1
|
Fu L, Zheng X, Luo J, Zhang Y, Gao X, Jin L, Liu W, Zhang C, Gao D, Xu B, Jiang Q, Chou S, Luo L. Machine learning accelerates the discovery of epitope-based dual-bioactive peptides against skin infections. Int J Antimicrob Agents 2024; 64:107371. [PMID: 39486466 DOI: 10.1016/j.ijantimicag.2024.107371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/03/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
OBJECTIVES Skin injuries and infections are an inevitable part of daily human life, particularly with chronic wounds, becoming an increasing socioeconomic burden. In treating skin infections and promoting wound healing, bioactive peptides may hold significant potential, particularly those possessing antimicrobial and anti-inflammatory properties. However, obtaining these peptides solely through traditional wet laboratory experiments is costly and time-consuming, and peptides identified by current computer-assisted predictive models largely lack validation of their effects via wet laboratory experiments. Consequently, this study aimed to integrate computer-assisted methods and traditional wet laboratory experiments to identify anti-inflammatory and antimicrobial peptides. METHODS We developed a computer-assisted mining pipeline to screen potential peptides from the epitopes of the major histocompatibility complex class II. RESULTS The peptide AIMP1 was identified, with the ability to physically damage Escherichia coli by increasing bacterial cell membrane permeability, and with the ability to inhibit inflammation by binding to endotoxin-lipopolysaccharide. Additionally, in an LPS-induced inflammation animal model, AIMP1 slightly increased levels of proinflammatory cytokines (TNF-α, IL-1β, and IL-6), and in a skin wound infection animal model, AIMP1 effectively accelerated healing, reduced levels of these pro-inflammatory cytokines, and showed no acute hepatotoxicity or nephrotoxicity. CONCLUSIONS In conclusion, this study not only developed a computer-assisted mining pipeline for identifying anti-inflammatory and antimicrobial peptides but also successfully pinpointed the peptide AIMP1, demonstrating its therapeutic potential for skin injury treatment.
Collapse
Affiliation(s)
- Le Fu
- Department of Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, PR China
| | - Xu Zheng
- Department of Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, PR China
| | - Jiawen Luo
- Department of Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, PR China
| | - Yiyu Zhang
- Department of Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, PR China
| | - Xue Gao
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, PR China
| | - Li Jin
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, PR China
| | - Wenting Liu
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, PR China
| | - Chaoqun Zhang
- Department of Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, PR China
| | - Dongyu Gao
- Department of Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, PR China
| | - Bocheng Xu
- Hangzhou Shenji Technology Co. Ltd, Hangzhou, PR China
| | - Qingru Jiang
- Department of Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, PR China.
| | - Shuli Chou
- Department of Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, PR China
| | - Liang Luo
- Department of Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, PR China.
| |
Collapse
|
2
|
Miatmoko A, Sarasitha Hariawan B, Maulidya Cahyani D, Kurnia Anjani Q, Annuryanti F, Tarimi Octavia R, Legowo D, Eko Purwantari K, Rosita N, Purwati, Donnelly RF, Melani Hariyadi D. Dissolving microneedle patches for delivery of amniotic mesenchymal stem cell metabolite products for skin regeneration in UV-aging induced mice. Eur J Pharm Biopharm 2024; 204:114482. [PMID: 39278334 DOI: 10.1016/j.ejpb.2024.114482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/06/2024] [Accepted: 09/02/2024] [Indexed: 09/18/2024]
Abstract
Microneedles offer a promising solution to enhancing dermal delivery of amniotic mesenchymal stem cell metabolite product (AMSC-MP), which contains hydrophilic protein components with high molecular weight, for the purposes of skin rejuvenation and improving human health. This study aimed to evaluate the physicochemical characteristics and in vivo efficacy of AMSC-MP-loaded microneedle patches for effectively regenerating skin tissues in UV-aging induced mice. Dissolving microneedle patches, composed of polyvinyl alcohol with an MW of 9-10 kDa and polyvinylpyrrolidone with an MW of 56 kDa, were fabricated using the double-casting method at three AMSC-MP concentrations: i.e., 30 % (MN30), 25 % (MN25), and 20 % (MN20). The microneedles patches were then evaluated for morphological, mechanical resistance, and insertion properties. An ex vivo release study was also conducted using the Franz cell method, and in vivo efficacy and irritation were then determined through collagen density scores, fibroblast cell counts, and skin irritation studies of UV-aging induced mice. The AMSC-MP microneedles displayed a pyramidal shape with 500 µm sharp tips. Mechanical testing revealed that MN30 achieved its deepest insertion into Parafilm® M (447.44 ± 37.21 µm), while MN25 achieved its deepest insertion into full-thickness porcine skin (717.92 ± 25.40 µm). The study revealed a controlled EGF release for up to 24 h, with MN20 exhibiting the highest deposition (55.94 ± 12.34 %). These findings demonstrate the successful penetration of microneedles through the stratum corneum and viable epidermis. Collagen density scores and fibroblast cell counts were significantly higher in all microneedle formulations than the control, with MN30 having the highest values. Inflammatory cell counts indicated minimal presence suggesting non-irritation in the in vivo study. Dissolving microneedle patches exhibited favorable characteristics and efficiently delivered AMSC-MP with minimal potential for irritation, providing potential technology for delivering biological anti-aging agents for the purposes of fostering skin regeneration.
Collapse
Affiliation(s)
- Andang Miatmoko
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya 60115, Indonesia; Stem Cell Research and Development Center, Universitas Airlangga, 2nd Floor Institute of Tropical Disease Building, Campus C UNAIR Mulyorejo Surabaya 60115, Indonesia; Skin and Cosmetic Technology Centre of Excellence, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya 60115, Indonesia.
| | - Berlian Sarasitha Hariawan
- Master Program of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya 60115, Indonesia
| | - Devy Maulidya Cahyani
- Master Program of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya 60115, Indonesia
| | - Qonita Kurnia Anjani
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya 60115, Indonesia; School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Febri Annuryanti
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya 60115, Indonesia
| | - Rifda Tarimi Octavia
- Master Program of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya 60115, Indonesia
| | - Djoko Legowo
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Kusuma Eko Purwantari
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Noorma Rosita
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya 60115, Indonesia; Skin and Cosmetic Technology Centre of Excellence, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya 60115, Indonesia
| | - Purwati
- Stem Cell Research and Development Center, Universitas Airlangga, 2nd Floor Institute of Tropical Disease Building, Campus C UNAIR Mulyorejo Surabaya 60115, Indonesia
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Dewi Melani Hariyadi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya 60115, Indonesia; Skin and Cosmetic Technology Centre of Excellence, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya 60115, Indonesia
| |
Collapse
|
3
|
Sierra-Sánchez Á, Cabañas-Penagos J, Igual-Roger S, Martínez-Heredia L, Espinosa-Ibáñez O, Sanabria-de la Torre R, Quiñones-Vico MI, Ubago-Rodríguez A, Lizana-Moreno A, Fernández-González A, Guerrero-Calvo J, Fernández-Porcel N, Ramírez-Muñoz A, Arias-Santiago S. Biological properties and characterization of several variations of a clinical human plasma-based skin substitute model and its manufacturing process. Regen Biomater 2024; 11:rbae115. [PMID: 39469583 PMCID: PMC11513639 DOI: 10.1093/rb/rbae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/07/2024] [Accepted: 09/11/2024] [Indexed: 10/30/2024] Open
Abstract
Human plasma is a natural biomaterial that due to their protein composition is widely used for the development of clinical products, especially in the field of dermatology. In this context, this biomaterial has been used as a scaffold alone or combined with others for the development of cellular human plasma-based skin substitutes (HPSSs). Herein, the biological properties (cell viability, cell metabolic activity, protein secretion profile and histology) of several variations of a clinical HPSS model, regarding the biomaterial composition (alone or combined with six secondary biomaterials - serine, fibronectin, collagen, two types of laminins and hyaluronic acid), the cellular structure (trilayer, bilayer, monolayer and control without cells) and their skin tissue of origin (abdominal or foreskin cells) and the manufacturing process [effect of partial dehydration process in cell viability and comparison between submerged (SUB) and air/liquid interface (ALI) methodologies] have been evaluated and compared. Results reveal that the use of human plasma as a main biomaterial determines the in vitro properties, rather than the secondary biomaterials added. Moreover, the characteristics are similar regardless of the skin cells used (from abdomen or foreskin). However, the manufacture of more complex cellular substitutes (trilayer and bilayer) has been demonstrated to be better in terms of cell viability, metabolic activity and wound healing protein secretion (bFGF, EGF, VEGF-A, CCL5) than monolayer HPSSs, especially when ALI culture methodology is applied. Moreover, the application of the dehydration, although required to achieve an appropriate clinical structure, reduce cell viability in all cases. These data indicate that this HPSS model is robust and reliable and that the several subtypes here analysed could be promising clinical approaches depending on the target dermatological disease.
