1
|
Phiboonchaiyanan PP, Harikarnpakdee S, Songsak T, Chowjarean V. In Vitro Evaluation of Wound Healing, Stemness Potentiation, Antioxidant Activity, and Phytochemical Profile of Cucurbita moschata Duchesne Fruit Pulp Ethanolic Extract. Adv Pharmacol Pharm Sci 2024; 2024:9288481. [PMID: 39502575 PMCID: PMC11535185 DOI: 10.1155/2024/9288481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/03/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
Wound healing comprises an intricate process to repair damaged tissue. Research on plant extracts with properties to expedite wound healing has been of interest, particularly their ability to enhance the stemness of keratinocyte stem cells. Hence, the present study aims to determine the wound healing and stemness potentiation properties of an ethanolic extract derived from Cucurbita moschata fruit pulp (PKE). Human keratinocytes (HaCaT) and primary skin fibroblast cells were used in this study. The migration of the cells was examined by using a scratch wound healing assay, and spheroid behavior was determined by using a spheroid formation assay. The proteins related to migration and stemness were further measured by using Western blotting to explore the mechanism of action of PKE. The methods used to evaluate PKE's antioxidant properties were 2,2-diphenyl-2-picrylhydrazyl (DPPH) scavenging, ABTS radical scavenging activity, and superoxide anion radical scavenging (SOSA) assays. The phytochemistry of the PKE was investigated using phytochemical screening and high-performance liquid chromatography (HPLC) analysis. The results of this study indicate that nontoxic concentrations of PKE increase the rate of migration and spheroid formation. Mechanistically, PKE increased the expression of the migratory-related protein active FAK (phosphorylated FAK), and the subsequence increased the level of p-AKT. The expression of stem cell marker CD133, upstream protein signaling β-catenin, and self-renewal transcription factor Nanog was increased. The PKE also possessed scavenging properties against DPPH, ABTS, and SOSA. The phytochemistry analyses exhibited the presence of alkaloids, glycosides, xanthones, triterpenes, and steroids. Additionally, bioactive compounds such as ɑ-tocopherol, riboflavin, protocatechuic acid, β-carotene, and luteolin were detected. The presence of these chemicals in PKE may contribute to its antioxidant, stem cell potentiation, and wound-healing effects. The findings could be beneficial in the identification of valuable natural resources that possess the capacity to be used in the process of wound healing through the potentiation of stemness via a readily detectable molecular mechanism.
Collapse
Affiliation(s)
| | - Saraporn Harikarnpakdee
- Department of Industrial Pharmacy, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| | - Thanapat Songsak
- Department of Pharmacognosy, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| | - Verisa Chowjarean
- Department of Pharmaceutical Technology, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| |
Collapse
|
2
|
Thamrongwatwongsa J, Chusrisom J, Katemala K, Tantasirin S, Jumnongjit P, Nateerom P, Sonjaroon W, Tongkok P, Pichaiyotinkul P, Paemanee A, T-Thienprasert NP, Phonphoem W. Determination of flavonoid content in Grammatophyllum speciosum and in vitro evaluation of their anti-skin cancer and antibacterial activities. Heliyon 2024; 10:e33330. [PMID: 39050422 PMCID: PMC11266999 DOI: 10.1016/j.heliyon.2024.e33330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/30/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024] Open
Abstract
Grammatophyllum speciosum Blume, a plant of significant pharmacological and cultural importance in its native regions, has been the subject of traditional medicinal use. This study, however, delves deeper into the unique attributes of G. speciosum aerial part and root extracts, particularly their phytochemical content, antioxidant potential, antibacterial activity, and anticancer properties against human skin cancer cells. The results unveiled a promising aspect-higher flavonoid and phenolic compound levels in the aerial part compared to the root extracts. Both aerial part and root extracts demonstrated significant antioxidant activities, as evidenced by their ability to scavenge DPPH radicals and reduce ferric ions in the FRAP assay. Moreover, the ethanolic extract derived from G. speciosum aerial parts showed promising antibacterial activity against both gram-positive and gram-negative bacteria, hinting at its potential therapeutic efficacy. Notably, this extract also demonstrates a capacity to impede the viability of human skin cancer cells (A375). Collectively, these results demonstrated the potential applications of the G. speciosum aerial part extracts. Further investigation is imperative to elucidate the intricate molecular mechanisms underpinning these diverse effects, thereby contributing to a deeper understanding of the pharmacological potential of G. speciosum and its prospective applications in medicine and beyond.
