1
|
Barkat H, Riaz B, Fatima A, AlShammari L, Ahmed YB, Ahmad W, Amir M, Israr J, Khatoon A, Siddiqui S. Nutritional, Medicinal, and Commercial Significance of Moringa oleifera L. Leaves: A Comprehensive Review. Chem Biodivers 2025:e202500559. [PMID: 40195685 DOI: 10.1002/cbdv.202500559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/05/2025] [Accepted: 04/07/2025] [Indexed: 04/09/2025]
Abstract
Moringa oleifera L., widely referred to as the drumstick tree, is renowned for its leaves, which are abundant in vital nutrients and bioactive substances. This study systematically summarized and reviewed the literature on M. oleifera leaves as nutraceuticals from Scopus, Web of Science, PubMed, and other online databases. In addition, various online tools were utilized to calculate the drug-likeness, pharmacokinetics, and toxicity profiles of phytoconstituents from M. oleifera leaves. This review underscores the nutritional, pharmacological, and commercial significance of M. oleifera leaves, emphasizing both established knowledge and new findings that enhance our comprehension of this multifaceted plant. Moreover, this study explored the extensive phytochemical profile of Moringa leaves, encompassing vitamins, minerals, antioxidants, and anti-inflammatory compounds, as well as their contributions to human health. This study consolidates the current understanding of Moringa leaves and introduces a new paradigm for future research at the nexus of nutrition, medicine, and commerce, promoting its incorporation into global health initiatives and sustainable agricultural plans.
Collapse
Affiliation(s)
- Harshita Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Bushra Riaz
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Afreen Fatima
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Latifah AlShammari
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Yasmin Basheer Ahmed
- Department of Clinical Nutrition, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Dammam, Saudi Arabia
| | - Mohd Amir
- Department of Natural Products, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Juveriya Israr
- Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, India
| | - Afsana Khatoon
- Department of Arab Culture, Karamat Husain Muslim Girls' P.G. College, University of Lucknow, Lucknow, India
| | - Sahabjada Siddiqui
- Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, India
| |
Collapse
|
2
|
Yousefi Rad A, Rastegari AA, Shahanipour K, Monajemi R. Moringa oleifera and Its Biochemical Compounds: Potential Multi-targeted Therapeutic Agents Against COVID-19 and Associated Cancer Progression. Biochem Genet 2025; 63:936-959. [PMID: 38583096 DOI: 10.1007/s10528-024-10758-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/23/2024] [Indexed: 04/08/2024]
Abstract
The Coronavirus disease-2019 (COVID-19) pandemic is a global concern, with updated pharmacological therapeutic strategies needed. Cancer patients have been found to be more susceptible to severe COVID-19 and death, and COVID-19 can also lead to cancer progression. Traditional medicinal plants have long been used as anti-infection and anti-inflammatory agents, and Moringa oleifera (M. oleifera) is one such plant containing natural products such as kaempferol, quercetin, and hesperetin, which can reduce inflammatory responses and complications associated with viral infections and multiple cancers. This review article explores the cellular and molecular mechanisms of action of M. oleifera as an anti-COVID-19 and anti-inflammatory agent, and its potential role in reducing the risk of cancer progression in cancer patients with COVID-19. The article discusses the ability of M. oleifera to modulate NF-κB, MAPK, mTOR, NLRP3 inflammasome, and other inflammatory pathways, as well as the polyphenols and flavonoids like quercetin and kaempferol, that contribute to its anti-inflammatory properties. Overall, this review highlights the potential therapeutic benefits of M. oleifera in addressing COVID-19 and associated cancer progression. However, further investigations are necessary to fully understand the cellular and molecular mechanisms of action of M. oleifera and its natural products as anti-inflammatory, anti-COVID-19, and anti-cancer strategies.
