1
|
Jiménez de los Santos ME, Reyes-Pérez JA, Domínguez Osorio V, Villaseñor-Navarro Y, Moreno-Astudillo L, Vela-Sarmiento I, Sollozo-Dupont I. Whole lesion histogram analysis of apparent diffusion coefficient predicts therapy response in locally advanced rectal cancer. World J Gastroenterol 2022; 28:2609-2624. [PMID: 35949349 PMCID: PMC9254137 DOI: 10.3748/wjg.v28.i23.2609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/25/2021] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Whole-tumor apparent diffusion coefficient (ADC) histogram analysis is relevant to predicting the neoadjuvant chemoradiation therapy (nCRT) response in patients with locally advanced rectal cancer (LARC).
AIM To evaluate the performance of ADC histogram-derived parameters for predicting the outcomes of patients with LARC.
METHODS This is a single-center, retrospective study, which included 48 patients with LARC. All patients underwent a pre-treatment magnetic resonance imaging (MRI) scan for primary tumor staging and a second restaging MRI for response evaluation. The sample was distributed as follows: 18 responder patients (R) and 30 non-responders (non-R). Eight parameters derived from the whole-lesion histogram analysis (ADCmean, skewness, kurtosis, and ADC10th, 25th, 50th, 75th, 90th percentiles), as well as the ADCmean from the hot spot region of interest (ROI), were calculated for each patient before and after treatment. Then all data were compared between R and non-R using the Mann-Whitney U test. Two measures of diagnostic accuracy were applied: the receiver operating characteristic curve and the diagnostic odds ratio (DOR). We also reported intra- and interobserver variability by calculating the intraclass correlation coefficient (ICC).
RESULTS Post-nCRT kurtosis, as well as post-nCRT skewness, were significantly lower in R than in non-R (both P < 0.001, respectively). We also found that, after treatment, R had a larger loss of both kurtosis and skewness than non-R (∆%kurtosis and ∆skewness, P < 0.001). Other parameters that demonstrated changes between groups were post-nCRT ADC10th, ∆%ADC10th, ∆%ADCmean, and ROI ∆%ADCmean. However, the best diagnostic performance was achieved by ∆%kurtosis at a threshold of 11.85% (Area under the receiver operating characteristic curve [AUC] = 0.991, DOR = 376), followed by post-nCRT kurtosis = 0.78 × 10-3 mm2/s (AUC = 0.985, DOR = 375.3), ∆skewness = 0.16 (AUC = 0.885, DOR = 192.2) and post-nCRT skewness = 1.59 × 10-3 mm2/s (AUC = 0.815, DOR = 168.6). Finally, intraclass correlation coefficient analysis showed excellent intraobserver and interobserver agreement, ensuring the implementation of histogram analysis into routine clinical practice.
CONCLUSION Whole-tumor ADC histogram parameters, particularly kurtosis and skewness, are relevant biomarkers for predicting the nCRT response in LARC. Both parameters appear to be more reliable than ADCmean from one-slice ROI.