Collapse
Affiliation(s)
| | - Jittraporn Chusrisom
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute, Kasetsart University, Bangkok, Thailand
| | - Kittiphat Katemala
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Siranat Tantasirin
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Proudphat Jumnongjit
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Pascha Nateerom
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Weerasin Sonjaroon
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute, Kasetsart University, Bangkok, Thailand
| | - Pattama Tongkok
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute, Kasetsart University, Bangkok, Thailand
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Panutchaya Pichaiyotinkul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Atchara Paemanee
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | | | - Wannarat Phonphoem
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
3
|
Sinsuebpol C, Burapapadh K, Chowjaroen V, Changsan N. The radical scavenging activity of vanillin and its impact on the healing properties of wounds. J Adv Pharm Technol Res 2023; 14:99-104. [PMID: 37255868 PMCID: PMC10226704 DOI: 10.4103/japtr.japtr_631_22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 06/01/2023] Open
Abstract
Vanillin, an extract from the Vanilla planifolia plant, is reported to possess potent antioxidant properties. The ability of vanillin to protect skin cells from reactive oxygen species (ROS)-induced damage and its potential use in the treatment of wounds were studied. Cytocompatibility and cytoprotective properties against ROS-induced damage were examined using keratinocyte and fibroblast cell models. Vanillin's effect on cell migration was studied using the scratch wound healing assay. Vanillin exhibited cytocompatibility and cytoprotective properties against cell damage induced by ROS. Human keratinocytes and fibroblast cells showed >80% survival when exposed to vanillin (10-500 μM). Both cells showed no evidence of necrosis or apoptosis, which was confirmed by acridine orange/propidium iodide staining. Both examined cells were exposed to 750 μM hydrogen peroxide to cause oxidative stress, and vanillin demonstrated the ability to inhibit ROS-induced cell death. In addition, a considerable increase in cell migration suggested that vanillin had the ability to heal wounds in vitro. Vanillin is safe and potentially useful in wound healing treatments.
Collapse
Affiliation(s)
- Chutima Sinsuebpol
- Department of Pharmaceutical Technology, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
| | - Kanokporn Burapapadh
- Department of Manufacturing Pharmacy, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
| | - Verisa Chowjaroen
- Department of Pharmaceutical Technology, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
| | - Narumon Changsan
- Department of Pharmaceutical Technology, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
| |
Collapse
|
4
|
Kaushik N, Oh H, Lim Y, Kumar Kaushik N, Nguyen LN, Choi EH, Kim JH. Screening of Hibiscus and Cinnamomum Plants and Identification of Major Phytometabolites in Potential Plant Extracts Responsible for Apoptosis Induction in Skin Melanoma and Lung Adenocarcinoma Cells. Front Bioeng Biotechnol 2021; 9:779393. [PMID: 34957073 PMCID: PMC8704398 DOI: 10.3389/fbioe.2021.779393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/29/2021] [Indexed: 01/29/2023] Open
Abstract
Carcinogenesis is a major concern that severely affects the human population. Owing to persistent demand for novel therapies to treat and prohibit this lethal disease, research interest among scientists is drawing its huge focus toward natural products, as they have minimum toxicity comparable with existing treatment methods. The plants produce secondary metabolites, which are known to have the anticancer potential for clinical drug development. Furthermore, the use of nanocarriers could boost the solubility and stability of phytocompounds to obtain site-targeting delivery. The identification of potential phytochemicals in natural compounds would be beneficial for the synthesis of biocompatible nanoemulsions. The present study aimed to investigate the potential cytotoxicity of ethanol extracts of Hibiscus syriacus and Cinnamomum loureirii Nees plant parts on human skin melanoma (G361) and lung adenocarcinoma (A549) cells. Importantly, biochemical analysis results showed the presence of high phenol (50-55 µgGAE/mg) and flavonoids [42-45 µg quercetin equivalents (QE)/mg] contents with good antioxidant activity (40-58%) in C. loureirii Nees plants extracts. This plant possesses potent antiproliferative activity (60-90%) on the malignant G361 and A549 and cell lines correlated with the production of nitric oxide. Especially, C. loureirii plant extracts have major metabolites that exhibit cancer cell death associated with cell cycle arrest. These findings support the potential application of Cinnamomum for the development of therapeutic nanoemulsion in future cancer therapy.
Collapse
Affiliation(s)
- Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong, South Korea
| | - Hyunji Oh
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong, South Korea
| | - Yeasol Lim
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong, South Korea
| | - Nagendra Kumar Kaushik
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, South Korea
| | - Linh Nhat Nguyen
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, South Korea.,Laboratory of Plasma Technology, Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Eun Ha Choi
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, South Korea
| | - June Hyun Kim
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong, South Korea
| |
Collapse
|
5
|
Cosmeceutical Potentials of Grammatophyllum speciosum Extracts: Anti-Inflammations and Anti-Collagenase Activities with Phytochemical Profile Analysis Using an Untargeted Metabolomics Approach. COSMETICS 2021. [DOI: 10.3390/cosmetics8040116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Grammatophyllum speciosum is the largest orchid species and a well-known traditional medicinal plant. Due to skin aging, natural products that inhibit this process can attract the attention of consumers and scientists because radical-scavenging activity, collagenase inhibition, and inflammatory suppression are valuable in dermatological applications. This study investigated the phytochemicals in G. speciosum leaves extracts that have cosmeceutical potentials, including radical-scavenging, anticollagenase, and anti-inflammatory abilities. G. speciosum leaves were extracted using water-based extraction methods. High-resolution mass spectrometry was used to identify the phytochemicals in the extracts. Fibroblast and keratinocyte cell cytotoxicity was determined. Antioxidant abilities were measured using DPPH and ABTS assays. The effect of the extracts on nitric oxide (NO) in macrophage cells was investigated. ELISA of the collagenase enzyme was determined. A total of 721 annotated metabolites were identified in the extracts. Vitexin and orientin were the most abundant metabolites. Cell viability was >80% in both cell lines when the extract concentration was <1 mg/mL. The IC50 values for DPPH and ABTS were 56 and 117 μg/mL, respectively. Furthermore, the extracts revealed that NO and collagenase activity were suppressed by 42% and 23%, respectively. The extracts can suppress ROS, inflammatory, and collagenase activities without causing fibroblast and keratinocyte cell death. Thus, this study provides information on metabolites in G. speciosum leaves, which is promising as cosmeceuticals or pharmaceuticals with anti-inflammatory and anti-collagenase activities.