Collapse
Affiliation(s)
- Ali Yousefi Rad
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Esfahan, Iran
| | - Ali Asghar Rastegari
- Department of Molecular and Cell Biochemistry, Falavarjan Branch, Islamic Azad University, Esfahan, Iran.
| | - Kahin Shahanipour
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Esfahan, Iran
| | - Ramesh Monajemi
- Department of Biology, Falavarjan Branch, Islamic Azad University, Esfahan, Iran
| |
Collapse
|
3
|
Siddique A, Naeem J, Ang KL, Abid S, Xu Z, Khawar MT, Saleemi S, Abdullah M, Adeel. Cinnamon and Eucalyptus Extracts: A Promising Natural Approach for Durable Mosquito-Repellent Fabrics with Multifunctionality. ACS OMEGA 2024; 9:41468-41479. [PMID: 39398144 PMCID: PMC11465543 DOI: 10.1021/acsomega.4c04910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 10/15/2024]
Abstract
Mosquitoes are highly important carriers of diseases, such as malaria, dengue, chikungunya, and various other life-threatening illnesses. Traditionally, many chemicals, such as plant extracts, oils, and smoke, have been employed for the purpose of repelling mosquitoes. Various plants possess essential oils and chemicals that have been proven to be good insect repellents and are commonly regarded as weeds. The present study focused on the development of eco-friendly, nonhazardous mosquito-repellent fabrics using cinnamon and eucalyptus extracts. First, eucalyptus and cinnamon extracts were produced separately using ethanol and water as solvents with and without heating. Forty-eight different fabric samples were prepared by applying these extracts at three levels of process application temperature. A steam dye bath sampling machine was utilized to execute the extraction application process on fabric samples. The mosquito repellency performances of all of the samples were evaluated using the cage test method. The cage test revealed that all of the samples of eucalyptus and cinnamon extract-applied fabrics showed mosquito repellency performance at some level. However, the fabric samples treated with the heated extract of eucalyptus ethanol (EE-H) at 60 °C showed the best results in terms of mosquito repellency (85.56%) among all combinations. In addition to repellency, the impact of washing durability, UV shielding, and antibacterial performance was also evaluated. This research demonstrated a new method for creating a fabric that repels mosquitoes and has effective antibacterial properties as well as promising ultraviolet protection factor (UPF) rating. This fabric protects the wearer from the significant health risks posed by mosquitoes and harmful UV radiation while also maintaining its cleanliness. Moreover, the utilization and implementation of plant-derived coatings on textiles contribute to the advancement of sustainable methods (SDG 9 and SDG 12) in the chemical processing industry of textiles, ultimately leading to a reduction in their environmental footprint.
Collapse
Affiliation(s)
- Amna Siddique
- School
of Engineering and Technology, National
Textile university, Faisalabad 37610, Pakistan
| | - Jawad Naeem
- School
of Engineering and Technology, National
Textile university, Faisalabad 37610, Pakistan
| | - Kiang Long Ang
- Faculty
of Engineering and Quantity Surveying, INTI
International University, Nilai 71800, Malaysia
| | - Sharjeel Abid
- School
of Engineering and Technology, National
Textile university, Faisalabad 37610, Pakistan
| | - Zhiwei Xu
- School
of Textile Science and Engineering, Tiangong
University, Tianjin 300387, China
| | - Muhammad Tauseef Khawar
- School
of Engineering and Technology, National
Textile university, Faisalabad 37610, Pakistan
| | - Sidra Saleemi
- Institute
of Polymers and Textile Engineering, University
of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Muhammad Abdullah
- School
of Engineering and Technology, National
Textile university, Faisalabad 37610, Pakistan
| | - Adeel
- School
of Engineering and Technology, National
Textile university, Faisalabad 37610, Pakistan
| |
Collapse
|
4
|
El Bilali H, Dan Guimbo I, Nanema RK, Falalou H, Kiebre Z, Rokka VM, Tietiambou SRF, Nanema J, Dambo L, Grazioli F, Naino Jika AK, Gonnella M, Acasto F. Research on Moringa ( Moringa oleifera Lam.) in Africa. PLANTS (BASEL, SWITZERLAND) 2024; 13:1613. [PMID: 38931045 PMCID: PMC11207860 DOI: 10.3390/plants13121613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
While Moringa oleifera Lam. is gaining importance in Africa, especially sub-Saharan Africa, it is unclear whether research is following the quick pace of its development on the continent. Therefore, this article analyzes the landscape of research dealing with moringa in Africa. This systematic review draws upon 299 eligible articles identified through a search carried out on the Web of Science in April 2023. Research on M. oleifera is rather recent in Africa but interest is increasing among scholars. While the research field is multidisciplinary and cross-sectoral, the literature seems to focus on biological and environmental sciences. Moreover, research is performed mainly in South Africa, Nigeria, Egypt, and Ghana. The analysis suggests a significant potential contribution of moringa to food security and nutrition, climate change mitigation/adaptation, farming systems resilience, and livelihoods. Its versatility and diverse applications and uses make moringa particularly interesting for developing countries, such as African ones. However, this review also underscores some factors hindering its development. Therefore, there is a need to strengthen research on moringa to unlock its potential in Africa. Investments in research, innovation, and development can help address the many challenges that Africa faces and contribute to the transition towards sustainable and resilient food systems.
