1
|
Luo R, Wang Z, Xu F, Xie K. Dexmedetomidine improve lung inflammation by regulating autophagy and apoptosis of CD4+ T cell via AMPK/mTOR signaling. Mol Immunol 2025; 183:1-11. [PMID: 40311186 DOI: 10.1016/j.molimm.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/11/2025] [Accepted: 04/23/2025] [Indexed: 05/03/2025]
Abstract
OBJECTIVES To investigate the protective effect and potential mechanism of dexmedetomidine (Dex) in acute lung injury (ALI). MATERIALS AND METHODS C57BL/6 mice and EL-4 cells were used for in vivo and in vitro studies, respectively. Cecal ligation and puncture (CLP) method was used to prepare an acute lung injury model. After dexmedetomidine intervention, tissue and cell samples were collected to evaluate and measure the severity of lung damage, the proportion of Treg cells, the expression of autophagy-related protein levels and AMPK/mTOR pathways. RESULTS Dex reduced lung damage, and IL-17a, MPO positive cells in the lung, decreased the levels of pro-inflammatory cytokines, and restrain autophagy and apoptosis via the activation of the AMPK/mTOR pathway and increase of the proportion of Tregs. CONCLUSIONS Dex can inhibit the levels of autophagy and apoptosis, increase the proportion of Treg cells, and reduce CLP induced acute lung injury through regulating AKMP/MTOR pathway.
Collapse
Affiliation(s)
- Renjie Luo
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, Chongqing, China
| | - Zhao Wang
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fang Xu
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Sepsis Diagnosis and Treatment Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Ke Xie
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Sepsis Diagnosis and Treatment Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Gluba-Sagr A, Franczyk B, Rysz-Górzyńska A, Olszewski R, Rysz J. The Role of Selected lncRNAs in Lipid Metabolism and Cardiovascular Disease Risk. Int J Mol Sci 2024; 25:9244. [PMID: 39273193 PMCID: PMC11395304 DOI: 10.3390/ijms25179244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 09/15/2024] Open
Abstract
Lipid disorders increase the risk for the development of cardiometabolic disorders, including type 2 diabetes, atherosclerosis, and cardiovascular disease. Lipids levels, apart from diet, smoking, obesity, alcohol consumption, and lack of exercise, are also influenced by genetic factors. Recent studies suggested the role of long noncoding RNAs (lncRNAs) in the regulation of lipid formation and metabolism. Despite their lack of protein-coding capacity, lncRNAs are crucial regulators of various physiological and pathological processes since they affect the transcription and epigenetic chromatin remodelling. LncRNAs act as molecular signal, scaffold, decoy, enhancer, and guide molecules. This review summarises available data concerning the impact of lncRNAs on lipid levels and metabolism, as well as impact on cardiovascular disease risk. This relationship is significant because altered lipid metabolism is a well-known risk factor for cardiovascular diseases, and lncRNAs may play a crucial regulatory role. Understanding these mechanisms could pave the way for new therapeutic strategies to mitigate cardiovascular disease risk through targeted modulation of lncRNAs. The identification of dysregulated lncRNAs may pose promising candidates for therapeutic interventions, since strategies enabling the restoration of their levels could offer an effective means to impede disease progression without disrupting normal biological functions. LncRNAs may also serve as valuable biomarker candidates for various pathological states, including cardiovascular disease. However, still much remains unknown about the functions of most lncRNAs, thus extensive studies are necessary elucidate their roles in physiology, development, and disease.