Collapse
|
6
|
Antiproliferative Effect of Grammatophyllum speciosum Ethanolic Extract and Its Bioactive Compound on Human Breast Cancer Cells. ScientificWorldJournal 2021; 2021:3752169. [PMID: 34646091 PMCID: PMC8505085 DOI: 10.1155/2021/3752169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/25/2021] [Accepted: 09/18/2021] [Indexed: 11/23/2022] Open
Abstract
Background/Aim. Grammatophyllum speciosum Blume exhibits various promising pharmacological activities. However, its effect on breast cancer has not been determined. Materials and Methods. The antiproliferation effects of the G. speciosum pseudobulb ethanolic extract (GSE) and isovitexin (bioactive constituent) were investigated on the MCF-7 human breast cancer cell line using MTT and colony formation assay. The expression levels of proliferation-regulatory proteins were determined by western blotting. Results. Noncytotoxic concentrations of GSE significantly suppressed the proliferation of MCF-7 cells. Tumor colony formation decreased in both number and size. The level of phosphorylated AKT and β-catenin was suppressed by GSE treatment. Antiproliferation was observed in isovitexin-treated MCF-7 cells in the form of inhibited colony formation and reduced expression of phosphorylated AKT and β-catenin protein. Conclusions. This study demonstrates the novel effect of G. speciosum as an antiproliferative via suppression of the AKT/β-catenin-dependent pathway. This may prompt further investigation of this plant in breast cancer therapy.
Collapse
|
7
|
Aquino FLTD, Silva JPD, Ferro JNDS, Lagente V, Barreto E. trans-Cinnamic acid, but not p-coumaric acid or methyl cinnamate, induces fibroblast migration through PKA- and p38-MAPK signalling pathways. J Tissue Viability 2021; 30:363-371. [PMID: 34052086 DOI: 10.1016/j.jtv.2021.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 04/17/2021] [Accepted: 05/12/2021] [Indexed: 12/18/2022]
Abstract
AIM Hydroxycinnamic acids their derivatives have various pharmacological properties. The hydroxycinnamic acid derivatives, methyl cinnamate, trans-cinnamic, and p-coumaric acids have been the object of study in the treatment of skin wounds. However, it is unclear whether these derivatives exert a direct beneficial effect on fibroblast function. In this study, we evaluated the effects of methyl cinnamate, trans-cinnamic, and p-coumaric acids on fibroblast migration in vitro. MATERIALS AND METHODS NIH 3T3 and L929 fibroblast cell lines were exposed to each drug at several concentrations and the effect on cell viability, cell cycle, and extracellular matrix production were assessed by MTT assay, flow cytometry, and immunofluorescence staining, respectively. The effect on cell migration was examined using scratch assay. RESULTS The results showed that hydroxycinnamic acid derivatives not affect cell viability, but increase fibroblast migration in the in vitro scratch-wound healing assay. They also induced an increase in S and G2/M phases accompanied by a decrease in the G0/G1 phase of the cell cycle. The cell proliferation inhibitor mitomycin C abolished the effect induced by p-coumaric acid and methyl cinnamate, indicating that only the trans-cinnamic acid stimulated migration. A transwell migration assay confirmed that trans-cinnamic acid-treated fibroblasts exhibited increased migration compared with untreated cells. trans-Cinnamic acid-induced fibroblast migration was decreased by PKA inhibitor and p38-MAPK inhibitor but not by JNK inhibitor. Additionally, trans-cinnamic acid-treated fibroblasts showed an increase in the production of laminin and collagen type I. CONCLUSION Our study showed that trans-cinnamic acid improves fibroblast migration and modulates extracellular matrix synthesis, indicating its potential for accelerating the healing process.
Collapse
Affiliation(s)
| | | | | | - Vincent Lagente
- NuMeCan Institute (Nutrition, Metabolism and Cancer), Université de Rennes, INSERM, INRA, F-35000, Rennes, France
| | - Emiliano Barreto
- Laboratory of Cell Biology, Federal University of Alagoas, 57072-900, Maceió, Brazil.
| |
Collapse
|