Collapse
Affiliation(s)
- Álvaro Sierra-Sánchez
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
- Department of Dermatology, Virgen de las Nieves University Hospital, Granada, 18012, Spain
| | - Jorge Cabañas-Penagos
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
| | - Sandra Igual-Roger
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
| | - Luis Martínez-Heredia
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Olga Espinosa-Ibáñez
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Raquel Sanabria-de la Torre
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, University of Granada, Granada, 18071, Spain
| | - María I Quiñones-Vico
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
- Department of Dermatology, University of Granada, Granada, 18016, Spain
| | - Ana Ubago-Rodríguez
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Antonio Lizana-Moreno
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Ana Fernández-González
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Jorge Guerrero-Calvo
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Natividad Fernández-Porcel
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Arena Ramírez-Muñoz
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
| | - Salvador Arias-Santiago
- Andalusian Network of Design and Translation of Advanced Therapies, Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, 18012, Spain
- Department of Dermatology, Virgen de las Nieves University Hospital, Granada, 18012, Spain
- Department of Dermatology, University of Granada, Granada, 18016, Spain
| |
Collapse
|
4
|
Rosenberg FM, van der Most PJ, Loman L, Kamali Z, Dittmar D, Snieder H, Schuttelaar MLA. A genome-wide association study of hand eczema identifies locus 20q13.33 and reveals genetic overlap with atopic dermatitis. Contact Dermatitis 2024; 91:190-202. [PMID: 38924601 DOI: 10.1111/cod.14619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Twin studies revealed that genetic effects play a role in hand eczema (HE), but the responsible genetic factors are unknown. OBJECTIVES To identify and characterise genetic loci associated with HE and to provide insight into the genetic overlap between HE and atopic dermatitis (AD). METHODS We used questionnaire-derived and genotype data from the European population-based Lifelines cohort and biobank. We performed a discovery genome-wide association study (GWAS) of HE (2879 cases and 16 249 controls) and of AD (1706 cases and 17 190 controls). We replicated our findings in an independent Lifelines sample for HE (1188 cases and 6431 controls) and AD (757 cases and 6747 controls). We conducted several post-GWAS analyses and performed genetic correlation analyses between our HE results and independent AD data. RESULTS The two-step GWAS of HE, regardless of adjusting for AD, identified one independent locus 20q13.33, likely driven by a number of causal single-nucleotide polymorphisms. For the AD GWAS, we replicated a known stop-gained rs61816761 at locus 1q21.3 (FLG, FLGAS1). We found a strong genetic correlation (p < 0.01) between HE and AD (rg = 0.65), regardless of adjusting for AD (rg = 0.63). CONCLUSIONS Locus 20q13.33 is associated with HE, and there is a large genetic overlap between HE and AD.
Collapse
Affiliation(s)
- Fieke M Rosenberg
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Peter J van der Most
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Laura Loman
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Zoha Kamali
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Bioinformatics, School of Advanced Medical Technologies, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Daan Dittmar
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Harold Snieder
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marie L A Schuttelaar
- Department of Dermatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
He Q, Qi Q, Ibeanu GC, Li PA. B355252 Suppresses LPS-Induced Neuroinflammation in the Mouse Brain. Brain Sci 2024; 14:467. [PMID: 38790446 PMCID: PMC11119117 DOI: 10.3390/brainsci14050467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
B355252 is a small molecular compound known for potentiating neural growth factor and protecting against neuronal cell death induced by glutamate in vitro and cerebral ischemia in vivo. However, its other biological functions remain unclear. This study aims to investigate whether B355252 suppresses neuroinflammatory responses and cell death in the brain. C57BL/6j mice were intraperitoneally injected with a single dosage of lipopolysaccharide (LPS, 1 mg/kg) to induce inflammation. B355252 (1 mg/kg) intervention was started two days prior to the LPS injection. The animal behavioral changes were assessed pre- and post-LPS injections. The animal brains were harvested at 4 and 24 h post-LPS injection, and histological, biochemical, and cytokine array outcomes were examined. Results showed that B355252 improved LPS-induced behavioral deterioration, mitigated brain tissue damage, and suppressed the activation of microglial and astrocytes. Furthermore, B355252 reduced the protein levels of key pyroptotic markers TLR4, NLRP3, and caspase-1 and inhibited the LPS-induced increases in IL-1β, IL-18, and cytokines. In conclusion, B355252 demonstrates a potent anti-neuroinflammatory effect in vivo, suggesting that its potential therapeutic value warrants further investigation.
Collapse
Affiliation(s)
- Qingping He
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), College of Health and Sciences, North Carolina Central University, Durham, NC 27707, USA; (Q.H.); (G.C.I.)
| | - Qi Qi
- Human Vaccine Institute, Department of Surgery, Duke University Medical Center, Durham, NC 27707, USA;
| | - Gordon C. Ibeanu
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), College of Health and Sciences, North Carolina Central University, Durham, NC 27707, USA; (Q.H.); (G.C.I.)
| | - P. Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), College of Health and Sciences, North Carolina Central University, Durham, NC 27707, USA; (Q.H.); (G.C.I.)
| |
Collapse
|
6
|
Rosenberg FM, Kamali Z, Voorberg AN, Oude Munnink TH, van der Most PJ, Snieder H, Vaez A, Schuttelaar MLA. Transcriptomics- and Genomics-Guided Drug Repurposing for the Treatment of Vesicular Hand Eczema. Pharmaceutics 2024; 16:476. [PMID: 38675137 PMCID: PMC11054470 DOI: 10.3390/pharmaceutics16040476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Vesicular hand eczema (VHE), a clinical subtype of hand eczema (HE), showed limited responsiveness to alitretinoin, the only approved systemic treatment for severe chronic HE. This emphasizes the need for alternative treatment approaches. Therefore, our study aimed to identify drug repurposing opportunities for VHE using transcriptomics and genomics data. We constructed a gene network by combining 52 differentially expressed genes (DEGs) from a VHE transcriptomics study with 3 quantitative trait locus (QTL) genes associated with HE. Through network analysis, clustering, and functional enrichment analyses, we investigated the underlying biological mechanisms of this network. Next, we leveraged drug-gene interactions and retrieved pharmaco-transcriptomics data from the DrugBank database to identify drug repurposing opportunities for (V)HE. We developed a drug ranking system, primarily based on efficacy, safety, and practical and pricing factors, to select the most promising drug repurposing candidates. Our results revealed that the (V)HE network comprised 78 genes that yielded several biological pathways underlying the disease. The drug-gene interaction search together with pharmaco-transcriptomics lookups revealed 123 unique drug repurposing opportunities. Based on our drug ranking system, our study identified the most promising drug repurposing opportunities (e.g., vitamin D analogues, retinoids, and immunomodulating drugs) that might be effective in treating (V)HE.
Collapse
Affiliation(s)
- Fieke M. Rosenberg
- Department of Dermatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (F.M.R.); (A.N.V.)
| | - Zoha Kamali
- Department of Epidemiology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands (H.S.)
- Department of Bioinformatics, School of Advanced Medical Technologies, Isfahan University of Medical Sciences, Isfahan P.O. Box 81746-7346, Iran
| | - Angelique N. Voorberg
- Department of Dermatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (F.M.R.); (A.N.V.)
| | - Thijs H. Oude Munnink
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Peter J. van der Most
- Department of Epidemiology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands (H.S.)
| | - Harold Snieder
- Department of Epidemiology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands (H.S.)
| | - Ahmad Vaez
- Department of Epidemiology, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands (H.S.)
