1
|
Slepenkin A, Pal S, Rasley A, Coleman MA, de la Maza LM. Safety and efficacy of C. muridarum vaccines adjuvanted with CpG-1826 and four concentrations of Montanide-ISA-720-VG. NPJ Vaccines 2024; 9:104. [PMID: 38858418 PMCID: PMC11164897 DOI: 10.1038/s41541-024-00880-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/19/2024] [Indexed: 06/12/2024] Open
Abstract
It is recommended that the adjuvant Montanide ISA 720 VG be used at a concentration of 70% v/v. At this concentration, Montanide causes at the site of immunization a local granuloma that can last for several weeks. To determine the safety and protective efficacy of a Chlamydia muridarum MOMP vaccine, formulated with CpG-1826 and four different concentrations of Montanide (70%, 50%, 30% and 10%), BALB/c (H-2d) female mice were immunized twice intramuscularly. Local reactogenicity was significant for vaccines formulated with 70% or 50% Montanide but not for those inoculated with 30% or 10% Montanide. Robust humoral and cell mediated memory immune responses were elicited by the 70%, 50% and 30% Montanide formulations. Mice were challenged intranasally with 104 C. muridarum inclusion forming units (IFU). Based on changes in body weight, lungs's weight and number of IFU recovered, mice vaccinated with the 70%, 50% and 30% Montanide formulations were significantly protected, but not mice receiving 10% Montanide. To conclude, we recommend the 30% Montanide concentration to be tested in humans and animal models to determine its safety and efficacy, in comparison to the 70% Montanide concentration currently used. The 30% Montanide formulation could significantly facilitate licensing of this adjuvant for human use.
Collapse
Affiliation(s)
- Anatoli Slepenkin
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA, 92697-4800, USA
| | - Sukumar Pal
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA, 92697-4800, USA
| | - Amy Rasley
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550-9234, USA
| | - Matthew A Coleman
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550-9234, USA
- University of California Davis, School of Medicine, Department of Radiation Oncology, Sacramento, CA, 95616, USA
| | - Luis M de la Maza
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA, 92697-4800, USA.
| |
Collapse
|
2
|
Alamdari-Palangi V, Jaberi KR, Shahverdi M, Naeimzadeh Y, Tajbakhsh A, Khajeh S, Razban V, Fallahi J. Recent advances and applications of peptide-agent conjugates for targeting tumor cells. J Cancer Res Clin Oncol 2023; 149:15249-15273. [PMID: 37581648 DOI: 10.1007/s00432-023-05144-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/08/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Cancer, being a complex disease, presents a major challenge for the scientific and medical communities. Peptide therapeutics have played a significant role in different medical practices, including cancer treatment. METHOD This review provides an overview of the current situation and potential development prospects of anticancer peptides (ACPs), with a particular focus on peptide vaccines and peptide-drug conjugates for cancer treatment. RESULTS ACPs can be used directly as cytotoxic agents (molecularly targeted peptides) or can act as carriers (guiding missile) of chemotherapeutic agents and radionuclides by specifically targeting cancer cells. More than 60 natural and synthetic cationic peptides are approved in the USA and other major markets for the treatment of cancer and other diseases. Compared to traditional cancer treatments, peptides exhibit anticancer activity with high specificity and the ability to rapidly kill target cancer cells. ACP's target and kill cancer cells via different mechanisms, including membrane disruption, pore formation, induction of apoptosis, necrosis, autophagy, and regulation of the immune system. Modified peptides have been developed as carriers for drugs, vaccines, and peptide-drug conjugates, which have been evaluated in various phases of clinical trials for the treatment of different types of solid and leukemia cancer. CONCLUSIONS This review highlights the potential of ACPs as a promising therapeutic option for cancer treatment, particularly through the use of peptide vaccines and peptide-drug conjugates. Despite the limitations of peptides, such as poor metabolic stability and low bioavailability, modified peptides show promise in addressing these challenges. Various mechanism of action of anticancer peptides. Modes of action against cancer cells including: inducing apoptosis by cytochrome c release, direct cell membrane lysis (necrosis), inhibiting angiogenesis, inducing autophagy-mediated cell death and immune cell regulation.
Collapse
Affiliation(s)
- Vahab Alamdari-Palangi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran
| | - Khojaste Rahimi Jaberi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahshid Shahverdi
- Medical Biotechnology Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Yasaman Naeimzadeh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran
| | - Amir Tajbakhsh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sahar Khajeh
- Bone and Joint Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Razban
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran.