Collapse
Affiliation(s)
| | | | | | | | | | - Itzel Vela-Sarmiento
- Department of Gastrointestinal Surgery, National Cancer Institute, Mexico 14080, Mexico
| | | |
Collapse
|
2
|
Boca (Petresc) B, Caraiani C, Popa L, Lebovici A, Feier DS, Bodale C, Buruian MM. The Utility of ADC First-Order Histogram Features for the Prediction of Metachronous Metastases in Rectal Cancer: A Preliminary Study. BIOLOGY 2022; 11:biology11030452. [PMID: 35336825 PMCID: PMC8945327 DOI: 10.3390/biology11030452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/04/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Metachronous metastases are the main factors affecting survival in rectal cancer, and 15–25% of patients will develop them at a 5-year follow-up. Early identification of patients with higher risk of developing distant metachronous metastases would help to improve therapeutic protocols and could allow for a more accurate, personalized management. Apparent diffusion coefficient (ADC) represents an MRI quantitative biomarker, which can assess the diffusion characteristics of tissues, depending on the microscopic mobility of water, showing information related to tissue cellularity. First-order histogram-based features statistics describe the frequency distribution of intensity values within a region of interest, revealing microstructural alterations. In our study, we demonstrated that whole-tumor ADC first-order features may provide useful information for the assessment of rectal cancer prognosis, regarding the occurrence of metachronous metastases. Abstract This study aims the ability of first-order histogram-based features, derived from ADC maps, to predict the occurrence of metachronous metastases (MM) in rectal cancer. A total of 52 patients with pathologically confirmed rectal adenocarcinoma were retrospectively enrolled and divided into two groups: patients who developed metachronous metastases (n = 15) and patients without metachronous metastases (n = 37). We extracted 17 first-order (FO) histogram-based features from the pretreatment ADC maps. Student’s t-test and Mann–Whitney U test were used for the association between each FO feature and presence of MM. Statistically significant features were combined into a model, using the binary regression logistic method. The receiver operating curve analysis was used to determine the diagnostic performance of the individual parameters and combined model. There were significant differences in ADC 90th percentile, interquartile range, entropy, uniformity, variance, mean absolute deviation, and robust mean absolute deviation in patients with MM, as compared to those without MM (p values between 0.002–0.01). The best diagnostic was achieved by the 90th percentile and uniformity, yielding an AUC of 0.74 [95% CI: 0.60–0.8]). The combined model reached an AUC of 0.8 [95% CI: 0.66–0.90]. Our observations point out that ADC first-order features may be useful for predicting metachronous metastases in rectal cancer.
Collapse
Affiliation(s)
- Bianca Boca (Petresc)
- Department of Radiology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (B.B.); (M.M.B.)
- Department of Radiology, Emergency Clinical County Hospital Cluj-Napoca, 400006 Cluj-Napoca, Romania; (A.L.); (D.S.F.)
- Department of Medical Imaging, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
| | - Cosmin Caraiani
- Department of Medical Imaging, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
- Department of Radiology, Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, 400158 Cluj-Napoca, Romania
- Correspondence: (C.C.); (L.P.)
| | - Loredana Popa
- Department of Medical Imaging, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
- Correspondence: (C.C.); (L.P.)
| | - Andrei Lebovici
- Department of Radiology, Emergency Clinical County Hospital Cluj-Napoca, 400006 Cluj-Napoca, Romania; (A.L.); (D.S.F.)
- Department of Radiology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
| | - Diana Sorina Feier
- Department of Radiology, Emergency Clinical County Hospital Cluj-Napoca, 400006 Cluj-Napoca, Romania; (A.L.); (D.S.F.)
- Department of Radiology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
| | - Carmen Bodale
- Department of Oncology, Amethyst Radiotherapy Center Cluj, 407280 Florești, Romania;
- Department of Medical Oncology and Radiotherapy, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
| | - Mircea Marian Buruian
- Department of Radiology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (B.B.); (M.M.B.)