- Department of Bioinformatics, School of Advanced Medical Technologies, Isfahan University of Medical Sciences, Isfahan P.O. Box 81746-7346, Iran
| | - Marie L. A. Schuttelaar
- Department of Dermatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (F.M.R.); (A.N.V.)
| |
Collapse
|
7
|
Matwiejuk M, Myśliwiec H, Chabowski A, Flisiak I. An Overview of Growth Factors as the Potential Link between Psoriasis and Metabolic Syndrome. J Clin Med 2023; 13:109. [PMID: 38202116 PMCID: PMC10780265 DOI: 10.3390/jcm13010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024] Open
Abstract
Psoriasis is a chronic, complex, and immunologically mediated systemic disease that not only affects the skin, but also the joints and nails. It may coexist with various other disorders, such as depression, psoriatic arthritis, cardiovascular diseases, diabetes mellitus, and metabolic syndrome. In particular, the potential link between psoriasis and metabolic syndrome is an issue worthy of attention. The dysregulation of growth factors could potentially contribute to the disturbances of keratinocyte proliferation, inflammation, and itch severity. However, the pathophysiology of psoriasis and its comorbidities, such as metabolic syndrome, remains incompletely elucidated. Growth factors and their abnormal metabolism may be a potential link connecting these conditions. Overall, the objective of this review is to analyze the role of growth factor disturbances in both psoriasis and metabolic syndrome.
Collapse
Affiliation(s)
- Mateusz Matwiejuk
- Department of Dermatology and Venereology, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Hanna Myśliwiec
- Department of Dermatology and Venereology, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Iwona Flisiak
- Department of Dermatology and Venereology, Medical University of Bialystok, 15-089 Bialystok, Poland
| |
Collapse
|
8
|
Jang HJ, Lee JB, Yoon JK. Advanced In Vitro Three-Dimensional Skin Models of Atopic Dermatitis. Tissue Eng Regen Med 2023; 20:539-552. [PMID: 36995643 PMCID: PMC10313606 DOI: 10.1007/s13770-023-00532-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/11/2023] [Accepted: 02/19/2023] [Indexed: 03/31/2023] Open
Abstract
Atopic dermatitis (AD) is one of the most prevalent inflammatory skin diseases that is characterized by eczematous rashes, intense itching, dry skin, and sensitive skin. Although AD significantly impacts the quality of life and the number of patients keeps increasing, its pathological mechanism is still unknown because of its complexity. The importance of developing new in vitro three-dimensional (3D) models has been underlined in order to understand the mechanisms for the development of therapeutics since the limitations of 2D models or animal models have been repeatedly reported. Thus, the new in vitro AD models should not only be created in 3D structure, but also reflect the pathological characteristics of AD, which are known to be associated with Th2-mediated inflammatory responses, epidermal barrier disruption, increased dermal T-cell infiltration, filaggrin down-regulation, or microbial imbalance. In this review, we introduce various types of in vitro skin models including 3D culture methods, skin-on-a-chips, and skin organoids, as well as their applications to AD modeling for drug screening and mechanistic studies.
Collapse
Affiliation(s)
- Hye-Jeong Jang
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea
| | - Jung Bok Lee
- Department of Biological Sciences, Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| | - Jeong-Kee Yoon
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| |
Collapse
|
9
|
Thornton CP, Perrin N, Kozachik S, Lukkahatai N, Ruble K. Biobehavioral Influences of Stress and Inflammation on Mucositis in Adolescents and Young Adults with Cancer: Results from a Pilot Study. J Adolesc Young Adult Oncol 2023; 12:340-348. [PMID: 36169621 PMCID: PMC10282803 DOI: 10.1089/jayao.2022.0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
Purpose: Chemotherapy-induced mucositis is a prevalent and burdensome toxicity among adolescent and young adults (AYAs) with cancer and impedes the delivery of optimal therapy. Its development is not well understood, but baseline stress and inflammation may be contributory factors. This pilot study evaluates stress and inflammation as risk factors for mucositis, identifies effect size estimates, and evaluates the feasibility of a prospective study to investigate mucositis development. Methods: Thirty AYAs receiving chemotherapy with substantial risk of mucositis completed baseline stress measures, and serum was collected for inflammatory biomarker analysis. Regression and mediation analyses determined the relationship between stress/inflammation and mucositis. Results: Stress appears to be a significant risk factor for incidence of mucositis (odds ratio 1.13, p = 0.125) and predicts total mucositis score (β = 0.281, p = 0.023) as well as peak incidence (β = 0.052, p = 0.018). Baseline levels of interleukin (IL)-1a and epidermal growth factor (EGF) predicted mucositis development, and EGF and IL-8 may mediate the relationship between stress and mucositis. Findings suggest that stress-induced inflammation exacerbates symptom development. Conclusion: Results from this pilot study inform mucositis symptom models, suggesting that psychosocial and physiologic factors are involved in development. Importantly, this pilot study provides initial effect size estimates, including magnitude and direction of relationships, that are essential to informing larger, more robustly powered studies. High enrollment, low attrition, and minimal missing data in this study suggest this model is feasible for research in this population. Importantly, this work is a first step in identifying new risk factors for mucositis and targets for nurse-led interventions to prevent toxicity development.
Collapse
Affiliation(s)
- Clifton P. Thornton
- Division of Pediatric Hematology/Oncology, Herman and Walter Samuelson Children's Hospital at Sinai, Johns Hopkins School of Nursing, Baltimore, Maryland, USA
| | - Nancy Perrin
- Johns Hopkins School of Nursing, Baltimore, Maryland, USA
| | - Sharon Kozachik
- Medical University of South Carolina College of Nursing, Charleston, South Carolina, USA
| | - Nada Lukkahatai
- Division of Pediatric Hematology/Oncology, Herman and Walter Samuelson Children's Hospital at Sinai, Johns Hopkins School of Nursing, Baltimore, Maryland, USA
| | - Kathy Ruble
- Division of Pediatric Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Shahin H, Abdallah S, Das J, He W, El-Serafi I, Steinvall I, Sjöberg F, Elmasry M, El-Serafi AT. miRNome and Proteome Profiling of Human Keratinocytes and Adipose Derived Stem Cells Proposed miRNA-Mediated Regulations of Epidermal Growth Factor and Interleukin 1-Alpha. Int J Mol Sci 2023; 24:4956. [PMID: 36902387 PMCID: PMC10002856 DOI: 10.3390/ijms24054956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 03/08/2023] Open
Abstract
Wound healing is regulated by complex crosstalk between keratinocytes and other cell types, including stem cells. In this study, a 7-day direct co-culture model of human keratinocytes and adipose-derived stem cells (ADSCs) was proposed to study the interaction between the two cell types, in order to identify regulators of ADSCs differentiation toward the epidermal lineage. As major mediators of cell communication, miRNome and proteome profiles in cell lysates of cultured human keratinocytes and ADSCs were explored through experimental and computational analyses. GeneChip® miRNA microarray, identified 378 differentially expressed miRNAs; of these, 114 miRNAs were upregulated and 264 miRNAs were downregulated in keratinocytes. According to miRNA target prediction databases and the Expression Atlas database, 109 skin-related genes were obtained. Pathway enrichment analysis revealed 14 pathways including vesicle-mediated transport, signaling by interleukin, and others. Proteome profiling showed a significant upregulation of the epidermal growth factor (EGF) and Interleukin 1-alpha (IL-1α) compared to ADSCs. Integrated analysis through cross-matching the differentially expressed miRNA and proteins suggested two potential pathways for regulations of epidermal differentiation; the first is EGF-based through the downregulation of miR-485-5p and miR-6765-5p and/or the upregulation of miR-4459. The second is mediated by IL-1α overexpression through four isomers of miR-30-5p and miR-181a-5p.