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran.
| |
Collapse
|
3
|
Mashhadi Abolghasem Shirazi M, Sadat SM, Haghighat S, Roohvand F, Arashkia A. Alum and a TLR7 agonist combined with built-in TLR4 and 5 agonists synergistically enhance immune responses against HPV RG1 epitope. Sci Rep 2023; 13:16801. [PMID: 37798448 PMCID: PMC10556035 DOI: 10.1038/s41598-023-43965-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 09/30/2023] [Indexed: 10/07/2023] Open
Abstract
To relieve the limitations of the human papillomavirus (HPV) vaccines based on L1 capsid protein, vaccine formulations based on RG1 epitope of HPV L2 using various built-in adjuvants are under study. Herein, we describe design and construction of a rejoined peptide (RP) harboring HPV16 RG1 epitope fused to TLR4/5 agonists and a tetanus toxoid epitope, which were linked by the (GGGS)3 linker in tandem. In silico analyses indicated the proper physicochemical, immunogenic and safety profile of the RP. Docking analyses on predicted 3D model suggested the effective interaction of TLR4/5 agonists within RP with their corresponding TLRs. Expressing the 1206 bp RP-coding DNA in E. coli produced a 46 kDa protein, and immunization of mice by natively-purified RP in different adjuvant formulations indicated the crucial role of the built-in adjuvants for induction of anti-RG1 responses that could be further enhanced by combination of TLR7 agonist/alum adjuvants. While the TLR4/5 agonists contributed in the elicitation of the Th2-polarized immune responses, combination with TLR7 agonist changed the polarization to the balanced Th1/Th2 immune responses. Indeed, RP + TLR7 agonist/alum adjuvants induced the strongest immune responses that could efficiently neutralize the HPV pseudoviruses, and thus might be a promising formulation for an inexpensive and cross-reactive HPV vaccine.
Collapse
Affiliation(s)
| | - Seyed Mehdi Sadat
- Department of Hepatitis, AIDS and Blood borne Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Setareh Haghighat
- Department of Microbiology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farzin Roohvand
- Department of Molecular Virology, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran, Iran.
| | - Arash Arashkia
- Department of Molecular Virology, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran, Iran.
| |
Collapse
|
4
|
Zhang J, Fan J, Skwarczynski M, Stephenson RJ, Toth I, Hussein WM. Peptide-Based Nanovaccines in the Treatment of Cervical Cancer: A Review of Recent Advances. Int J Nanomedicine 2022; 17:869-900. [PMID: 35241913 PMCID: PMC8887913 DOI: 10.2147/ijn.s269986] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
Persistent infection with high-risk human papillomaviruses (HPVs), such as HPV-16 and HPV-18, can induce cervical cancer in humans. The disease carries high morbidity and mortality among females worldwide. Inoculation with prophylactic HPV vaccines, such as Gardasil® or Cervarix®, is the predominant method of preventing cervical cancer in females 6 to 26 years of age. However, despite the availability of commercial prophylactic HPV vaccines, no therapeutic HPV vaccines to eliminate existing HPV infections have been approved. Peptide-based vaccines, which form one of the most potent vaccine platforms, have been broadly investigated to overcome this shortcoming. Peptide-based vaccines are especially effective in inducing cellular immune responses and eradicating tumor cells when combined with nanoscale adjuvant particles and delivery systems. This review summarizes progress in the development of peptide-based nanovaccines against HPV infection.
Collapse
Affiliation(s)
- Jiahui Zhang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Jingyi Fan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Rachel J Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
- Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- Correspondence: Waleed M Hussein, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia, Tel +61 7 3365 2782, Email
| |
Collapse
|
5
|
Kord E, Roohvand F, Dubuisson J, Vausselin T, Nasr Azadani H, Keshavarz A, Nejati A, Samimi-Rad K. BacMam virus-based surface display for HCV E2 glycoprotein induces strong cross-neutralizing antibodies and cellular immune responses in vaccinated mice. Infect Agent Cancer 2021; 16:69. [PMID: 34922563 PMCID: PMC8684228 DOI: 10.1186/s13027-021-00407-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/18/2021] [Indexed: 12/01/2022] Open
Abstract
Background Despite recent advancements, limitations in the treatment and control of hepatitis C virus (HCV) infection reprioritized the studies for invention of an efficient HCV vaccine to elicit strong neutralizing antibodies (NAbs) and cellular responses. Methods Herein, we report molecular construction of a BacMam virus-based surface display for a subtype-1a HCV gpE2 (Bac-CMV-E2-gp64; Bac) that both expressed and displayed gpE2 in mammalian cells and bacouloviral envelope, respectively. Results Assessments by western blotting, Immunofluorescence and Immunogold-electron microscopy indicated the proper expression and incorporation in insect cell and baculovirus envelope, respectively. Mice immunized in three different prime-boost immunization groups of: Bac/Bac, Bac/Pro (bacoulovirus-derived gpE2) and Bac/DNA (plasmid DNA (pCDNA)-encoding gpE2) developed high levels of IgG and IFN-γ (highest for Bac/Bac group) indicating the induction of both humeral and cellular immune responses. Calculation of the IgG2a/IgG1 and IFN-γ/IL-4 ratios indicated a Th1 polarization of immune responses in the Bac/Bac and Bac/DNA groups but a balanced Th1-Th2 phenotype in the Bac/Pro group. Sera of the mice in the Bac/Bac group provided the highest percentage of cross-NAbs against a subtype-2a HCVcc (JFH1) compared to Bac/Pro and Bac/DNA groups (62% versus 41% and 6%). Conclusions Results indicated that BacMam virus-based surface display for gpE2 might act as both subunit and DNA vaccine and offers a promising strategy for development of HCV vaccine for concurrent induction of strong humoral and cellular immune responses. Supplementary Information The online version contains supplementary material available at 10.1186/s13027-021-00407-x.