Collapse
Affiliation(s)
- Anna Gluba-Sagr
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland
| | - Aleksandra Rysz-Górzyńska
- Department of Ophthalmology and Visual Rehabilitation, Medical University of Lodz, 90-549 Lodz, Poland
| | - Robert Olszewski
- Department of Gerontology, Public Health and Didactics, National Institute of Geriatrics, Rheumatology and Rehabilitation in Warsaw, 02-637 Warsaw, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland
| |
Collapse
|
3
|
Abdallah BM, Elshoeibi AM, ElTantawi N, Arif M, Hourani RF, Akomolafe AF, Hamwi MN, Mahmood FR, Saracoglu KT, Saracoglu A, Chivese T. Comparison of postoperative pain in children after maintenance anaesthesia with propofol or sevoflurane: a systematic review and meta-analysis. Br J Anaesth 2024; 133:93-102. [PMID: 38670899 PMCID: PMC11213989 DOI: 10.1016/j.bja.2024.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/04/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Propofol and sevoflurane are two of the most commonly used anaesthetics for paediatric surgery. Data from some clinical trials suggest that postoperative pain incidence is lower when propofol is used for maintenance of anaesthesia compared with sevoflurane, although this is not clear. METHODS This meta-analysis compared postoperative pain following maintenance of anaesthesia with propofol or sevoflurane in paediatric surgeries. PubMed Medline, Embase, Scopus, Web of Science and Cochrane Library were searched for randomised controlled trials (RCTs) that compared postoperative pain between sevoflurane and propofol anaesthesia in children. After quality assessment, a meta-analysis was carried out using bias-adjusted inverse heterogeneity methods, heterogeneity using I2 and publication bias using Doi plots. RESULTS In total, 13 RCTs with 1174 children were included. The overall synthesis suggested nearly two-fold higher odds of overall postoperative pain in the sevoflurane group compared with the propofol group (odds ratio [OR] 1.88, 95% confidence interval [CI] 1.12-3.15, I2=58.2%). Further, children in the sevoflurane group had higher odds of having higher pain scores (OR 3.18, 95% CI 1.83-5.53, I2=20.9%), and a 60% increase in the odds of requiring postoperative rescue analgesia compared with propofol (OR 1.60, 95% CI 0.89-2.88, I2=58.2%). CONCLUSIONS Children maintained on inhalational sevoflurane had higher odds of postoperative pain compared with those maintained on propofol. The results also suggest that sevoflurane is associated with higher odds of needing postoperative rescue analgesia compared with propofol. REGISTRATION The protocol for this systematic review and meta-analysis was registered on the International Prospective Register of Systematic Reviews (PROSPERO) with registration ID CRD42023445913.
Collapse
Affiliation(s)
| | | | | | - Mariah Arif
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Razan F Hourani
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | | | - Mahmoud N Hamwi
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | | | - Kemal T Saracoglu
- College of Medicine, QU Health, Qatar University, Doha, Qatar; Department of Anaesthesiology, ICU, and Perioperative Medicine, Hazm Mebaireek General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Ayten Saracoglu
- College of Medicine, QU Health, Qatar University, Doha, Qatar; Department of Anaesthesiology, ICU, and Perioperative Medicine, Aisha Bint Hamad Al-Attiyah Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Tawanda Chivese
- College of Medicine, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
4
|
Pinheiro AV, Petrucci GN, Dourado A, Pires I. Anaesthesia in Veterinary Oncology: The Effects of Surgery, Volatile and Intravenous Anaesthetics on the Immune System and Tumour Spread. Animals (Basel) 2023; 13:3392. [PMID: 37958147 PMCID: PMC10648213 DOI: 10.3390/ani13213392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/11/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Throughout the course of oncological disease, the majority of patients require surgical, anaesthetic and analgesic intervention. However, during the perioperative period, anaesthetic agents and techniques, surgical tissue trauma, adjuvant drugs for local pain and inflammation and other non-pharmacological factors, such as blood transfusions, hydration, temperature and nutrition, may influence the prognosis of the disease. These factors significantly impact the oncologic patient's immune response, which is the primary barrier to tumour progress, promoting a window of vulnerability for its dissemination and recurrence. More research is required to ascertain which anaesthetics and techniques have immunoprotective and anti-tumour effects, which will contribute to developing novel anaesthetic strategies in veterinary medicine.
Collapse
Affiliation(s)
- Ana Vidal Pinheiro
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.D.); (I.P.)
| | - Gonçalo N. Petrucci
- Onevetgroup Hospital Veterinário do Porto (HVP), 4250-475 Porto, Portugal;
- Center for Investigation Vasco da Gama (CIVG), Department of Veterinary Sciences, Vasco da Gama University School (EUVG), 3020-210 Coimbra, Portugal
- CECAV—Veterinary and Animal Research Center, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - Amândio Dourado
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.D.); (I.P.)
