1
|
Gu X, Lu S, Xu S, Li Y, Fan M, Lin G, Liu Y, Zhao Y, Zhao W, Liu X, Dong X, Zhang X. Novel oral compound Z526 mitigates cancer-associated cachexia via intervening NF-κB signaling and oxidative stress. Genes Dis 2025; 12:101292. [PMID: 39759112 PMCID: PMC11697116 DOI: 10.1016/j.gendis.2024.101292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 02/02/2024] [Accepted: 03/07/2024] [Indexed: 01/07/2025] Open
Abstract
Cancer-associated cachexia (CAC) is a severe metabolic disorder syndrome mainly characterized by muscle and fat loss, which accounts for one-third of cancer-related deaths. No effective therapeutic approach that could fully reverse CAC is available. NF-κB signaling and oxidative stress play vital roles in both muscle atrophy and fat loss in CAC. Here, we showed that our developed oral compound Z526 exhibited potent anti-CAC efficacy by inhibiting NF-κB signaling and ameliorating oxidative stress. In vitro, Z526 alleviated C2C12 myotube atrophy and 3T3-L1 adipocyte lipolysis induced by conditioned mediums of multiple cachectic tumor cells or pro-cachectic inflammatory cytokines. In vivo, Z526 attenuated the cachectic symptoms of C26 or LLC tumor-bearing mice. Z526 treatment reduced weight loss without impacting tumor growth and improved muscle atrophy, fat loss, and impaired grip force. Besides, serum TNF-α and IL-6 levels were reduced after Z526 treatment in C26 tumor-bearing mice. Of note, Z526 significantly prolonged the survival of LLC tumor-bearing mice. Activated NF-κB signaling and oxidative stress in cachectic muscle and fat tissues were reversed by Z526. Furthermore, Z526 exhibited a promising preclinical safety profile. Thus, oral Z526, which exhibited potent anti-CAC activities in vitro and in vivo, multiple interventions in diverse pathogenic mechanisms (NF-κB signaling and oxidative stress), and a favorable preclinical safety profile, holds the promise to be developed into a novel and beneficial therapeutic option for CAC.
Collapse
Affiliation(s)
- Xiaofan Gu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Shanshan Lu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Shuang Xu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Yiwei Li
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Meng Fan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Guangyu Lin
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Yiyuan Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yun Zhao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Weili Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Xuan Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaochun Dong
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Xiongwen Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
2
|
Wang M, Ma W, Wang Q, Yang Q, Yan X, Tang H, Li Z, Li Y, Feng S, Wang Z. Flavonoid-enriched extract from Millettia speciosa Champ prevents obesity by regulating thermogenesis and lipid metabolism in high-fat diet-induced obese C57BL/6 mice. Food Sci Nutr 2022; 10:445-459. [PMID: 35154681 PMCID: PMC8825741 DOI: 10.1002/fsn3.2664] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 10/13/2021] [Accepted: 10/27/2021] [Indexed: 01/01/2023] Open
Abstract
Millettia speciosa (M. speciosa) Champ is a medicinal and edible plant. The roots are rich in flavonoids, which possess multiple biological activities, including lipid-lowering effects. This study aimed to explore the effect of flavonoid-enriched extract from M. speciosa (FMS) on obesity. The UPLC-Q-TOF-MS analysis and chromatographic analysis were adopted to identify flavonoid compounds in FMS. Male C57BL/6J mice were fed with a high-fat diet for 3 months and were then treated with FMS (50 or 100 mg/kg/d) or Orlistat (10 mg kg-1 d-1) for another 8 weeks. A total of 35 flavonoids were identified in the extract of M. speciosa root. FMS reduced body weight gain, liver weight gain, white adipose tissue, lipid accumulation, and blood glucose. The levels of TG, ALT, AST, and inflammatory-related adipokines (TNF-α and IL-6) in serum were also reduced by FMS. In addition, FMS promoted thermogenesis in brown adipose tissue and induced the activation of lipolysis, fatty acid oxidation, and oxidative phosphorylation in white adipose tissues. In summary, long-term administration of FMS could ameliorate high-fat diet-induced obesity by stimulating adipose thermogenesis and lipid metabolism.