| |
Collapse
|
3
|
Li D, Cui Y, Hou L, Bian Z, Yang Z, Xu R, Jia Y, Wu Z, Yang X. Diffusion kurtosis imaging-derived histogram metrics for prediction of resistance to neoadjuvant chemoradiotherapy in rectal adenocarcinoma: Preliminary findings. Eur J Radiol 2021; 144:109963. [PMID: 34562744 DOI: 10.1016/j.ejrad.2021.109963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 01/04/2023]
Abstract
PURPOSE This study aimed to evaluate the potential role of diffusion kurtosis imaging (DKI)-derived parameters for assessing resistance to CRT in patients with Locally advanced rectal cancer (LARC) by using histogram analysis derived from whole-tumor volumes. METHOD 136 consecutive patients with histologically confirmed rectal adenocarcinoma who underwent MRI examination before and after chemoradiotherapy were enrolled in our retrospective study. The parameters D, K, and conventional apparent diffusion coefficient (ADC) were measured using whole-tumor volume histogram analysis. The AJCC tumor regression grading (TRG) system was the standard reference (resistance: TRG 3; non-resistance: TRG 0-2). Receiver operating characteristic (ROC) curves were used for evaluating the diagnostic performance. RESULTS Aside from the skew and kurtosis values, we found all the histogram metrics of D and ADC values significantly increased after CRT (all p < 0.001). In contrast, the histogram metrics of K values significantly decreased after CRT. The majority of percentiles metrics of D, K, and ADC values were correlated with tumor resistance before and after CRT (P < 0.05), except for the skew and kurtosis values. Regarding the comparison of the diagnostic performance of all the histogram metrics, the percentage Dmean change (ΔDmean) showed the highest AUC value of 0.939, and the corresponding sensitivity, specificity, PPV, and NPV were 84.1% and 94.6%, 88.1% and 92.6%, respectively. CONCLUSIONS These preliminary results demonstrated that DKI-derived histogram metrics, especially the pre-treatment metrics and ΔDmean, were useful to assess tumoral resistance to CRT and individual clinical management for patients with LARC.
Collapse
Affiliation(s)
- Dandan Li
- Department of Radiology, Shanxi Province Cancer Hospital, Shanxi Medical University, Taiyuan 030013, China
| | - Yanfen Cui
- Department of Radiology, Shanxi Province Cancer Hospital, Shanxi Medical University, Taiyuan 030013, China
| | - Lina Hou
- Department of Radiology, Shanxi Province Cancer Hospital, Shanxi Medical University, Taiyuan 030013, China
| | - Zeyu Bian
- Department of Radiology, Shanxi Province Cancer Hospital, Shanxi Medical University, Taiyuan 030013, China
| | - Zhao Yang
- Department of Radiology, Shanxi Province Cancer Hospital, Shanxi Medical University, Taiyuan 030013, China
| | - Ruxin Xu
- Department of Radiology, Shanxi Province Cancer Hospital, Shanxi Medical University, Taiyuan 030013, China
| | - Yaju Jia
- Department of Radiology, Shanxi Province Cancer Hospital, Shanxi Medical University, Taiyuan 030013, China
| | - Zhifang Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China; Shanxi Medical University, Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Taiyuan 030001, Shanxi, China.
| | - Xiaotang Yang
- Department of Radiology, Shanxi Province Cancer Hospital, Shanxi Medical University, Taiyuan 030013, China.
| |
Collapse
|
4
|
Meyer HJ, Höhn AK, Woidacki K, Andric M, Powerski M, Pech M, Surov A. Associations between IVIM histogram parameters and histopathology in rectal cancer. Magn Reson Imaging 2020; 77:21-27. [PMID: 33316358 DOI: 10.1016/j.mri.2020.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/18/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Histogram analysis can better reflect tumor heterogeneity than conventional imaging analysis. The present study analyzed possible correlations between histogram analysis parameters derived from Intravoxel-incoherent imaging (IVIM) and histopathological features in rectal cancer (RC). METHODS Seventeen patients with histopathologically proven rectal adenocarcinomas were retrospectively acquired. In all cases, pelvic MRI was performed. Diffusion weighted imaging was obtained using a multi-slice single-shot echo-planar imaging sequence with b values of 0, 50, 200, 500 and 1000 s/mm2. Simplified IVIM analysis was performed using the IntelliSpace portal, version 10 and the following images were generated: f (perfusion fraction) map, D (true diffusion coefficient) map, and ADC map utilizing all b-values. Histogram based analysis of signal intensities was performed for every IVIM map using an in-house matlab tool. Histopathology was investigated using Ki 67 specimens with calculation of Ki 67-index and cellularity. CD31 stained specimens were used for calculation of microvessel density (MVD). RESULTS There were statistically significant correlations between Ki 67 index and mode derived from ADC as well as entropy from f, r=-0.50, p=.04 and r=-0.55, p=.02, respectively. MVD correlated well with parameters derived from f. CONCLUSION IVIM histogram analysis parameters can reflect histopathology in RC. ADC and D values are associated with proliferation potential. Perfusion fraction f is associated with MVD.