- Onevetgroup Hospital Veterinário do Porto (HVP), 4250-475 Porto, Portugal;
| | - Isabel Pires
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.D.); (I.P.)
- CECAV—Veterinary and Animal Research Center, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| |
Collapse
|
5
|
Han S, Chen X, Huang L. The tumor therapeutic potential of long non-coding RNA delivery and targeting. Acta Pharm Sin B 2022; 13:1371-1382. [PMID: 37139413 PMCID: PMC10149988 DOI: 10.1016/j.apsb.2022.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/25/2022] [Accepted: 11/11/2022] [Indexed: 12/15/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) is a type of RNA over 200 nt long without any protein coding ability, which has been investigated relating to crucial biological function in cells. There are many key lncRNAs in tumor/normal cells that serve as a biological marker or a new target for tumor treatment. However, compared to some small non-coding RNA, lncRNA-based drugs are limited in clinical application. Different from other non-coding RNA, like microRNAs, most lncRNAs have a high molecular weight and conserved secondary structure, making the delivery of lncRNAs more complex than the small non-coding RNAs. Considering that lncRNAs constitute the most abundant part of the mammalian genome, it is critical to further explore lncRNA delivery and the subsequent functional studies for potential clinical application. In this review, we will discuss the function and mechanism of lncRNAs in diseases, especially cancer, and different approaches for lncRNA transfection using multiple biomaterials.
Collapse
|
6
|
Zhou X, Shao Y, Li S, Zhang S, Ding C, Zhuang L, Sun J. An intravenous anesthetic drug-propofol, influences the biological characteristics of malignant tumors and reshapes the tumor microenvironment: A narrative literature review. Front Pharmacol 2022; 13:1057571. [PMID: 36506511 PMCID: PMC9732110 DOI: 10.3389/fphar.2022.1057571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
Malignant tumors are the second leading cause of death worldwide. This is a public health concern that negatively impacts human health and poses a threat to the safety of life. Although there are several treatment approaches for malignant tumors, surgical resection remains the primary and direct treatment for malignant solid tumors. Anesthesia is an integral part of the operation process. Different anesthesia techniques and drugs have different effects on the operation and the postoperative prognosis. Propofol is an intravenous anesthetic that is commonly used in surgery. A substantial number of studies have shown that propofol participates in the pathophysiological process related to malignant tumors and affects the occurrence and development of malignant tumors, including anti-tumor effect, pro-tumor effect, and regulation of drug resistance. Propofol can also reshape the tumor microenvironment, including anti-angiogenesis, regulation of immunity, reduction of inflammation and remodeling of the extracellular matrix. Furthermore, most clinical studies have also indicated that propofol may contribute to a better postoperative outcome in some malignant tumor surgeries. Therefore, the author reviewed the chemical properties, pharmacokinetics, clinical application and limitations, mechanism of influencing the biological characteristics of malignant tumors and reshaping the tumor microenvironment, studies of propofol in animal tumor models and its relationship with postoperative prognosis of propofol in combination with the relevant literature in recent years, to lay a foundation for further study on the correlation between propofol and malignant tumor and provide theoretical guidance for the selection of anesthetics in malignant tumor surgery.