Collapse
Affiliation(s)
- Hady Shahin
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, 58185 Linköping, Sweden
- The Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden
- Faculty of Biotechnology, Modern Sciences and Arts University, Cario 12585, Egypt
| | - Sallam Abdallah
- The Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden
| | - Jyotirmoy Das
- Bioinformatics, Core Facility, Division of Cell Biology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, 58183 Linköping, Sweden
- Clinical Genomics Linköping, SciLife Laboratory, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, 58183 Linköping, Sweden
| | - Weihai He
- The Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden
| | - Ibrahim El-Serafi
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, 58185 Linköping, Sweden
- Basic Medical Sciences Department, College of Medicine, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Department of Biochemistry, Faculty of Medicine, Port-Said University, Port Fouad City 42526, Egypt
| | - Ingrid Steinvall
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, 58185 Linköping, Sweden
- The Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden
| | - Folke Sjöberg
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, 58185 Linköping, Sweden
- The Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden
| | - Moustafa Elmasry
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, 58185 Linköping, Sweden
- The Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden
| | - Ahmed T. El-Serafi
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, 58185 Linköping, Sweden
- The Department of Biomedical and Clinical Sciences, Linköping University, 58183 Linköping, Sweden
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
11
|
Worsley AL, Lui DH, Ntow-Boahene W, Song W, Good L, Tsui J. The importance of inflammation control for the treatment of chronic diabetic wounds. Int Wound J 2022. [PMID: 36564054 DOI: 10.1111/iwj.14048] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/25/2022] Open
Abstract
Diabetic chronic wounds cause massive levels of patient suffering and economic problems worldwide. The state of chronic inflammation arises in response to a complex combination of diabetes mellitus-related pathophysiologies. Advanced treatment options are available; however, many wounds still fail to heal, exacerbating morbidity and mortality. This review describes the chronic inflammation pathophysiologies in diabetic ulcers and treatment options that may help address this dysfunction either directly or indirectly. We suggest that treatments to reduce inflammation within these complex wounds may help trigger healing.
Collapse
Affiliation(s)
- Anna L Worsley
- Royal Veterinary College, Department of Pathobiology and Population Sciences, London, UK.,UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, UCL Division of Surgery and Interventional Science, University College London, London, UK
| | - Dennis H Lui
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, UCL Division of Surgery and Interventional Science, University College London, London, UK
| | - Winnie Ntow-Boahene
- Royal Veterinary College, Department of Pathobiology and Population Sciences, London, UK.,UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, UCL Division of Surgery and Interventional Science, University College London, London, UK
| | - Wenhui Song
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, UCL Division of Surgery and Interventional Science, University College London, London, UK
| | - Liam Good
- Royal Veterinary College, Department of Pathobiology and Population Sciences, London, UK
| | - Janice Tsui
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, UCL Division of Surgery and Interventional Science, University College London, London, UK
| |
Collapse
|
12
|
Marsella R, Ahrens K, Wilkes R. Differences in Behavior between Normal and Atopic Keratinocytes in Culture: Pilot Studies. Vet Sci 2022; 9:vetsci9070329. [PMID: 35878346 PMCID: PMC9319359 DOI: 10.3390/vetsci9070329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Skin barrier dysfunction is important in atopic dermatitis and can be secondary to inflammation. Observation of keratinocytes in culture may show intrinsic differences. TransEpithelial Electrical Resistance (TEER) measures epithelial permeability. We cultured normal and atopic keratinocytes and found that TEER of atopic keratinocytes was significantly lower (p < 0.0001) than that of normals. Atopic keratinocytes grew upwards, first creating isolated dome-like structures and later horizontally into a monolayer. At time of confluence (D0), atopic keratinocytes were more differentiated, with higher filaggrin gene expression than normals. No differences existed between groups for TJ proteins (claudin, occludin, and Zonula Occludens-1) on D0 and D6. On D6, claudin and occludin were higher than D0, in normal (p = 0.0296 and p = 0.0011) and atopic keratinocytes (p = 0.0348 and 0.0491). Immunofluorescent staining showed nuclear location of filaggrin on D0 and cytoplasmic on D6. ANOVA showed increased cell size from D0 to D6 in both groups (effect of time, p = 0.0076) but no differences between groups. Significant subject effect (p = 0.0022) was found, indicating that cell size was subject-dependent but not disease-dependent. No difference for continuity for TJ protein existed between groups. These observations suggest that decreased TEER in atopics is not linked to TJ differences but is possibly linked to different growth behavior.
Collapse
|
13
|
Kim J, Park SK. Differences in Physical Characteristics of the Lower Extremity and Running Biomechanics Between Different Age Groups. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074320. [PMID: 35410001 PMCID: PMC8998726 DOI: 10.3390/ijerph19074320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 12/10/2022]
Abstract
(1) Background: The objective of this study was to determine physical and biomechanical changes in age groups upon running. (2) Method: 75 male adults (20–80s) participated in the study. Bone mineral density and lower extremity joint strength were measured according to age-increase targeting. Based on age, correlations among running characteristics, impulse, impact force, maximum vertical ground reaction force, loading rate, lower extremity joint 3D range of motion, joint moment, and power upon running motion were calculated. (3) Result: Older runners tended to show lower bone mineral density, extremity maximum strength, stride time, and stride distance, with smaller RoM and joint power of ankle and knee joints in the sagittal plane, compared with younger subjects. However, there were no significant correlations between age and impact variables (i.e., impulse, impact force, peak GRF, and loading rate) during running. (4) Conclusion: Older runners tend to show weaker physical strength characteristics, such as bone mineral density and muscle strength and lower joint functionality of ankle and knee joints during running, compared with younger runners. Therefore, strengthening the lower extremity muscle and improving dynamic joint function, especially for ankle joints, can be helpful for injury prevention during running.
Collapse
Affiliation(s)
- Jongbin Kim
- Division of Kinesiology, Silla University, Busan 46958, Korea;
| | - Sang-Kyoon Park
- Motion Innovation Center, Korea National Sport University, Seoul 05541, Korea
- Correspondence: ; Tel.: +82-10-5378-9617
| |
Collapse
|
14
|
Jung N, Kong T, Yu Y, Park H, Lee E, Yoo S, Baek S, Lee S, Kang KS. Immunomodulatory Effect of Epidermal Growth Factor Secreted by Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells on Atopic Dermatitis. Int J Stem Cells 2022; 15:311-323. [PMID: 35220283 PMCID: PMC9396020 DOI: 10.15283/ijsc21173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 11/09/2022] Open
Abstract
Background and Objectives Human mesenchymal stem cells (MSCs) are emerging as a treatment for atopic dermatitis (AD), a chronic inflammatory skin disorder that affects a large number of people across the world. Treatment of AD using human umbilical cord blood-derived MSCs (hUCB-MSCs) has recently been studied. However, the mechanism underlying their effect needs to be studied continuously. Thus, the objective of this study was to investigate the immunomodulatory effect of epidermal growth factor (EGF) secreted by hUCB-MSCs on AD. Methods and Results To explore the mechanism involved in the therapeutic effect of MSCs for AD, a secretome array was performed using culture medium of hUCB-MSCs. Among the list of genes common for epithelium development and skin diseases, we focused on the function of EGF. To elucidate the effect of EGF secreted by hUCB-MSCs, EGF was downregulated in hUCB-MSCs using EGF-targeting small interfering RNA. These cells were then co-cultured with keratinocytes, Th2 cells, and mast cells. Depletion of EGF disrupted immunomodulatory effects of hUCB-MSCs on these AD-related inflammatory cells. In a Dermatophagoides farinae-induced AD mouse model, subcutaneous injection of hUCB-MSCs ameliorated gross scoring, histopathologic damage, and mast cell infiltration. It also significantly reduced levels of inflammatory cytokines including interleukin (IL)-4, tumor necrosis factor (TNF)-α, thymus and activation-regulated chemokine (TARC), and IL-22, as well as IgE levels. These therapeutic effects were significantly attenuated at all evaluation points in mice injected with EGF-depleted hUCB-MSCs. Conclusions EGF secreted by hUCB-MSCs can improve AD by regulating inflammatory responses of keratinocytes, Th2 cells, and mast cells.
