of 2.30 mg HT/mg TyrBm beads. Furthermore, the immobilized bi-enzyme system showed the feasibility for HT production from 1 mM tyrosol using a 0.5-L bioreactor as well as stable activity over 8 repeated cycles. The production of other diphenols with commercial importance such as L-dopa (3,4-dihydroxyphenylalanine) or piceatannol may be synthesized with this efficient approach.
Collapse
Affiliation(s)
- Batel Deri-Zenaty
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Shani Bachar
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Martin Rebroš
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Ayelet Fishman
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, 3200003, Haifa, Israel.
| |
Collapse
|
12
|
Li C, Jia P, Bai Y, Fan TP, Zheng X, Cai Y. Efficient Synthesis of Hydroxytyrosol from l-3,4-Dihydroxyphenylalanine Using Engineered Escherichia coli Whole Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6867-6873. [PMID: 31134807 DOI: 10.1021/acs.jafc.9b01856] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hydroxytyrosol is a high-value-added compound with a variety of biological and pharmacological activities. In this study, a whole-cell catalytic method for the synthesis of hydroxytyrosol was developed: aromatic amino acid aminotransferase (TyrB), l-glutamate dehydrogenase (GDH), α-keto acid decarboxylase (PmKDC), and aldehyde reductase (YahK) were co-expressed in Escherichia coli to catalyze the synthesis of hydroxytyrosol from l-3,4-dihydroxyphenylalanine (l-DOPA). The plasmids with different copy numbers were used to balance the expression of the four enzymes, and the most appropriate strain (pRSF- yahK- tyrB and pCDF- gdh- Pmkdc) was identified. After determination of the optimum temperature (35 °C) and pH (7.5) for whole-cell catalysis, the yield of hydroxytyrosol reached 36.33 mM (5.59 g/L) and the space-time yield reached 0.70 g L-1 h-1.
Collapse
Affiliation(s)
- Chaozhi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , 1800 Lihu Road , Wuxi , Jiangsu 214122 , People's Republic of China
| | - Pu Jia
- College of Life Sciences , Northwest University , Xi'an , Shaanxi 710069 , People's Republic of China
| | - Yajun Bai
- College of Life Sciences , Northwest University , Xi'an , Shaanxi 710069 , People's Republic of China
| | - Tai-Ping Fan
- Department of Pharmacology , University of Cambridge , Cambridge CB2 1PD , United Kingdom
| | - Xiaohui Zheng
- College of Life Sciences , Northwest University , Xi'an , Shaanxi 710069 , People's Republic of China
| | - Yujie Cai
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , 1800 Lihu Road , Wuxi , Jiangsu 214122 , People's Republic of China
| |
Collapse
|
13
|
Britton J, Davis R, O'Connor KE. Chemical, physical and biotechnological approaches to the production of the potent antioxidant hydroxytyrosol. Appl Microbiol Biotechnol 2019; 103:5957-5974. [PMID: 31177312 DOI: 10.1007/s00253-019-09914-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 12/12/2022]
Abstract
Hydroxytyrosol (HT) is a polyphenol of interest to the food, feed, supplements and pharmaceutical sectors. It is one of the strongest known natural antioxidants and has been shown to confer other benefits such as anti-inflammatory and anti-carcinogenic properties, and it has the potential to act as a cardio- and neuroprotectant. It is known to be one of the compounds responsible for the health benefits of the Mediterranean diet. In nature, HT is found in the olive plant (Olea europaea) as part of the secoiridoid compound oleuropein, in its leaves, fruit, oil and oil production waste products. HT can be extracted from these olive sources, but it can also be produced by chemical synthesis or through the use of microorganisms. This review looks at the production of HT using plant extraction, chemical synthesis and biotechnological approaches.
Collapse
Affiliation(s)
- James Britton
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Reeta Davis
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kevin E O'Connor
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland. .,Beacon Bioeconomy Research Centre, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|