Collapse
Affiliation(s)
- Mao‐Yuan Wang
- Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern ChinaTropical Crops Genetic Resources InstituteMinistry of AgricultureHaikouChina
- Tropical Wild Plant Gene ResourceMinistry of Agriculture/National Genebank of Tropical CropsDanzhouChina
| | - Wen‐Yu Ma
- Key Laboratory of South Subtropical Plant DiversityFairy Lake Botanical GardenShenzhen & Chinese Academy of SciencesShenzhenChina
| | - Qing‐Long Wang
- Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern ChinaTropical Crops Genetic Resources InstituteMinistry of AgricultureHaikouChina
- Tropical Wild Plant Gene ResourceMinistry of Agriculture/National Genebank of Tropical CropsDanzhouChina
| | - Qing Yang
- Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern ChinaTropical Crops Genetic Resources InstituteMinistry of AgricultureHaikouChina
- Tropical Wild Plant Gene ResourceMinistry of Agriculture/National Genebank of Tropical CropsDanzhouChina
| | - Xiao‐Xia Yan
- Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern ChinaTropical Crops Genetic Resources InstituteMinistry of AgricultureHaikouChina
- Tropical Wild Plant Gene ResourceMinistry of Agriculture/National Genebank of Tropical CropsDanzhouChina
| | - Huan Tang
- Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern ChinaTropical Crops Genetic Resources InstituteMinistry of AgricultureHaikouChina
- Tropical Wild Plant Gene ResourceMinistry of Agriculture/National Genebank of Tropical CropsDanzhouChina
| | - Zhi‐Ying Li
- Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern ChinaTropical Crops Genetic Resources InstituteMinistry of AgricultureHaikouChina
- Tropical Wild Plant Gene ResourceMinistry of Agriculture/National Genebank of Tropical CropsDanzhouChina
| | - Ying‐Ying Li
- Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern ChinaTropical Crops Genetic Resources InstituteMinistry of AgricultureHaikouChina
- Tropical Wild Plant Gene ResourceMinistry of Agriculture/National Genebank of Tropical CropsDanzhouChina
| | - Shi‐Xiu Feng
- Key Laboratory of South Subtropical Plant DiversityFairy Lake Botanical GardenShenzhen & Chinese Academy of SciencesShenzhenChina
| | - Zhu‐Nian Wang
- Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern ChinaTropical Crops Genetic Resources InstituteMinistry of AgricultureHaikouChina
- Tropical Wild Plant Gene ResourceMinistry of Agriculture/National Genebank of Tropical CropsDanzhouChina
| |
Collapse
|
3
|
Lai J, Qian Q, Ding Q, Zhou L, Fu A, Du Z, Wang C, Song Z, Li S, Dou X. Activation of AMP-Activated Protein Kinase-Sirtuin 1 Pathway Contributes to Salvianolic Acid A-Induced Browning of White Adipose Tissue in High-Fat Diet Fed Male Mice. Front Pharmacol 2021; 12:614406. [PMID: 34122060 PMCID: PMC8193940 DOI: 10.3389/fphar.2021.614406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 05/18/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Salvianolic acid A (Sal A), a natural polyphenolic compound extracted from Radix Salvia miltiorrhiza (Danshen), exhibits exceptional pharmacological activities against cardiovascular diseases. While a few studies have reported anti-obesity properties of Sal A, the underlying mechanisms are largely unknown. Given the prevalence of obesity and promising potential of browning of white adipose tissue to combat obesity, recent research has focused on herbal ingredients that may promote browning and increase energy expenditure. Purpose: The present study was designed to investigate the protective antiobesity mechanisms of Sal A, in part through white adipose browning. Methods: Both high-fat diet (HFD)-induced obese (DIO) male mice model and fully differentiated C3H10T1/2 adipocytes from mouse embryo fibroblasts were employed in this study. Sal A (20 and 40 mg/kg) was administrated to DIO mice by intraperitoneal injection for 13-weeks. Molecular mechanisms mediating effects of Sal A were evaluated. Resluts: Sal A treatment significantly attenuated HFD-induced weight gain and lipid accumulation in epididymal fat pad. Uncoupling protein 1 (UCP-1), a specialized thermogenic protein and marker for white adipocyte browning, was significantly induced by Sal A treatment in both white adipose tissues and cultured adipocytes. Further mechanistic investigations revealed that Sal A robustly reversed HFD-decreased AMP-activated protein kinase (AMPK) phosphorylation and sirtuin 1 (SIRT1) expression in mice. Genetically silencing either AMPK or SIRT1 using siRNA abolished UCP-1 upregulation by Sal A. AMPK silencing significantly blocked Sal A-increased SIRT1 expression, while SIRT1 silencing did not affect Sal A-upregulated phosphorylated-AMPK. These findings indicate that AMPK was involved in Sal A-increased SIRT1. Conclusion: Sal A increases white adipose tissue browning in HFD-fed male mice and in cultured adipocytes. Thus, Sal is a potential natural therapeutic compound for treating and/or preventing obesity.