Collapse
Affiliation(s)
- Xueliang Zhou
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China/
| | - Yanfei Shao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China/
| | - Shuchun Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sen Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China/
| | - Chengsheng Ding
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China/
| | - Lei Zhuang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,*Correspondence: Jing Sun, ; Lei Zhuang,
| | - Jing Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Jing Sun, ; Lei Zhuang,
| |
Collapse
|
7
|
Yi S, Tao X, Wang Y, Cao Q, Zhou Z, Wang S. Effects of propofol on macrophage activation and function in diseases. Front Pharmacol 2022; 13:964771. [PMID: 36059940 PMCID: PMC9428246 DOI: 10.3389/fphar.2022.964771] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022] Open
Abstract
Macrophages work with monocytes and dendritic cells to form a monocyte immune system, which constitutes a powerful cornerstone of the immune system with their powerful antigen presentation and phagocytosis. Macrophages play an essential role in infection, inflammation, tumors and other pathological conditions, but these cells also have non-immune functions, such as regulating lipid metabolism and maintaining homeostasis. Propofol is a commonly used intravenous anesthetic in the clinic. Propofol has sedative, hypnotic, anti-inflammatory and anti-oxidation effects, and it participates in the body’s immunity. The regulation of propofol on immune cells, especially macrophages, has a profound effect on the occurrence and development of human diseases. We summarized the effects of propofol on macrophage migration, recruitment, differentiation, polarization, and pyroptosis, and the regulation of these propofol-regulated macrophage functions in inflammation, infection, tumor, and organ reperfusion injury. The influence of propofol on pathology and prognosis via macrophage regulation is also discussed. A better understanding of the effects of propofol on macrophage activation and function in human diseases will provide a new strategy for the application of clinical narcotic drugs and the treatment of diseases.
Collapse
Affiliation(s)
- Shuyuan Yi
- School of Anesthesiology, Weifang Medical University, Weifang, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - Xinyi Tao
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Qianqian Cao
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - Zhixia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- *Correspondence: Zhixia Zhou, ; Shoushi Wang,
| | - Shoushi Wang
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
- *Correspondence: Zhixia Zhou, ; Shoushi Wang,
| |
Collapse
|
8
|
Gui Y, Zheng H, Cao RY. Foam Cells in Atherosclerosis: Novel Insights Into Its Origins, Consequences, and Molecular Mechanisms. Front Cardiovasc Med 2022; 9:845942. [PMID: 35498045 PMCID: PMC9043520 DOI: 10.3389/fcvm.2022.845942] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Foam cells play a vital role in the initiation and development of atherosclerosis. This review aims to summarize the novel insights into the origins, consequences, and molecular mechanisms of foam cells in atherosclerotic plaques. Foam cells are originated from monocytes as well as from vascular smooth muscle cells (VSMC), stem/progenitor cells, and endothelium cells. Novel technologies including lineage tracing and single-cell RNA sequencing (scRNA-seq) have revolutionized our understanding of subtypes of monocyte- and VSMC-derived foam cells. By using scRNA-seq, three main clusters including resident-like, inflammatory, and triggering receptor expressed on myeloid cells-2 (Trem2 hi ) are identified as the major subtypes of monocyte-derived foam cells in atherosclerotic plaques. Foam cells undergo diverse pathways of programmed cell death including apoptosis, autophagy, necroptosis, and pyroptosis, contributing to the necrotic cores of atherosclerotic plaques. The formation of foam cells is affected by cholesterol uptake, efflux, and esterification. Novel mechanisms including nuclear receptors, non-coding RNAs, and gut microbiota have been discovered and investigated. Although the heterogeneity of monocytes and the complexity of non-coding RNAs make obstacles for targeting foam cells, further in-depth research and therapeutic exploration are needed for the better management of atherosclerosis.
