1
|
Arab S, Ghasemi S, Bahraminasab M, Ghanbari A, Heidari M, Kokhaei P, Bahrami A, Asgharzade S. CD73 Molecule Inhibitor Upregulates miR16 Expression in Experimental Glioblastoma and Inhibits Angiogenesis by Targeting VEGF. J Mol Neurosci 2025; 75:41. [PMID: 40140182 DOI: 10.1007/s12031-025-02307-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 01/01/2025] [Indexed: 03/28/2025]
Abstract
The function of CD73 (Cluster of Differentiation 73), an enzyme involved in the formation of adenosine (ADO), in the development of glioblastomas has been demonstrated. Indeed, ADO helps tumor angiogenesis by stimulating endothelial cell migration, proliferation, and tube formation. However, the details of the molecular mechanisms are not yet fully understood. Given the importance of angiogenesis in cancer progression, invasion, and metastasis, this study aimed to investigate how the inhibition of CD73 by adenosine-5'-(α, β-methylene) diphosphate (APCP) affects the angiogenesis process of experimental orthotopic glioblastoma at mRNAs, microRNAs, and protein levels. According to the real-time-polymerase chain reaction (RT-PCR) results, inhibition of CD73 decreased the angiogenesis of glioblastoma by reducing the expression of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1-alpha (HIF-1α) by ****P < 0.0001 and **P < 0.01, respectively. Furthermore, immunohistochemical staining showed that this treatment protocol attenuated the expression of VEGF and CD31. Moreover, APCP treatment significantly increased miR-16 expression in glioblastoma model rats by P < 0.001, but no significant change in miR-29A expression was observed. The results showed that the treatment did not lead to systemic damage or significant weight loss. Our results suggest that inhibition of CD73 may reduce the formation of new tumor vessels by inhibiting the VEGF, HIF-1α, and CD31 in this process. Therefore, CD73 may be a practical target and provide new opportunities to improve the treatment of malignant brain tumors.
Collapse
Affiliation(s)
- Samaneh Arab
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Sahar Ghasemi
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Marjan Bahraminasab
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Ghanbari
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mina Heidari
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, 8815713471, Iran
| | - Parviz Kokhaei
- Department of Immunology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
- Department of Oncology-Pathology, Karolinska University Hospital Solna and Karolinska Institute, BioClinicumStockholm, Sweden
| | - Abozar Bahrami
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, 8815713471, Iran
| | - Samira Asgharzade
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, 8815713471, Iran.
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
2
|
An W, Zhang W, Qi J, Xu W, Long Y, Qin H, Yao K. Mesenchymal stem cells and mesenchymal stem cell-derived exosomes: a promising strategy for treating retinal degenerative diseases. Mol Med 2025; 31:75. [PMID: 39984849 PMCID: PMC11846226 DOI: 10.1186/s10020-025-01120-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/07/2025] [Indexed: 02/23/2025] Open
Abstract
Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic strategy in regenerative medicine, demonstrating significant potential for clinical applications. Evidence suggests that MSCs not only exhibit multipotent differentiation potential but also exert critical therapeutic effects in retinal degenerative diseases via robust paracrine mechanisms. MSCs protect retinal cells from degenerative damage by modulating inflammation, inhibiting apoptosis, alleviating oxidative stress, and suppressing cell death pathways. Furthermore, MSCs contribute to retinal structural and functional stability by facilitating vascular remodeling and donating mitochondria to retinal cells. Of particular interest, MSC-derived exosomes have gained widespread attention as a compelling cell-free therapy. Owing to their potent anti-inflammatory, anti-apoptotic, and vascular-stabilizing properties, exosomes show significant promise for the treatment of retinal degenerative diseases.