Collapse
Affiliation(s)
- Jianfei Lai
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China.,School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qianyu Qian
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China.,Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qinchao Ding
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China.,School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China.,College of Animal Science, Zhejiang University, Hangzhou, China
| | - Li Zhou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ai Fu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhongyan Du
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cui Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China.,Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhenyuan Song
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, United States
| | - Songtao Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China.,Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaobing Dou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China.,Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
4
|
Ma P, He P, Xu CY, Hou BY, Qiang GF, DU GH. Recent developments in natural products for white adipose tissue browning. Chin J Nat Med 2020; 18:803-817. [PMID: 33308601 DOI: 10.1016/s1875-5364(20)60021-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Indexed: 12/29/2022]
Abstract
Excess accumulation of white adipose tissue (WAT) causes obesity which is an imbalance between energy intake and energy expenditure. Obesity is a serious concern because it has been the leading causes of death worldwide, including diabetes, stroke, heart disease and cancer. Therefore, uncovering the mechanism of obesity and discovering anti-obesity drugs are crucial to prevent obesity and its complications. Browning, inducing white adipose tissue to brown or beige (brite) fat which is brown-like fat emerging in WAT, becomes an appealing therapeutic strategy for obesity and metabolic disorders. Due to lack of efficacy or intolerable side-effects, the clinical trials that promote brown adipose tissue (BAT) thermogenesis and browning of WAT have not been successful in humans. Obviously, more specific means still need to be developed to activate browning of white adipose tissue. In this review, we summarized seven kinds of natural products (alkaloids, flavonoids, terpenoids, long chain fatty acids, phenolic acids, else and extract) promoting white adipose tissue browning which can ameliorate the metabolic disorders, including obesity, dislipidemia, insulin resistance and diabetes. Since natural products are important drug sources and the browning property plays a significant role in not only obesity treatment but also in type 2 diabetes (T2DM) improvement, natural products of inducing browning may be an irreplaceable drug discovery orientation for obesity, diabetes and even other metabolic disorders.
Collapse
Affiliation(s)
- Peng Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Ping He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Chun-Yang Xu
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Bi-Yu Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Gui-Fen Qiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China.
| | - Guan-Hua DU
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China.
| |
Collapse
|
5
|
The Gintonin-Enriched Fraction of Ginseng Regulates Lipid Metabolism and Browning via the cAMP-Protein Kinase a Signaling Pathway in Mice White Adipocytes. Biomolecules 2020; 10:biom10071048. [PMID: 32679738 PMCID: PMC7407952 DOI: 10.3390/biom10071048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Obesity is a major health concern and is becoming an increasingly serious societal problem worldwide. The browning of white adipocytes has received considerable attention because of its potential protective effect against obesity-related metabolic disease. The gintonin-enriched fraction (GEF) is a non-saponin, glycolipoprotein component of ginseng that is known to have neuroprotective and anti-inflammatory effects. However, the anti-obesity and browning effects of GEF have not been explored to date. Therefore, we aimed to determine whether GEF has a preventive effect against obesity. We differentiated 3T3-L1 cells and mouse primary subcutaneous adipocytes for 8 days in the presence or absence of GEF, and then measured the expression of intermediates in signaling pathways that regulate triglyceride (TG) synthesis and browning by Western blotting and immunofluorescence analysis. We found that GEF reduced lipid accumulation by reducing the expression of pro-adipogenic and lipogenic factors, and increased lipolysis and thermogenesis, which may be mediated by an increase in the phosphorylation of protein kinase A. These findings suggest that GEF may induce fat metabolism and energy expenditure in white adipocytes and therefore may represent a potential treatment for obesity.
Collapse
|
6
|
Polymethoxyselenoflavones exert anti-obesity effects through activation of lipolysis and brown adipocyte metabolism. Int J Obes (Lond) 2020; 45:122-129. [PMID: 32467614 DOI: 10.1038/s41366-020-0606-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/17/2020] [Accepted: 05/14/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND/OBJECTIVES Polymethoxyselenoflavone (PMSF) is a compound that substitutes the oxygen atom in a flavonoid with selenium. This study aimed to investigate the effects of PMSFs on lipid metabolism in adipocytes and their anti-obesity potential. SUBJECTS/METHODS To test lipolytic and thermogenic effects of the compounds in vitro, adipocytes differentiated from immortalized pre-brown adipocyte progenitors and pre-white adipocyte cell lines were treated with 19 PMSFs. The expression levels of brown adipocyte markers and genes related to mitochondrial metabolism were analyzed by qPCR and western blot. In vivo anti-obesity effect was investigated using diet-induced obesity mouse models and adipocyte-specific ATGL knockout mice. RESULTS The qPCR analysis identified 2-(3,4-dimethoxyphenyl)-4H-selenochromen-4-one (DMPSC) as the most potent brown adipogenic candidate among the 19 compounds tested in this study. DMPSC treatment significantly increased the mitochondrial content and oxidative metabolism in adipocytes in vitro. Mechanistically, DMPSC treatment increased lipolysis through activation of PKA downstream signaling. Consistently, the in vivo treatment of DMPSC increased energy consumption, reduced body weight, and improved glucose tolerance in mice fed with high-fat diets. Moreover, DMPSC treatment increased brown adipocyte marker expression and mitochondrial content in adipose tissue of mice. The anti-obesity effects were absent in adipocyte-specific ATGL knockout mice, indicating that the DMPSC effect is mediated by cytosolic lipase-dependent mechanisms. CONCLUSIONS Collectively, our results indicated that DMPSC exerted anti-obesity effects partially through the PKA signaling-mediated activation of lipolysis and brown adipose tissue metabolism.
Collapse
|
7
|
Hu J, Wang Z, Tan BK, Christian M. Dietary polyphenols turn fat “brown”: A narrative review of the possible mechanisms. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|