Collapse
Affiliation(s)
- Namhee Jung
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co., Ltd., Seoul, Korea
| | - TaeHo Kong
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co., Ltd., Seoul, Korea
| | - Yeonsil Yu
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co., Ltd., Seoul, Korea
| | - Hwanhee Park
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co., Ltd., Seoul, Korea
| | - Eunjoo Lee
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co., Ltd., Seoul, Korea
| | - SaeMi Yoo
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co., Ltd., Seoul, Korea
| | - SongYi Baek
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co., Ltd., Seoul, Korea
| | - Seunghee Lee
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co., Ltd., Seoul, Korea
| | - Kyung-Sun Kang
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co., Ltd., Seoul, Korea
- Adult Stem Cell Research Center, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
15
|
Jaurila H, Koskela M, Koivukangas V, Gäddnäs F, Salo T, Ala-Kokko TI. Growth factor expression is enhanced and extracellular matrix proteins are depressed in healing skin wounds in septic patients compared with healthy controls. APMIS 2021; 130:155-168. [PMID: 34939229 PMCID: PMC9305760 DOI: 10.1111/apm.13175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 11/28/2022]
Abstract
Sepsis manifests as a dysregulated immune response to infection, damaging organs. Skin has a critical role in protecting the body. In sepsis, skin wound healing is impaired. The mechanisms behind it have been poorly studied. In this study, suction blister wounds were induced on intact abdominal skin in 15 septic patients. A single blister wound was biopsied from each patient and from 10 healthy controls. Immunohistochemical staining of growth factors and extracellular matrix (ECM) proteins was performed. Significance (p < 0.05) of the differences was calculated. The following growth factors were overexpressed in the skin of septic patients compared with healthy controls: epithelial growth factor (intact epithelium p = 0.007, migrating epithelium p = 0.038), vascular epithelial growth factor (intact epithelium p < 0.001, migrating epithelium p = 0.011) and transforming growth factor beta (migrating epithelium p = 0.002). The expression of syndecan‐1 was upregulated in the skin of septic patients compared with healthy controls (intact epithelium p = 0.048, migrating epithelium p = 0.028). The following ECM proteins had lower expression in the epithelium in septic patients than in healthy controls: tenascin‐C (migrating epithelium p = 0.03) and laminin‐332 (intact epithelium p = 0.036). In sepsis, growth factor and syndecan expression was enhanced, while ECM and basement membrane proteins were mostly depressed.
Collapse
Affiliation(s)
- Henna Jaurila
- ¹Research Group of Surgery, Anesthesia and Intensive Care, Oulu University Hospital, Oulu, Finland, Medical Research Center Oulu, University of Oulu, Finland.,Cancer and Translational Medicine Research Unit, Faculty of Medicine, Medical Research Center Oulu, University of Oulu, Finland
| | - Marjo Koskela
- ¹Research Group of Surgery, Anesthesia and Intensive Care, Oulu University Hospital, Oulu, Finland, Medical Research Center Oulu, University of Oulu, Finland
| | - Vesa Koivukangas
- ¹Research Group of Surgery, Anesthesia and Intensive Care, Oulu University Hospital, Oulu, Finland, Medical Research Center Oulu, University of Oulu, Finland
| | - Fiia Gäddnäs
- ¹Research Group of Surgery, Anesthesia and Intensive Care, Oulu University Hospital, Oulu, Finland, Medical Research Center Oulu, University of Oulu, Finland
| | - Tuula Salo
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, Medical Research Center Oulu, University of Oulu, Finland.,Research Group of Oral Health Sciences, Oulu University Hospital, Medical Research Center Oulu, University of Oulu, Finland
| | - Tero I Ala-Kokko
- ¹Research Group of Surgery, Anesthesia and Intensive Care, Oulu University Hospital, Oulu, Finland, Medical Research Center Oulu, University of Oulu, Finland
| |
Collapse
|
16
|
Gallegos-Alcalá P, Jiménez M, Cervantes-García D, Salinas E. The Keratinocyte as a Crucial Cell in the Predisposition, Onset, Progression, Therapy and Study of the Atopic Dermatitis. Int J Mol Sci 2021; 22:ijms221910661. [PMID: 34639001 PMCID: PMC8509070 DOI: 10.3390/ijms221910661] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022] Open
Abstract
The keratinocyte (KC) is the main functional and structural component of the epidermis, the most external layer of the skin that is highly specialized in defense against external agents, prevention of leakage of body fluids and retention of internal water within the cells. Altered epidermal barrier and aberrant KC differentiation are involved in the pathophysiology of several skin diseases, such as atopic dermatitis (AD). AD is a chronic inflammatory disease characterized by cutaneous and systemic immune dysregulation and skin microbiota dysbiosis. Nevertheless, the pathological mechanisms of this complex disease remain largely unknown. In this review, we summarize current knowledge about the participation of the KC in different aspects of the AD. We provide an overview of the genetic predisposing and environmental factors, inflammatory molecules and signaling pathways of the KC that participate in the physiopathology of the AD. We also analyze the link among the KC, the microbiota and the inflammatory response underlying acute and chronic skin AD lesions.
Collapse
Affiliation(s)
- Pamela Gallegos-Alcalá
- Department of Microbiology, Center of Basic Science, Autonomous University of Aguascalientes, Aguascalientes 20100, Mexico; (P.G.-A.); (M.J.); (D.C.-G.)
| | - Mariela Jiménez
- Department of Microbiology, Center of Basic Science, Autonomous University of Aguascalientes, Aguascalientes 20100, Mexico; (P.G.-A.); (M.J.); (D.C.-G.)
| | - Daniel Cervantes-García
- Department of Microbiology, Center of Basic Science, Autonomous University of Aguascalientes, Aguascalientes 20100, Mexico; (P.G.-A.); (M.J.); (D.C.-G.)
- National Council of Science and Technology, Ciudad de México 03940, Mexico
| | - Eva Salinas
- Department of Microbiology, Center of Basic Science, Autonomous University of Aguascalientes, Aguascalientes 20100, Mexico; (P.G.-A.); (M.J.); (D.C.-G.)
- Correspondence: ; Tel.: +52-449-9108424
| |
Collapse
|
17
|
Yang GH, Lee YB, Kang D, Choi E, Nam Y, Lee KH, You HJ, Kang HJ, An SH, Jeon H. Overcome the barriers of the skin: exosome therapy. Biomater Res 2021; 25:22. [PMID: 34217362 PMCID: PMC8254055 DOI: 10.1186/s40824-021-00224-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/23/2021] [Indexed: 01/06/2023] Open
Abstract
Exosomes are nano-sized cargos with a lipid bilayer structure carrying diverse biomolecules including lipids, proteins, and nucleic acids. These small vesicles are secreted by most types of cells to communicate with each other. Since exosomes circulate through bodily fluids, they can transfer information not only to local cells but also to remote cells. Therefore, exosomes are considered potential biomarkers for various treatments. Recently, studies have shown the efficacy of exosomes in skin defects such as aging, atopic dermatitis, and wounds. Also, exosomes are being studied to be used as ingredients in commercialized skin treatment products. In this review, we discussed the need for exosomes in skin therapy together with the current challenges. Moreover, the functional roles of exosomes in terms of skin treatment and regeneration are overviewed. Finally, we highlighted the major limitations and the future perspective in exosome engineering.
Collapse
Affiliation(s)
- Gi Hoon Yang
- Research Institute of Additive Manufacturing and Regenerative Medicine, Baobab Healthcare Inc., 55 Hanyangdaehak-Ro, Ansan-si, Gyeonggi-Do, 15588, South Korea
| | - Yoon Bum Lee
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Cheombok-ro, Dong-gu, Daegu, 41061, South Korea
| | - Donggu Kang
- Research Institute of Additive Manufacturing and Regenerative Medicine, Baobab Healthcare Inc., 55 Hanyangdaehak-Ro, Ansan-si, Gyeonggi-Do, 15588, South Korea
| | - Eunjeong Choi
- Research Institute of Additive Manufacturing and Regenerative Medicine, Baobab Healthcare Inc., 55 Hanyangdaehak-Ro, Ansan-si, Gyeonggi-Do, 15588, South Korea
| | - Yoonju Nam
- Research Institute of Additive Manufacturing and Regenerative Medicine, Baobab Healthcare Inc., 55 Hanyangdaehak-Ro, Ansan-si, Gyeonggi-Do, 15588, South Korea
| | - Kyoung Ho Lee
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Cheombok-ro, Dong-gu, Daegu, 41061, South Korea
| | - Hi-Jin You
- Department of Plastic Surgery, Korea University Ansan Hospital, 123 Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-Do, 15355, South Korea
| | - Hyo Jin Kang
- Biomedical Research Center, Korea University Ansan Hospital, 123 Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-Do, 15355, South Korea
| | - Sang Hyun An
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Cheombok-ro, Dong-gu, Daegu, 41061, South Korea.
| | - Hojun Jeon
- Research Institute of Additive Manufacturing and Regenerative Medicine, Baobab Healthcare Inc., 55 Hanyangdaehak-Ro, Ansan-si, Gyeonggi-Do, 15588, South Korea.