Collapse
Affiliation(s)
- Wenjing An
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Wenliang Zhang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jia Qi
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Weihui Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yushan Long
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
3
|
Liao HJ, Yang YP, Liu YH, Tseng HC, Huo TI, Chiou SH, Chang CH. Harnessing the potential of mesenchymal stem cells-derived exosomes in degenerative diseases. Regen Ther 2024; 26:599-610. [PMID: 39253597 PMCID: PMC11382214 DOI: 10.1016/j.reth.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 09/11/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have gained attention as a promising therapeutic approach in both preclinical and clinical osteoarthritis (OA) settings. Various joint cell types, such as chondrocytes, synovial fibroblasts, osteoblasts, and tenocytes, can produce and release extracellular vesicles (EVs), which subsequently influence the biological activities of recipient cells. Recently, extracellular vesicles derived from mesenchymal stem cells (MSC-EVs) have shown the potential to modulate various physiological and pathological processes through the modulation of cellular differentiation, immune responses, and tissue repair. This review explores the roles and therapeutic potential of MSC-EVs in OA and rheumatoid arthritis, cardiovascular disease, age-related macular degeneration, Alzheimer's disease, and other degenerative diseases. Notably, we provide a comprehensive summary of exosome biogenesis, microRNA composition, mechanisms of intercellular transfer, and their evolving role in the highlight of exosome-based treatments in both preclinical and clinical avenues.
Collapse
Affiliation(s)
- Hsiu-Jung Liao
- Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Hao Liu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Huan-Chin Tseng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Teh-Ia Huo
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Hung Chang
- Department of Orthopedic Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan City, Taiwan
| |
Collapse
|
4
|
Wang Y, Liu X, Wang B, Sun H, Ren Y, Zhang H. Compounding engineered mesenchymal stem cell-derived exosomes: A potential rescue strategy for retinal degeneration. Biomed Pharmacother 2024; 173:116424. [PMID: 38471273 DOI: 10.1016/j.biopha.2024.116424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024] Open
Abstract
The prevalence of retinal degenerative diseases, including age-related macular degeneration and retinitis pigmentosa, has been increasing globally and is linked to the aging population and improved life expectancy. These diseases are characterized by chronic, progressive neuronal damage or depletion of the photoreceptor cells in the retina, and limited effective treatment options are currently available. Mesenchymal stem cell-derived exosomes (MSC-EXOs) containing cytokines, growth factors, lipids, mRNA, and miRNA, which act as mediators of intercellular communication transferring bioactive molecules to recipient cells, offer an appealing, non-cellular nanotherapeutic approach for retinal degenerative diseases. However, treatment specificity is compromised due to their high heterogeneity in size, content, functional effects, and parental cellular source. To improve this, engineered MSC-EXOs with increased drug-loading capacity, targeting ability, and resistance to bodily degradation and elimination have been developed. This review summarizes the recent advances in miRNAs of MSC-EXOs as a treatment for retinal degeneration, discussing the strategies and methods for engineering therapeutic MSC-EXOs. Notably, to address the single functional role of engineered MSC-EXOs, we propose a novel concept called "Compound Engineered MSC-EXOs (Co-E-MSC-EXOs)" along with its derived potential therapeutic approaches. The advantages and challenges of employing Co-E-MSC-EXOs for retinal degeneration in clinical applications, as well as the strategies and issues related to them, are also highlighted.
Collapse
Affiliation(s)
- Yao Wang
- Shaanxi Provincial Clinical Research Center for Ophthalmology Diseases, the First Affiliated Hospital of Northwest University, Xi'an No.1 hospital, Xi'an, Shaanxi, China; Shaanxi Key Laboratory of Ophthalmology, Shaanxi Institute of Ophthalmology, Xi'an, Shaanxi 710002, China.
| | - Xianning Liu
- Shaanxi Provincial Clinical Research Center for Ophthalmology Diseases, the First Affiliated Hospital of Northwest University, Xi'an No.1 hospital, Xi'an, Shaanxi, China; Shaanxi Key Laboratory of Ophthalmology, Shaanxi Institute of Ophthalmology, Xi'an, Shaanxi 710002, China
| | - Bei Wang
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Hanhan Sun
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yiqian Ren
- Shaanxi Provincial Clinical Research Center for Ophthalmology Diseases, the First Affiliated Hospital of Northwest University, Xi'an No.1 hospital, Xi'an, Shaanxi, China; Shaanxi Key Laboratory of Ophthalmology, Shaanxi Institute of Ophthalmology, Xi'an, Shaanxi 710002, China
| | - Hongbing Zhang
- Shaanxi Provincial Clinical Research Center for Ophthalmology Diseases, the First Affiliated Hospital of Northwest University, Xi'an No.1 hospital, Xi'an, Shaanxi, China; Shaanxi Key Laboratory of Ophthalmology, Shaanxi Institute of Ophthalmology, Xi'an, Shaanxi 710002, China.