Collapse
Affiliation(s)
- Yuzhou Gui
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Phase I Clinical Research and Quality Consistency Evaluation for Drugs, Shanghai, China
| | - Hongchao Zheng
- Department of Cardiovascular, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| | - Richard Y. Cao
- Department of Cardiovascular, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Pahnke J, Bascuñana P, Brackhan M, Stefan K, Namasivayam V, Koldamova R, Wu J, Möhle L, Stefan SM. Strategies to gain novel Alzheimer's disease diagnostics and therapeutics using modulators of ABCA transporters. FREE NEUROPATHOLOGY 2021; 2:33. [PMID: 34977908 PMCID: PMC8717091 DOI: 10.17879/freeneuropathology-2021-3528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/12/2021] [Indexed: 11/30/2022]
Abstract
Adenosine-triphosphate-(ATP)-binding cassette (ABC) transport proteins are ubiquitously present membrane-bound efflux pumps that distribute endo- and xenobiotics across intra- and intercellular barriers. Discovered over 40 years ago, ABC transporters have been identified as key players in various human diseases, such as multidrug-resistant cancer and atherosclerosis, but also neurodegenerative diseases, such as Alzheimer's disease (AD). Most prominent and well-studied are ABCB1, ABCC1, and ABCG2, not only due to their contribution to the multidrug resistance (MDR) phenotype in cancer, but also due to their contribution to AD. However, our understanding of other ABC transporters is limited, and most of the 49 human ABC transporters have been largely neglected as potential targets for novel small-molecule drugs. This is especially true for the ABCA subfamily, which contains several members known to play a role in AD initiation and progression. This review provides up-to-date information on the proposed functional background and pathological role of ABCA transporters in AD. We also provide an overview of small-molecules shown to interact with ABCA transporters as well as potential in silico, in vitro, and in vivo methodologies to gain novel templates for the development of innovative ABC transporter-targeting diagnostics and therapeutics.
Collapse
Affiliation(s)
- Jens Pahnke
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Oslo, Norway
- LIED, University of Lübeck, Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia, Rīga, Latvia
| | - Pablo Bascuñana
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Mirjam Brackhan
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Oslo, Norway
- LIED, University of Lübeck, Lübeck, Germany
| | - Katja Stefan
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Vigneshwaran Namasivayam
- Department of Pharmaceutical and Cellbiological Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Radosveta Koldamova
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Jingyun Wu
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Luisa Möhle
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Sven Marcel Stefan
- Department of Pathology, Section of Neuropathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
10
|
Dehghani N, Guven G, Kun-Rodrigues C, Gouveia C, Foster K, Hanagasi H, Lohmann E, Samanci B, Gurvit H, Bilgic B, Bras J, Guerreiro R. A comprehensive analysis of copy number variation in a Turkish dementia cohort. Hum Genomics 2021; 15:48. [PMID: 34321086 PMCID: PMC8317312 DOI: 10.1186/s40246-021-00346-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/09/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Copy number variants (CNVs) include deletions or multiplications spanning genomic regions. These regions vary in size and may span genes known to play a role in human diseases. As examples, duplications and triplications of SNCA have been shown to cause forms of Parkinson's disease, while duplications of APP cause early onset Alzheimer's disease (AD). RESULTS Here, we performed a systematic analysis of CNVs in a Turkish dementia cohort in order to further characterize the genetic causes of dementia in this population. One hundred twenty-four Turkish individuals, either at risk of dementia due to family history, diagnosed with mild cognitive impairment, AD, or frontotemporal dementia, were whole-genome genotyped and CNVs were detected. We integrated family analysis with a comprehensive assessment of potentially disease-associated CNVs in this Turkish dementia cohort. We also utilized both dementia and non-dementia individuals from the UK Biobank in order to further elucidate the potential role of the identified CNVs in neurodegenerative diseases. We report CNVs overlapping the previously implicated genes ZNF804A, SNORA70B, USP34, XPO1, and a locus on chromosome 9 which includes a cluster of olfactory receptors and ABCA1. Additionally, we also describe novel CNVs potentially associated with dementia, overlapping the genes AFG1L, SNX3, VWDE, and BC039545. CONCLUSIONS Genotyping data from understudied populations can be utilized to identify copy number variation which may contribute to dementia.
Collapse
Affiliation(s)
- Nadia Dehghani
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Gamze Guven
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Celia Kun-Rodrigues
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Catarina Gouveia
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Kalina Foster
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA
- Neuroscience Department, Michigan State University College of Natural Science, East Lansing, MI, USA
| | - Hasmet Hanagasi
- Behavioural Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ebba Lohmann
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- DZNE, German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Bedia Samanci
- Behavioural Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Hakan Gurvit
- Behavioural Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Basar Bilgic
- Behavioural Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Jose Bras
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA
- Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Rita Guerreiro
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA.
- Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA.
| |
Collapse
|
11
|
Ye WC, Huang SF, Hou LJ, Long HJ, Yin K, Hu CY, Zhao GJ. Potential Therapeutic Targeting of lncRNAs in Cholesterol Homeostasis. Front Cardiovasc Med 2021; 8:688546. [PMID: 34179148 PMCID: PMC8224755 DOI: 10.3389/fcvm.2021.688546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/19/2021] [Indexed: 12/19/2022] Open
Abstract
Maintaining cholesterol homeostasis is essential for normal cellular and systemic functions. Long non-coding RNAs (lncRNAs) represent a mechanism to fine-tune numerous biological processes by controlling gene expression. LncRNAs have emerged as important regulators in cholesterol homeostasis. Dysregulation of lncRNAs expression is associated with lipid-related diseases, suggesting that manipulating the lncRNAs expression could be a promising therapeutic approach to ameliorate liver disease progression and cardiovascular disease (CVD). However, given the high-abundant lncRNAs and the poor genetic conservation between species, much work is required to elucidate the specific role of lncRNAs in regulating cholesterol homeostasis. In this review, we highlighted the latest advances in the pivotal role and mechanism of lncRNAs in regulating cholesterol homeostasis. These findings provide novel insights into the underlying mechanisms of lncRNAs in lipid-related diseases and may offer potential therapeutic targets for treating lipid-related diseases.
Collapse
Affiliation(s)
- Wen-Chu Ye
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Shi-Feng Huang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Lian-Jie Hou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Hai-Jiao Long
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China.,Xiangya Hospital, Central South University, Changsha, China
| | - Kai Yin
- Guangxi Key Laboratory of Diabetic Systems Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, China
| | - Ching Yuan Hu
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Guo-Jun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| |
Collapse
|
12
|
Luo Y, Lv B, He S, Zou K, Hu K. Identification of Gene as Predictive Biomarkers for the Occurrence and Recurrence of Osteosarcoma. Int J Gen Med 2021; 14:1773-1783. [PMID: 33994806 PMCID: PMC8113014 DOI: 10.2147/ijgm.s312277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/20/2021] [Indexed: 01/03/2023] Open
Abstract
Purpose Osteosarcoma is the most common malignant bone cancer affecting adolescents and young adults. This study aimed to screen potential diagnostic and therapeutic markers for osteosarcoma. Methods Differential expression analysis between osteosarcoma and control was performed in GSE99671, the differentially expressed genes (DEGs) were subjected to co-expression analysis. Enrichment analysis was employed to identify the biological functions and KEGG signaling pathways of module genes. In addition, a differential analysis was also performed between recurrent and non-recurrent osteosarcoma samples in GSE39055, and enrichment analysis was performed for DEGs. Further, Kaplan–Meier curve analysis was performed on the module genes, and receiver operating characteristic (ROC) curve was drawn. Comparison of the module with the highest correlation to osteosarcoma identified key genes. Cox regression model was utilized to identify the predictive ability of key genes for the prognosis of osteosarcoma. Results A total of 13 co-expression modules were identified from 4871 DEGs of GSE99671, module 1 had the highest positive correlation with osteosarcoma. Module genes were mainly enriched in autophagy and macrophage migration functions. A total of 1126 DEGs were obtained from GSE39055, significantly involved in neutrophil mediated immunity. Screening of genes with area under the ROC curve (AUC) values greater than 0.73 in both GSE99671 and GSE39055 identified 5 key genes when compared with genes from module 1. The nomogram results showed that ATF5, CHCHD8, ENOPH1, and LOC286367 might predict 5-year or 8-year survival time of osteosarcoma patients. The Cox model results confirmed that the signals of ATF5, CHCHD8, and LOC286367 were robust, and it may be used in the diagnosis, treatment, and prognosis of osteosarcoma. Conclusion We found that ATF5, CHCHD8, and LOC286367 can effectively identify osteosarcoma tumorigenesis and even recurrence status. This is helpful for early diagnosis and treatment, improving the clinical treatment of patients with osteosarcoma.