Collapse
Affiliation(s)
- Ebrahim Kord
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Enqelab Square, P.O. Box 1417613151, Tehran, Iran.,Infectious Diseases and Tropical Medicine Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran (IPI), No. 69, Pasteur Ave, P.O. Box 1316943551, Tehran, Iran
| | - Jean Dubuisson
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Batiment, IBL, CS50477, Molecular & Cellular Virology, U1019 - UMR 8204 - CIIL- Center for Infection and Immunity of Lille, University Lille, 59021, Lille Cedex, France
| | - Thibaut Vausselin
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Batiment, IBL, CS50477, Molecular & Cellular Virology, U1019 - UMR 8204 - CIIL- Center for Infection and Immunity of Lille, University Lille, 59021, Lille Cedex, France
| | - Hosein Nasr Azadani
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Enqelab Square, P.O. Box 1417613151, Tehran, Iran
| | - Abolfazl Keshavarz
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Enqelab Square, P.O. Box 1417613151, Tehran, Iran
| | - Ahmad Nejati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Enqelab Square, P.O. Box 1417613151, Tehran, Iran
| | - Katayoun Samimi-Rad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Enqelab Square, P.O. Box 1417613151, Tehran, Iran.
| |
Collapse
|
6
|
Valencia SM, Zacharia A, Marin A, Matthews RL, Wu CK, Myers B, Sanders C, Difilippantonio S, Kirnbauer R, Roden RB, Pinto LA, Shoemaker RH, Andrianov AK, Marshall JD. Improvement of RG1-VLP vaccine performance in BALB/c mice by substitution of alhydrogel with the next generation polyphosphazene adjuvant PCEP. Hum Vaccin Immunother 2021; 17:2748-2761. [PMID: 33573433 PMCID: PMC8475605 DOI: 10.1080/21645515.2021.1875763] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/09/2021] [Indexed: 10/22/2022] Open
Abstract
Current human papillomavirus (HPV) vaccines provide substantial protection against the most common HPV types responsible for oral and anogenital cancers, but many circulating cancer-causing types remain for which vaccine coverage is lacking. In addition, all current HPV vaccines rely on aluminum salt-based adjuvant formulations that function through unclear mechanisms with few substitutes available. In an effort to expand the toolbox of available adjuvants suitable for HPV vaccines, we compared the immunogenicity of the RG1-VLP (virus-like particle) vaccine in BALB/c mice when formulated with either the aluminum hydroxide adjuvant Alhydrogel or the novel polyphosphazene macromolecular adjuvant poly[di (carboxylatoethylphenoxy) phosphazene] (PCEP). PCEP-formulated RG1-VLPs routinely outperformed VLP/Alhydrogel in several measurements of VLP-specific humoral immunity, including consistent improvements in the magnitude of antibody (Ab) responses to both HPV16-L1 and the L2 RG1 epitope as well as neutralizing titers to HPV16 and cross-neutralization of pseudovirion (PsV) types HPV18 and HPV39. Dose-sparing studies indicated that RG1-VLPs could be reduced in dose by 75% and the presence of PCEP ensured activity comparable to a full VLP dose adjuvanted by Alhydrogel. In addition, levels of HPV16-L1 and -L2-specific Abs were achieved after two vaccinations with PCEP as adjuvant that were equivalent to or greater than levels achieved with three vaccinations with Alhydrogel alone, indicating that the presence of PCEP resulted in accelerated immune responses that could allow for a decreased dose schedule. Given the extensive clinical track record of polyphosphazenes, these data suggest that substitution of alum-based adjuvants with PCEP for the RG1-VLP vaccine could lead to rapid seropositivity requiring fewer boosts, the dose-sparing of commercial VLP-based vaccines, and the establishment of longer-lasting humoral responses to HPV.
Collapse
Affiliation(s)
- Sarah M. Valencia
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Athina Zacharia
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA
| | - Rebecca L. Matthews
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Chia-Kuei Wu
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Breana Myers
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Chelsea Sanders
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Simone Difilippantonio
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Reinhard Kirnbauer
- Laboratory of Viral Oncology (LVO), Department of Dermatology, Medical University of Vienna, Austria, EU
| | - Richard B. Roden
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Ligia A. Pinto
- HPV Immunology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Robert H. Shoemaker
- Chemopreventive Agent Development Group, Division of Cancer Prevention, NCI, Bethesda, MD, USA
| | - Alexander K. Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA
| | - Jason D. Marshall
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|