| |
Collapse
|
5
|
Feng Y, Wang K, Qin M, Zhuang Q, Chen Z. MiR-183-5p promotes migration and invasion of prostate cancer by targeting TET1. BMC Urol 2023; 23:116. [PMID: 37430206 DOI: 10.1186/s12894-023-01286-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 07/01/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is one of the common malignant tumors worldwide. MiR-183-5p has been reported involved in the initiation of human PCa, this study aimed to investigate whether miR-183-5p affects the development of prostate cancer. METHODS In this study, we analyzed the expression of miR-183-5p in PCa patients and its correlation with clinicopathological parameters based on TCGA data portal. CCK-8, migration assay and invasion and wound-healing assay were performed to detect proliferation, migration and invasion in PCa cells. RESULTS We found the expression of miR-183-5p was significantly increased in PCa tissues, and high expression of miR-183 was positively associated with poor prognosis of PCa patients. Over-expression of miR-183-5p promoted the migration, invasion capacities of PCa cells, whereas knockdown of miR-183-5p showed reversed function. Furthermore, luciferase reporter assay showed TET1 was identified as a direct target of miR-183-5p, which was negatively correlation with miR-183-5p expression level. Importantly, rescue experiments demonstrated TET1 over-expression could reverse miR-183-5p mimic induced-acceleration of PCa malignant progression. CONCLUSION Our results indicated that miR-183-5p could act as a tumor promoter in PCa and it accelerated the malignant progression of PCa by directly targeting and down-regulating TET1.
Collapse
Affiliation(s)
- Yuehua Feng
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Kai Wang
- Department of Urology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Minchao Qin
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Qianfeng Zhuang
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
| | - Zhen Chen
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
| |
Collapse
|
6
|
Zhu D, Zhu Z, Qi H. NEAT1/microRNA 339-5p/SPI1 Axis Feedback Loop Contributes to Osteogenic Differentiation in Acute Suppurative Osteomyelitis in Children. J Inflamm Res 2023; 16:2675-2687. [PMID: 37408606 PMCID: PMC10318109 DOI: 10.2147/jir.s410339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/24/2023] [Indexed: 07/07/2023] Open
Abstract
OBJECTIVE Long non-coding RNA plays an important role in osteogenic differentiation. Nuclear enriched abundant transcript 1 (NEAT1) has been revealed to promote osteogenic differentiation in human bone marrow mesenchymal stem cells (hBMSCs), but the underlying regulatory mechanism remains unknown in acute suppurative osteomyelitis of children. METHODS Osteogenic medium (OM) was used to induce osteogenic differentiation. Quantitative real-time PCR and Western blotting were used to evaluate gene expression. The effects of NEAT1, microRNA 339-5p (miR-339-5p), and salmonella pathogenicity island 1 (SPI1) on osteogenic differentiation were assessed in vitro using alizarin red S staining assays and alkaline phosphatase activity. Interactions between NEAT1, miR-339-5p, and SPI1 were identified using immunoprecipitation, luciferase reporter assays, and chromatin immunoprecipitation. RESULTS During osteogenic differentiation, expression of NEAT1 was up-regulated in hBMSCs, and miR-339-5p level was down during osteogenic differentiation. Knockdown of NEAT1 reduced the osteogenic differentiation of hBMSCs, and down-regulation of miR-339-5p may counteract the effect of NEAT1 silencing. SPI1 was a target of miR-339-5p by luciferase reporter assay and was also a transcription factor of NEAT1 by chromatin immunoprecipitation. A positive NEAT1-miR-339-5p-SPI1 feedback loop was found to be present during osteogenic differentiation in hBMSCs. CONCLUSION It was the first study to reveal that the NEAT1-miR-339-5p-SPI1 feedback loop can promote osteogenic differentiation in hBMSCs and shed a new light on the role of NEAT1 during osteogenic differentiation.