Collapse
Affiliation(s)
- Yuanguo Luo
- Department of Orthopedics, The 923rd Hospital of the Joint Logistics Support Force of the People's Liberation Army, Nanning, People's Republic of China
| | - Bo Lv
- Department of Orthopedics, People's Hospital of Guilin, Guilin, Guangxi, 541001, People's Republic of China.,Department of Orthopedics, Fifth Clinical Medical College, Guilin Medical University, Guilin, Guangxi, 541001, People's Republic of China
| | - Shaokang He
- Department of Orthopedics, The Tenth People's Hospital of Nanning, Nanning, Guangxi, 530105, People's Republic of China
| | - Kai Zou
- Department of Orthopedics, The 923rd Hospital of the Joint Logistics Support Force of the People's Liberation Army, Nanning, People's Republic of China
| | - Kezhi Hu
- Department of Orthopedics, People's Hospital of Guilin, Guilin, Guangxi, 541001, People's Republic of China.,Department of Orthopedics, Fifth Clinical Medical College, Guilin Medical University, Guilin, Guangxi, 541001, People's Republic of China
| |
Collapse
|
13
|
Wang Z, Ni S, Zhang H, Fan Y, Xia L, Li N. Silencing SGK1 alleviates osteoarthritis through epigenetic regulation of CREB1 and ABCA1 expression. Life Sci 2021; 268:118733. [PMID: 33171176 DOI: 10.1016/j.lfs.2020.118733] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/27/2020] [Accepted: 11/04/2020] [Indexed: 12/30/2022]
Abstract
AIM Osteoarthritis (OA) is the most common joint disorder and a leading cause of disability. While early proactive management is crucial in alleviating symptoms in OA patients, currently available therapeutic approaches are yet to achieve an ideal level of efficacy. The path to the development of a potent treatment begins with the thorough understanding of the pathophysiology of OA. The present study aims to explore the mechanism by which SGK1 is involved in OA progression. METHODS Firstly, the potential target gene of SGK1 was screened and SGK1 expression was determined in OA through bioinformatics analysis. Mouse OA model was then established and chondrocytes were extracted, after which inflammation was induced with lipopolysaccharide (LPS). Following LPS treatment, the chondrocytes were transfected with synthesized plasmids to explore the impact of SGK1, CREB1, and ABCA1 on apoptosis, proliferation and inflammation in OA. ChIP-PCR and dual-luciferase reporter gene assay were conducted to determine the binding relation between SGK1 and CREB1 as well as between CREB1 and ABCA1. RESULTS OA mice presented with high expression of SGK1. Interestingly, we found that SGK1 inhibited CREB1 expression in chondrocytes, thereby inducing inflammation and suppressing chondrocyte proliferation. CREB1 was found to have a positive correlation with ABCA1 expression, while down-regulation of CREB1 resulted in the inhibition of cell proliferation and aggravated inflammation, which could be reversed by overexpressed ABCA1. CONCLUSION Taken altogether, silencing of SGK1 alleviated OA through epigenetic regulation of CREB1 and ABCA1 expression. These findings may provide novel insight into SGK1-based strategy for OA treatment.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Orthopaedics, the First Affiliated Hospital of Zhengzhou University, No. 1, Eastern Jianshe Road, Zhengzhou 450000, Henan Province, PR China
| | - Shuangfei Ni
- Department of Orthopaedics, the First Affiliated Hospital of Zhengzhou University, No. 1, Eastern Jianshe Road, Zhengzhou 450000, Henan Province, PR China
| | - Huafeng Zhang
- Department of Orthopaedics, the First Affiliated Hospital of Zhengzhou University, No. 1, Eastern Jianshe Road, Zhengzhou 450000, Henan Province, PR China
| | - Yonggang Fan
- Department of Orthopaedics, the First Affiliated Hospital of Zhengzhou University, No. 1, Eastern Jianshe Road, Zhengzhou 450000, Henan Province, PR China
| | - Lei Xia
- Department of Orthopaedics, the First Affiliated Hospital of Zhengzhou University, No. 1, Eastern Jianshe Road, Zhengzhou 450000, Henan Province, PR China.