| |
Collapse
|
18
|
Törőcsik D, Fazekas F, Póliska S, Gregus A, Janka EA, Dull K, Szegedi A, Zouboulis CC, Kovács D. Epidermal Growth Factor Modulates Palmitic Acid-Induced Inflammatory and Lipid Signaling Pathways in SZ95 Sebocytes. Front Immunol 2021; 12:600017. [PMID: 34025636 PMCID: PMC8134683 DOI: 10.3389/fimmu.2021.600017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 04/19/2021] [Indexed: 11/20/2022] Open
Abstract
Epidermal growth factor (EGF) acts as a paracrine and autocrine mediator of cell proliferation and differentiation in various types of epithelial cells, such as sebocytes, which produce the lipid-rich sebum to moisturize the skin. However, sebum lipids via direct contact and by penetrating through the epidermis may have regulatory roles on epidermal and dermal cells as well. As EGF receptor (EGFR) is expressed throughout the proliferating and the lipid-producing layers of sebaceous glands (SGs) in healthy and acne-involved skin, we investigated the effect of EGF on SZ95 sebocytes and how it may alter the changes induced by palmitic acid (PA), a major sebum component with bioactive roles. We found that EGF is not only a potent stimulator of sebocyte proliferation, but also induces the secretion of interleukin (IL)6 and down-regulates the expression of genes involved in steroid and retinoid metabolism. Importantly, when applied in combination with PA, the PA-induced lipid accumulation was decreased and the cells secreted increased IL6 levels. Functional clustering of the differentially regulated genes in SZ95 sebocytes treated with EGF, PA or co-treated with EGF+PA further confirmed that EGF may be a potent inducer of hyperproliferative/inflammatory pathways (IL1 signaling), an effect being more pronounced in the presence of PA. However, while a group of inflammatory genes was up-regulated significantly in EGF+PA co-treated sebocytes, PA treatment in the absence of EGF, regulated genes only related to cell homeostasis. Meta-analysis of the gene expression profiles of whole acne tissue samples and EGF- and EGF+PA -treated SZ95 sebocytes showed that the EGF+PA co-activation of sebocytes may also have implications in disease. Altogether, our results reveal that PA-induced lipid accumulation and inflammation can be modulated by EGF in sebocytes, which also highlights the need for system biological approaches to better understand sebaceous (immuno)biology.
Collapse
Affiliation(s)
- Dániel Törőcsik
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Fruzsina Fazekas
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilárd Póliska
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Gregus
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Eszter Anna Janka
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Katalin Dull
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Szegedi
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Division of Dermatological Allergology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
| | - Dóra Kovács
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
19
|
Yasar Z, Elliott BT, Kyriakidou Y, Nwokoma CT, Postlethwaite RD, Gaffney CJ, Dewhurst S, Hayes LD. Sprint interval training (SIT) reduces serum epidermal growth factor (EGF), but not other inflammatory cytokines in trained older men. Eur J Appl Physiol 2021; 121:1909-1919. [PMID: 33723630 PMCID: PMC8192388 DOI: 10.1007/s00421-021-04635-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/05/2021] [Indexed: 02/06/2023]
Abstract
Purpose The present study aimed to investigate the effect of age on circulating pro- and anti-inflammatory cytokines and growth factors. A secondary aim was to investigate whether a novel sprint interval training (SIT) intervention (3 × 20 s ‘all out’ static sprints, twice a week for 8 weeks) would affect inflammatory markers in older men. Methods Nine older men [68 (1) years] and eleven younger men [28 (2) years] comprised the younger group. Aerobic fitness and inflammatory markers were taken at baseline for both groups and following the SIT intervention for the older group. Results Interleukin (IL)-8, vascular endothelial growth factor (VEGF), and monocyte chemoattractant protein-1 (MCP-1) were unchanged for the older and younger groups at baseline (IL-8, p = 0.819; MCP-1, p = 0.248; VEGF, p = 0.264). Epidermal growth factor (EGF) was greater in the older group compared to the younger group at baseline [142 (20) pg mL−1 and 60 (12) pg mL−1, respectively, p = 0.001, Cohen's d = 1.64]. Following SIT, older men decreased EGF to 100 (12) pg mL−1 which was similar to that of young men who did not undergo training (p = 0.113, Cohen's d = 1.07). Conclusion Older aerobically trained men have greater serum EGF than younger aerobically trained men. A novel SIT intervention in older men can shift circulating EGF towards trained younger concentrations. As lower EGF has previously been associated with longevity in C. elegans, the manipulative effect of SIT on EGF in healthy ageing in the human may be of further interest.
Collapse
Affiliation(s)
- Zerbu Yasar
- Active Ageing Research Group, Institute of Health, University of Cumbria, Lancaster, UK
| | - Bradley T Elliott
- Translational Physiology Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, 115 New Cavendish St, London, W1W 6UW, UK.
| | - Yvoni Kyriakidou
- Translational Physiology Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, 115 New Cavendish St, London, W1W 6UW, UK
| | - Chiazor T Nwokoma
- Translational Physiology Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, 115 New Cavendish St, London, W1W 6UW, UK
| | - Ruth D Postlethwaite
- Active Ageing Research Group, Institute of Health, University of Cumbria, Lancaster, UK.,Faculty of Health and Life Sciences, Coventry University, Coventry, UK
| | - Christopher J Gaffney
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Susan Dewhurst
- Department of Rehabilitation and Sport Sciences, Bournemouth University, Bournemouth, UK
| | - Lawrence D Hayes
- Active Ageing Research Group, Institute of Health, University of Cumbria, Lancaster, UK.,School of Health and Life Sciences, University of the West of Scotland, Glasgow, UK
| |
Collapse
|
20
|
Mouritzen MV, Petkovic M, Qvist K, Poulsen SS, Alarico S, Leal EC, Dalgaard LT, Empadinhas N, Carvalho E, Jenssen H. Improved diabetic wound healing by LFcinB is associated with relevant changes in the skin immune response and microbiota. Mol Ther Methods Clin Dev 2021; 20:726-739. [PMID: 33738327 PMCID: PMC7940703 DOI: 10.1016/j.omtm.2021.02.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/05/2021] [Indexed: 12/12/2022]
Abstract
Bovine lactoferricin (LFcinB) has antimicrobial and immunomodulatory properties; however, the effects on diabetic wound healing remain poorly understood. The wound healing potential of LFcinB was investigated with in vitro, ex vivo, and in vivo models. Cell migration and proliferation were tested on keratinocytes and on porcine ears. A type 1 diabetic mouse model was also used to evaluate wound healing kinetics, bacterial diversity patterns, and the effect of LFcinB on oxidative stress, macrophage phenotype, angiogenesis, and collagen deposition. LFcinB increased keratinocyte migration in vitro (p < 0.05) and ex vivo (p < 0.001) and improved wound healing in diabetic mice (p < 0.05), though not in normoglycemic control mice. In diabetic mouse wounds, LFcinB treatment led to the eradication of Bacillus pumilus, a decrease in Staphylococcus aureus, and an increase in the Staphylococcus xylosus prevalence. LFcinB increased angiogenesis in diabetic mice (p < 0.01), but this was decreased in control mice (p < 0.05). LFcinB improved collagen deposition in both diabetic and control mice (p < 0.05). Both oxidative stress and the M1-to-M2 macrophage ratios were decreased in LFcinB-treated wounds of diabetic animals (p < 0.001 and p < 0.05, respectively) compared with saline, suggesting a downregulation of inflammation in diabetic wounds. In conclusion, LFcinB treatment demonstrated noticeable positive effects on diabetic wound healing.