Collapse
Affiliation(s)
- Dongsheng Zhu
- Department of Pediatric Surgery, the First People’s Hospital of Lianyungang, Affiliated to Xuzhou Medical University, Lianyungang, Jiangsu, 222000, People’s Republic of China
| | - Zhitao Zhu
- Department of Radiology, the Second People’s Hospital of Lianyungang, Lianyungang, Jiangsu, 222000, People’s Republic of China
| | - Han Qi
- Department of Emergency Surgery, the Second People’s Hospital of Lianyungang, Lianyungang, Jiangsu, 222000, People’s Republic of China
| |
Collapse
|
7
|
Stem cell transplantation as a progressing treatment for retinitis pigmentosa. Cell Tissue Res 2022; 387:177-205. [PMID: 35001210 DOI: 10.1007/s00441-021-03551-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/27/2021] [Indexed: 11/02/2022]
Abstract
Retinal degenerative diseases such as retinitis pigmentosa (RP) are of the major causes of vision loss in developed countries. Despite the unclear pathophysiology, treatment methods have been investigated vastly in the past decades. This review article mainly discusses the advances in application of stem cell and progenitor transplantation for retinitis pigmentosa. Stem cell sources such as mesenchymal stem cells, embryonic stem cells, induced pluripotent stem cells, neural stem cells, retinal progenitor cells, and olfactory ensheathing cells are discussed separately in addition to a brief description of two approaches for treatment of early-stage RP, including gene therapy and nutritional therapy.
Collapse
|
8
|
ZHANG D, WU S. Effects of Foxc1 and Oct4 genes regulating BMSCs transplantation on cardiomyocyte apoptosis after acute myocardial infarction in rats. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.55321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Forouzanfar F, Soleimannejad M, Soltani A, Sadat Mirsafaee P, Asgharzade S. Retinoic acid and taurine enhance differentiation of the human bone marrow stem cells into cone photoreceptor cells and retinal ganglion cells. J Cell Biochem 2021; 122:1915-1924. [PMID: 34569079 DOI: 10.1002/jcb.30151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/27/2021] [Accepted: 09/13/2021] [Indexed: 12/16/2022]
Abstract
Degeneration and apoptotic death of the photoreceptor cell-layer of retina are a major cause of irreversible blindness in the development era. The stem cell replacement therapy is one of the strategies for the retinal repairing. In addition, exogenous signals critically contribute to the direction of lineage decisions that causes the fate-restricted photoreceptor progenitors from stem cell progeny in culture. It has been found that epidermal growth factor (EGF), taurine, and retinoic acid (RA) initially act in the instructive as well as lineage-restricted way in the progenitor lineage for producing neuroretinal cells or photoreceptor like cells from stem cell. The study aims to investigate the effect of RA and taurine in differentiation of the human bone marrow stem cell into cone photoreceptors cells and retinal ganglion cells. Mesenchymal stem cell was derived from human bone marrow of the term delivery. Therefore, the cultured cells have been treated with Dulbecco's modified Eagle's medium (DMEM)/high glucose (H+ ). After the four-cell passage, basal medium was replaced with DMEM/F12 complemented with 50 μmol/L taurine, RA (1 µM) and EGF (1 µg/ml). Subsequently cellular change morphology was detected following 7 and 14 days. Then, gene expression of neuroretinal and photoreceptor cell biomarkers (CRX, OTX2, PKC-α, recoverin, and Rho) were examined by quantitative polymerase chain reaction (Q-PCR). Also, cells were cultured, fixed, and then immunocytochemical analyzed. Primary antibodies included CRX and Rho. Cellular morphology demonstrated spindle elongated morphology. Taurine alone and combination of RA upregulate neuroretinal and photoreceptor cell biomarkers in messenger RNA and protein levels but along with EGF have not significant effect. Our data showed that taurine combination with RA can differentiate bone marrow mesenchymal stem cells into neuroretinal or photoreceptor like cells in vitro that can offer an attractive treatment ground for transplantation in the cell-replacement therapy for some forms of the retinal degeneration.