| | - Ning Li
- Department of Orthopaedics, the First Affiliated Hospital of Zhengzhou University, No. 1, Eastern Jianshe Road, Zhengzhou 450000, Henan Province, PR China.
| |
Collapse
|
14
|
Zhang S, Li L, Wang J, Zhang T, Ye T, Wang S, Xing D, Chen W. Recent advances in the regulation of ABCA1 and ABCG1 by lncRNAs. Clin Chim Acta 2021; 516:100-110. [PMID: 33545111 DOI: 10.1016/j.cca.2021.01.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
Abstract
Coronary heart disease (CHD) with atherosclerosis is the leading cause of death worldwide. ABCA1 and ABCG1 promote cholesterol efflux to suppress foam cell generation and reduce atherosclerosis development. Long noncoding RNAs (lncRNAs) are emerging as a unique group of RNA transcripts that longer than 200 nucleotides and have no protein-coding potential. Many studies have found that lncRNAs regulate cholesterol efflux to influence atherosclerosis development. ABCA1 is regulated by different lncRNAs, including MeXis, GAS5, TUG1, MEG3, MALAT1, Lnc-HC, RP5-833A20.1, LOXL1-AS1, CHROME, DAPK1-IT1, SIRT1 AS lncRNA, DYNLRB2-2, DANCR, LeXis, LOC286367, and LncOR13C9. ABCG1 is also regulated by different lncRNAs, including TUG1, GAS5, RP5-833A20.1, DYNLRB2-2, ENST00000602558.1, and AC096664.3. Thus, various lncRNAs are associated with the roles of ABCA1 and ABCG1 on cholesterol efflux in atherosclerosis regulation. However, some lncRNAs play dual roles in ABCA1 expression and atherosclerosis, and the functions of some lncRNAs in atherosclerosis have not been investigated in vivo. In this article, we review the roles of lncRNAs in atherosclerosis and focus on new insights into lncRNAs associated with the roles of ABCA1 and ABCG1 on cholesterol efflux and the potential of these lncRNAs as novel therapeutic targets in atherosclerosis.
Collapse
Affiliation(s)
- Shun Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Lu Li
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Jie Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Tingting Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Ting Ye
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Shuai Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China; School of Medical Imaging, Radiotherapy Department of Affiliated Hospital, Weifang Medical University, Weifang, Shandong 261053, China
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Wujun Chen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China.
| |
Collapse
|
15
|
Yan Y, Song D, Wu J, Wang J. Long Non-Coding RNAs Link Oxidized Low-Density Lipoprotein With the Inflammatory Response of Macrophages in Atherogenesis. Front Immunol 2020; 11:24. [PMID: 32082313 PMCID: PMC7003668 DOI: 10.3389/fimmu.2020.00024] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis is characterized as a chronic inflammatory response to cholesterol deposition in arteries. Low-density lipoprotein (LDL), especially the oxidized form (ox-LDL), plays a crucial role in the occurrence and development of atherosclerosis by inducing endothelial cell (EC) dysfunction, attracting monocyte-derived macrophages, and promoting chronic inflammation. However, the mechanisms linking cholesterol accumulation with inflammation in macrophage foam cells are poorly understood. Long non-coding RNAs (lncRNAs) are a group of non-protein-coding RNAs longer than 200 nucleotides and are found to regulate the progress of atherosclerosis. Recently, many lncRNAs interfering with cholesterol deposition or inflammation were identified, which might help elucidate their underlying molecular mechanism or be used as novel therapeutic targets. In this review, we summarize and highlight the role of lncRNAs linking cholesterol (mainly ox-LDL) accumulation with inflammation in macrophages during the process of atherosclerosis.
Collapse
Affiliation(s)
- Youyou Yan
- Department of Cardiology, Second Hospital of Jilin University, Changchun, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Dandan Song
- Department of Clinical Laboratory, Second Hospital of Jilin University, Changchun, China
| | - Junduo Wu
- Department of Cardiology, Second Hospital of Jilin University, Changchun, China
| | - Junnan Wang
- Department of Cardiology, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|