Collapse
Affiliation(s)
| | - Marija Petkovic
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Katrine Qvist
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Steen S. Poulsen
- Department of Biomedical Science, University of Copenhagen, Copenhagen, Denmark
| | - Susana Alarico
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Ermelindo C. Leal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Louise T. Dalgaard
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Nuno Empadinhas
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Eugenia Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- Department of Geriatrics, University of Arkansas for Medical Sciences, and Arkansas Children’s Research Institute, Little Rock, AR, USA
| | - Håvard Jenssen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
21
|
Mishra A, Vijayasarathy C, Cukras CA, Wiley HE, Sen HN, Zeng Y, Wei LL, Sieving PA. Immune function in X-linked retinoschisis subjects in an AAV8-RS1 phase I/IIa gene therapy trial. Mol Ther 2021; 29:2030-2040. [PMID: 33601057 DOI: 10.1016/j.ymthe.2021.02.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/27/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
This study explored systemic immune changes in 11 subjects with X-linked retinoschisis (XLRS) in a phase I/IIa adeno-associated virus 8 (AAV8)-RS1 gene therapy trial (ClinicalTrials.gov: NCT02317887). Immune cell proportions and serum analytes were compared to 12 healthy male controls. At pre-dosing baseline the mean CD4/CD8 ratio of XLRS subjects was elevated. CD11c+ myeloid dendritic cells (DCs) and the serum epidermal growth factor (EGF) level were decreased, while CD123+ plasmacytoid DCs and serum interferon (IFN)-γ and tumor necrosis factor (TNF)-α were increased, indicating that the XLRS baseline immune status differs from that of controls. XLRS samples 14 days after AAV8-RS1 administration were compared with the XLRS baseline. Frequency of CD11b+CD11c+ DCc was decreased in 8 of 11 XLRS subjects across all vector doses (1e9-3e11 vector genomes [vg]/eye). CD8+human leukocyte antigen-DR isotype (HLA-DR)+ cytotoxic T cells and CD68+CD80+ macrophages were upregulated in 10 of 11 XLRS subjects, along with increased serum granzyme B in 8 of 11 XLRS subjects and elevated IFN-γ in 9 of 11 XLRS subjects. The six XLRS subjects with ocular inflammation after vector application gave a modestly positive correlation of inflammation score to their respective baseline CD4/CD8 ratios. This exploratory study indicates that XLRS subjects may exhibit a proinflammatory, baseline immune phenotype, and that intravitreal dosing with AAV8-RS1 leads to systemic immune activation with an increase of activated lymphocytes, macrophages, and proinflammatory cytokines.
Collapse
Affiliation(s)
- Alaknanda Mishra
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Catherine A Cukras
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Henry E Wiley
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - H Nida Sen
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yong Zeng
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lisa L Wei
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul A Sieving
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Ophthalmology, University of California Davis, Davis, CA 95817, USA.
| |
Collapse
|
22
|
rhEGF Treatment Improves EGFR Inhibitor-Induced Skin Barrier and Immune Defects. Cancers (Basel) 2020; 12:cancers12113120. [PMID: 33113881 PMCID: PMC7692663 DOI: 10.3390/cancers12113120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 01/29/2023] Open
Abstract
Simple Summary In our prior study, we demonstrated that recombinant human epidermal growth factor (rhEGF) treatment is effective for managing epidermal growth factor receptor inhibitors (EGFRIs)-related skin toxicities and improves patients’ quality of life (QoL) compared with placebo. Nevertheless, the mechanisms of rhEGF effects are unknown yet so basic study is needed to clarify the mechanisms. In this study, we revealed that treatment of rhEGF in human epidermal keratinocytes, 3d-cultured human skin tissue and patient lesions improved EGFRIs-induced skin eruption via normalizing proliferation and differentiation of keratinocytes, reducing inflammatory cytokines expression and inducing expression of AMPs. These findings provided an evidence for the use of rhEGF as a treatment for skin side effects derived from EGFRI. Abstract The mechanisms of epidermal growth factor (EGF) affecting EGF receptor inhibitor (EGFRI)-related skin toxicities are as yet unknown. We investigated which mechanisms are involved in EGF’s positive effects. Two types of EGFRIs, cetuximab and gefitinib, were used to treat the cells or 3d-cultured human skin tissue with recombinant human EGF (rhEGF). As a result, rhEGF increased EGFR and pEGFR expression. Furthermore, rhEGF induces EGFR signaling by pAKT and pPI3K expression in gefitinib and rhEGF co-treated cells. In addition, rhEGF bound to EGFR after than cetuximab, but cetuximab bound to EGFR more strongly than rhEGF. Moreover, expressions of proliferation and differentiation proteins, both ki-67 and filaggrin, were decreased in EGFRI-treated tissue. However, in rhEGF and EGFRI co-treated tissue, those expressions were increased. Expression of IL-1α, IL-8, and TNF-α was increased by EGFRIs and down-regulated by rhEGF. Furthermore, hBD-2 and hBD-3 protein expressions were inhibited by cetuximab or gefitinib treatment, and those decrements were increased by rhEGF treatment. In patients’ tissue evaluation, compared with controls, patients’ Ki-67 and EGFR expression were decreased (p = 0.015, p = 0.001). Patients’ IL-17 and TNF-α expression intensity was higher than that of the control group (p = 0.038, p = 0.037). After treatment with EGF ointment, average values of Ki-67, EGFR, and Melan-A were changed to normal values. Oppositely, patients’ proportions of IL-17 and TNF-α were decreased to low stain level. In conclusion, treatment of rhEGF improved EGFRI-induced skin eruption via normalizing the proliferation and differentiation of keratinocytes, reducing inflammatory cytokines by the affected EGFRIs.
Collapse
|
23
|
Anitua E, Troya M, Goñi F, Gómez P, Tierno R, Pino A. A Novel Autologous Topical Serum Based on Plasma Rich in Growth Factors Technology Counteracts Ultraviolet Light-Derived Photo-Oxidative Stress. Skin Pharmacol Physiol 2020; 33:67-81. [DOI: 10.1159/000507716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/02/2020] [Indexed: 11/19/2022]
|
24
|
Chou PR, Lin YN, Wu SH, Lin SD, Srinivasan P, Hsieh DJ, Huang SH. Supercritical Carbon Dioxide-decellularized Porcine Acellular Dermal Matrix combined with Autologous Adipose-derived Stem Cells: Its Role in Accelerated Diabetic Wound Healing. Int J Med Sci 2020; 17:354-367. [PMID: 32132871 PMCID: PMC7053351 DOI: 10.7150/ijms.41155] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/05/2020] [Indexed: 11/05/2022] Open
Abstract
Diabetes mellitus (DM) causes impaired wound healing by affecting one or more of the biological mechanisms of hemostasis, inflammation, proliferation, and remodeling and a large number of cell types, extracellular components, growth factors, and cytokines. Interventions targeted toward these mechanisms might accelerate the wound healing process. To evaluate the wound healing efficacy of supercritical carbon dioxide (scCO2)-decellularized porcine acellular dermal matrix (ADM) combined with autologous adipose-derived stem cells (ASCs) in streptozotocin (STZ)-induced DM rats. DM was induced by injecting rats with STZ; dorsal full-thickness skin (5 × 5 cm2) was created and treated with and without ASCs-scCO2-treated ADM to evaluate the wound healing rate through histological examination, fluorescence microscopic observation, and immunohistochemical analysis. In the present study, complete decellularization of the porcine dermal matrix was achieved through scCO2. Isolation of ASCs was conducted and evaluated using CD29+/CD31-/CD45-/CD90+ markers in flow cytometry, which indicated that more than 90% of cells were ASCs. The percentage of cells labeled with CD29+ and CD90+ was found to be 97.50% and 99.69%, respectively. The wound healing rate increased in all groups relative to the group with the DM wound without treatment. DM wound treated with ADM-ASCs showed significantly higher (p < 0.01) wound healing rate than DM wound without treatment. ADM-ASC-treated rats showed significantly increased epidermal growth factor, Ki67, and prolyl 4-hydroxylase and significantly decreased CD45 compared with the group with the DM wound without treatment. The intervention comprising ADM decellularized from porcine skin by using scCO2 and ASCs was proven to improve diabetic wound healing. ADM-ASCs had a positive effect on epidermal regeneration, anti-inflammation, collagen production and processing, and cell proliferation; thus, it accelerated wound healing.