Collapse
Affiliation(s)
- Fatemeh Forouzanfar
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mostafa Soleimannejad
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Amin Soltani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Parisa Sadat Mirsafaee
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Samira Asgharzade
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
10
|
Mannino G, Russo C, Longo A, Anfuso CD, Lupo G, Lo Furno D, Giuffrida R, Giurdanella G. Potential therapeutic applications of mesenchymal stem cells for the treatment of eye diseases. World J Stem Cells 2021; 13:632-644. [PMID: 34249232 PMCID: PMC8246249 DOI: 10.4252/wjsc.v13.i6.632] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/07/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Stem cell-based treatments have been extensively explored in the last few decades to develop therapeutic strategies aimed at providing effective alternatives for those human pathologies in which surgical or pharmacological therapies produce limited effects. Among stem cells of different sources, mesenchymal stem cells (MSCs) offer several advantages, such as the absence of ethical concerns, easy harvesting, low immunogenicity and reduced tumorigenesis risks. Other than a multipotent differentiation ability, MSCs can release extracellular vesicles conveying proteins, mRNA and microRNA. Thanks to these properties, new therapeutic approaches have been designed for the treatment of various pathologies, including ocular diseases. In this review, the use of different MSCs and different administration strategies are described for the treatment of diabetic retinopathy, glaucoma, and retinitis pigmentosa. In a large number of investigations, positive results have been obtained by in vitro experiments and by MSC administration in animal models. Most authors agree that beneficial effects are likely related to MSC paracrine activity. Based on these considerations, many clinical trials have already been carried out. Overall, although some adverse effects have been described, promising outcomes are reported. It can be assumed that in the near future, safer and more effective protocols will be developed for more numerous clinical applications to improve the quality of life of patients affected by eye diseases.
Collapse
Affiliation(s)
- Giuliana Mannino
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania 95123, Italy
| | - Cristina Russo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania 95123, Italy
| | - Anna Longo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania 95123, Italy
| | - Carmelina Daniela Anfuso
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania 95123, Italy
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania 95123, Italy
| | - Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania 95123, Italy.
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania 95123, Italy
| | - Giovanni Giurdanella
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania 95123, Italy
| |
Collapse
|
11
|
Xu S, Coku A, Muraleedharan CK, Harajli A, Mishulin E, Dahabra C, Choi J, Garcia WJ, Webb K, Birch D, Goetz K, Li W. Mutation Screening in the miR-183/96/182 Cluster in Patients With Inherited Retinal Dystrophy. Front Cell Dev Biol 2020; 8:619641. [PMID: 33425925 PMCID: PMC7785829 DOI: 10.3389/fcell.2020.619641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/07/2020] [Indexed: 01/09/2023] Open
Abstract
Inherited retinal dystrophy (IRD) is a heterogenous blinding eye disease and affects more than 200,000 Americans and millions worldwide. By far, 270 protein-coding genes have been identified to cause IRD when defective. However, only one microRNA (miRNA), miR-204, has been reported to be responsible for IRD when a point-mutation occurs in its seed sequence. Previously, we identified that a conserved, polycistronic, paralogous miRNA cluster, the miR-183/96/182 cluster, is highly specifically expressed in all photoreceptors and other sensory organs; inactivation of this cluster in mice resulted in syndromic IRD with multi-sensory defects. We hypothesized that mutations in the miR-183/96/182 cluster in human cause IRD. To test this hypothesis, we perform mutation screening in the pre-miR-183, -96, -182 in >1000 peripheral blood DNA samples of patients with various forms of IRD. We identified six sequence variants, three in pre-miR-182 and three in pre-miR-96. These variants are in the pre-miRNA-182 or -96, but not in the mature miRNAs, and are unlikely to be the cause of the IRD in these patients. In spite of this, the nature and location of these sequence variants in the pre-miRNAs suggest that some may have impact on the biogenesis and maturation of miR-182 or miR-96 and potential roles in the susceptibility to diseases. Although reporting on negative results so far, our study established a system for mutation screening in the miR-183/96/182 cluster in human for a continued effort to unravel and provides deeper insight into the potential roles of miR-183/96/182 cluster in human diseases.
Collapse
Affiliation(s)
- Shunbin Xu
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Ardian Coku
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Chithra K. Muraleedharan
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Ali Harajli
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Eric Mishulin
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, United States
| | - Chafic Dahabra
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Joanne Choi
- Class of 2020, School of Medicine, Wayne State University, Detroit, MI, United States
| | - William J. Garcia
- College of Natural Science, Michigan State University, East Lansing, MI, United States
| | - Kaylie Webb
- Retina Foundation of the Southwest, Dallas, TX, United States
| | - David Birch
- Retina Foundation of the Southwest, Dallas, TX, United States
| | - Kerry Goetz
- National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Weifeng Li
- Peking Union Medical College, Beijing, China
| |
Collapse
|