Collapse
Affiliation(s)
- Hans-Jonas Meyer
- Department of Diagnostic and Interventional Radiology, University of Leipzig, Leipzig, Germany.
| | | | - Katja Woidacki
- Section Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto-von-Guericke-University of Magdeburg, Magdeburg, Germany
| | - Mihailo Andric
- Department of Surgery, Otto-von-Guericke-University of Magdeburg, Magdeburg, Germany
| | - Maciej Powerski
- Department of Radiology and Nuclear Medicine, Otto-von-Guericke-University of Magdeburg, Magdeburg, Germany
| | - Maciej Pech
- Department of Radiology and Nuclear Medicine, Otto-von-Guericke-University of Magdeburg, Magdeburg, Germany
| | - Alexey Surov
- Department of Radiology and Nuclear Medicine, Otto-von-Guericke-University of Magdeburg, Magdeburg, Germany
| |
Collapse
|
5
|
Jiang Y, Li C, Liu Y, Shi K, Zhang W, Liu M, Chen M. Histogram analysis in prostate cancer: a comparison of diffusion kurtosis imaging model versus monoexponential model. Acta Radiol 2020; 61:1431-1440. [PMID: 32008343 DOI: 10.1177/0284185120901504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND There is still little research about histogram analysis of diffusion kurtosis imaging (DKI) using in prostate cancer at present. PURPOSE To verify the utility of histogram analysis of DKI model in detection and assessment of aggressiveness of prostate cancer, compared with monoexponential model (MEM). MATERIAL AND METHODS Twenty-three patients were enrolled in this study. For DKI model and MEM, the Dapp, Kapp, and apparent diffusion coefficient (ADC) were obtained by using single-shot echo-planar imaging sequence. The pathologies were confirmed by in-bore magnetic resonance (MR)-guided biopsy. Regions of interest (ROI) were drawn manually in the position where biopsy needle was put. The mean values and histogram parameters in cancer and noncancerous foci were compared using independent-samples T test. Receiver operating characteristic curves were used to investigate the diagnostic efficiency. Spearman's test was used to evaluate the correlation of parameters and Gleason scores. RESULTS The mean, 10th, 25th, 50th, 75th, and 90th percentiles of ADC and Dapp were significantly lower in prostate cancer than non-cancerous foci (P < 0.001). The mean, 50th, 75th, and 90th percentiles of Kapp were significantly higher in prostate cancer (P < 0.05). There was no significant difference between the AUCs of two models (0.971 vs. 0.963, P > 0.05). With the increasing Gleason scores, the 10th ADC decreased (ρ = -0.583, P = 0.018), but the 90th Kapp increased (ρ = 0.642, P = 0.007). CONCLUSION Histogram analysis of DKI model is feasible for diagnosing and grading prostate cancer, but it has no significant advantage over MEM.
Collapse
Affiliation(s)
- Yuwei Jiang
- Peking University Fifth School of Clinical Medicine, Beijing, China
- Radiology Department, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Chunmei Li
- Peking University Fifth School of Clinical Medicine, Beijing, China
- Radiology Department, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Ying Liu
- Radiology Department, Beijing Hospital, National Center of Gerontology, Beijing, China
- Radiology Department, Civil Aviation General Hospital, Civil Aviation Clinical Medical College of Peking University, Beijing, China
| | | | - Wei Zhang
- Pathology Department, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Ming Liu
- Urological Surgical Department, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Min Chen
- Peking University Fifth School of Clinical Medicine, Beijing, China
- Radiology Department, Beijing Hospital, National Center of Gerontology, Beijing, China
| |
Collapse
|