Collapse
Affiliation(s)
- Ping-Ruey Chou
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yun-Nan Lin
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Sheng-Hua Wu
- Department of Anesthesiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.,Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.,Department of Anesthesiology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 807, Taiwan
| | - Sin-Daw Lin
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Periasamy Srinivasan
- Center of Research and Development, ACRO Biomedical Co., Ltd. Kaohsiung 821, Taiwan
| | - Dar-Jen Hsieh
- Center of Research and Development, ACRO Biomedical Co., Ltd. Kaohsiung 821, Taiwan
| | - Shu-Hung Huang
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.,Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
25
|
Kattaia AAA, Selim AO, Selim SA, Abd El-Baset SA. Epidermal growth factor attenuates lingual papillae lesions in a rat model of sialoadenectomy. Tissue Cell 2019; 63:101319. [PMID: 32223947 DOI: 10.1016/j.tice.2019.101319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 01/20/2023]
Abstract
Salivary epidermal growth factor (EGF) plays an important role in the maintenance of the oral and gastro-esophageal mucosa. Sialoadenectomy delays healing of oral wounds and affects lingual papillae. In this work, we aimed to determine the effect of EGF deficiency induced by sialoadenectomy and evaluate the effect of exogenous EGF administration on the lingual papillae and taste buds in rats. Thirty male adult Wistar albino rats were equally divided into 3 groups; sham-operated control group, sialoadenectomy group and group of sialoadenectomy + EGF. EGF was given 8 weeks after sialoadenectomy in a dose of 1 μg /ml/day in drinking water for 2 weeks. The anterior two-thirds of the tongue was dissected and cut longitudinally into two halves; one half for light microscope and the other for electron microscope examinations. Saliva and blood were collected to determine salivary and plasma EGF. Our results revealed that sialoadenectomy significantly reduced plasma and saliva levels of EGF which resulted in severe disruption of the architecture of lingual papillae. These changes were effectively improved by the exogenous EGF administration. In conclusion, EGF supplementation reversed the effects of sialoadenectomy and restored almost normal architecture of lingual papillae and taste buds.
Collapse
Affiliation(s)
- Asmaa A A Kattaia
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Egypt
| | - Assmaa O Selim
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Egypt
| | - Sally A Selim
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Egypt
| | - Samia A Abd El-Baset
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Egypt.
| |
Collapse
|
26
|
The Dichotomous Nature of AZ5104 (an EGFR Inhibitor) Towards RORγ and RORγT. Int J Mol Sci 2019; 20:ijms20225780. [PMID: 31744223 PMCID: PMC6887705 DOI: 10.3390/ijms20225780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/20/2022] Open
Abstract
The RORC (RAR related orphan receptor C) gene produces two isoforms by alternative promoter usage: RORγ (nuclear receptor ROR-gamma isoform 1) and RORγT (nuclear receptor ROR-gamma isoform 1). Both proteins have distinct tissue distributions and are involved in several physiological processes, including glucose/lipid metabolism and the development of Th17 lymphocytes. Previously, we developed a stably transfected reporter cell line and used it to screen a library of kinase inhibitors. We found that AZ5104 acts as an RORγ agonist at low micromolar concentrations. Molecular docking analysis showed that this compound occupies the ligand binding domain of the receptor with a significant docking score. However, analysis of the biological activity of this compound in Th17 cells revealed that it downregulates RORγT expression and Th17-related cytokine production via inhibition of SRC-ERK-STAT3 (SRC proto-oncogene - extracellular regulated MAP kinase - signal transducer and activator of transcription 3). We thus identified a compound acting as an agonist of RORγ that, due to the inhibition of downstream elements of EGFR (epidermal growth factor receptor) signaling, exerts different biological activity towards a Th17-specific isoform. Additionally, our results may be relevant in the future for the design of treatments targeting signaling pathways that inhibit Th17-related inflammation in certain autoimmune disorders.
Collapse
|
27
|
Butt H, Mehmood A, Ali M, Tasneem S, Tarar MN, Riazuddin S. Vitamin E preconditioning alleviates in vitro thermal stress in cultured human epidermal keratinocytes. Life Sci 2019; 239:116972. [PMID: 31654744 DOI: 10.1016/j.lfs.2019.116972] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/04/2019] [Accepted: 10/14/2019] [Indexed: 02/07/2023]
Abstract
AIMS Thermal burns are the most common type of skin injuries. Clinically, the deteriorating thermal wounds have been successfully treated with skin cell sheets, suspensions or bioengineered skin substitutes. After thermal injury, oxidative microenvironment prevalent in the burnt tissue due to imbalance between production of free radicals and antioxidants defense aiding to destruction of cellular or tissue components. However, depleted antioxidant content particularly vitamin E after heat injury challenges efficient regenerative and healing capacity of transplanted cells. Thus, aim of current study was to pretreat human epidermal keratinocytes with vitamin E in order to enhance their survival rate and therapeutic ability under oxidative microenvironment induced by in vitro heat stress. MAIN METHODS Keratinocytes were treated with 100 μM vitamin E at 37 °C for 24 h followed by thermal stress at 51 °C for 10 min. Cell viability and cytotoxicity assays, gene expression analysis and paracrine release analysis were performed. KEY FINDINGS Vitamin E preconditioning resulted in significantly improved cell morphology, enhanced viability and reduced lactate dehydrogenase release. Furthermore, Vitamin E preconditioned cells exposed to thermal stress showed significant down-regulated expression of BAX and up-regulated expression of PCNA, BCL-XL, vascular endothelial growth factor (VEGF), involucrin, transglutaminase 1 (TGM1) and filaggrin (FLG) escorted by increased paracrine release of VEGF, basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF). SIGNIFICANCE Results of the current study suggest that clinical transplantation of vitamin E preconditioned keratinocytes alone or in combination with dermal fibroblasts in skin substitutes for the treatment of thermally injured skin.
Collapse
Affiliation(s)
- Hira Butt
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| | - Azra Mehmood
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| | - Muhammad Ali
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| | - Saba Tasneem
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| | - Moazzam N Tarar
- Jinnah Burn & Reconstructive Surgery Centre, Lahore, Pakistan
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, 87-West Canal Bank Road, University of the Punjab, Lahore, Pakistan; Jinnah Burn & Reconstructive Surgery Centre, Lahore, Pakistan.
| |
Collapse
|
28
|
Kim JM, Choo JE, Kim KN, Kim YS. Potential protective effects of rhEGF against ultraviolet A irradiation-induced damages on human fibroblasts. Clin Cosmet Investig Dermatol 2018; 11:505-513. [PMID: 30410380 PMCID: PMC6199234 DOI: 10.2147/ccid.s170697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background Ultraviolet A (UVA) rays reach the dermal skin layer and generate oxidative stress, DNA damage, and cell inflammation, which in turn lead to photo-aging and photo-carcinogenesis. While there have been many studies about the beneficial effects of topical epidermal growth factor (EGF) treatment in the healing of wounds, the effect of EGF on UVA-induced skin irritation remains unknown. To clarify the effects of EGF on UVA-induced skin damage, it was investigated whether EGF signaling can affect intracellular reactive oxygen species (ROS) and DNA damages in UVA-irradiated human dermal fibroblasts. Materials and methods Fibroblasts cultured with or without rhEGF were UVA-irradiated at 40 mJ/cm2 twice per day for 5 days. After the irradiation, the intracellular ROS levels and expression of catalase and superoxide dismutase-1 (SOD-1) in the fibroblasts were ascertained. Further investigation to determine the effects of EGF on UVA-induced DNA damage, including a single cell gel electrophoresis assay and an enzyme-linked immunosorbent assay (ELISA), was carried out. Moreover, the NF-κB activity was ascertained in order to investigate the effects of EGF on UVA-irradiated fibroblasts. Results As a result, it was revealed that recombinant human EGF (rhEGF) inhibited UVA- increased intracellular ROS in the fibroblasts and increased the expression of catalase and SOD-1. Moreover, in UVA-irradiated fibroblasts, the longest DNA-damaged tails were observed, but this phenomenon was not detected in cells cotreated with both UVA and rhEGF. Also, it was observed that DNA damage induction, including that of cyclobutene pyrimidine dimers, pyrimidine (6-4) pyrimidone photoproducts, and 8-hydroxy-2-deoxyguanosine, was caused by UVA irradiation. Similar to previous results, it was downregulated by rhEGF. Furthermore, rhEGF also inhibited NF-κB gene expression and the NF-κB p65 protein level in the nucleus induced by UVA irradiation. Conclusion These results suggest that EGF might be a useful material for preventing or improving photo-aging.
Collapse
Affiliation(s)
- Ji Min Kim
- Life Science Research Institute, Daewoong Pharmaceutical Co.,Ltd., Yongin, Korea
| | - Jung Eun Choo
- Life Science Research Institute, Daewoong Pharmaceutical Co.,Ltd., Yongin, Korea
| | - Ki Nam Kim
- Life Science Research Institute, Daewoong Pharmaceutical Co.,Ltd., Yongin, Korea
| | - Yang Seok Kim
- Department of Science in Korean Medicine, Kyng Hee University, Seoul, Korea,
| |
Collapse
|