Collapse
Affiliation(s)
- Hamid El Bilali
- International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM-Bari), Via Ceglie 9, Valenzano, 70010 Bari, Italy
| | - Iro Dan Guimbo
- Department of Rural Engineering, Water and Forests, Faculty of Agronomy, Abdou Moumouni University, Niamey P.O. Box 237, Niger;
| | - Romaric Kiswendsida Nanema
- Department of Plant Biology and Physiology, Joseph Ki-Zerbo University, PB 7021, Ouagadougou 03, Burkina Faso; (R.K.N.); (Z.K.)
| | - Hamidou Falalou
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Niamey BP 12404, Niger;
| | - Zakaria Kiebre
- Department of Plant Biology and Physiology, Joseph Ki-Zerbo University, PB 7021, Ouagadougou 03, Burkina Faso; (R.K.N.); (Z.K.)
| | - Veli-Matti Rokka
- Natural Resources Institute Finland (Luke), Myllytie 1, 31600 Jokioinen, Finland;
| | | | - Jacques Nanema
- Programme Agrinovia, Joseph Ki-Zerbo University, 03 BP, Ouagadougou 7021, Burkina Faso;
| | - Lawali Dambo
- Department of Geography, Faculty of Letters and Human Sciences, Abdou Moumouni University, Niamey P.O. Box 237, Niger;
| | - Francesca Grazioli
- Alliance Bioversity International—CIAT (Centro Internacional de Agricultura Tropical), Via San Domenico 1, 00153 Rome, Italy
| | - Abdel Kader Naino Jika
- Department of Crop Production, Faculty of Agronomy, Abdou Moumouni University, Niamey P.O. Box 237, Niger;
| | - Maria Gonnella
- Institute of Sciences of Food Production, National Research Council of Italy (CNR), Via G. Amendola 122/O, 70126 Bari, Italy;
| | - Filippo Acasto
- Italian Agency for Development Cooperation (AICS), Ouaga 2000—Secteur 54, Arrondissement n. 12, Ouagadougou 01, Burkina Faso;
| |
Collapse
|
5
|
Bopape M, Tiloke C, Ntsapi C. Moringa oleifera and Autophagy: Evidence from In Vitro Studies on Chaperone-Mediated Autophagy in HepG 2 Cancer Cells. Nutr Cancer 2023; 75:1822-1847. [PMID: 37850743 DOI: 10.1080/01635581.2023.2270215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 10/19/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer in Sub-Saharan African countries, including South Africa (SA). Given the limitations in current HCC therapeutics, there is an increasing need for alternative adjuvant therapeutic options. As such, several cell survival mechanisms, such as autophagy, have been identified as potential adjuvant therapeutic targets in HCC treatment. Of the three most established autophagic pathways, the upregulation of chaperone-mediated autophagy (CMA) has been extensively described in various cancer cells, including HCC cells. CMA promotes tumor growth and chemotherapeutic drug resistance, thus contributing to HCC tumorigenesis. Therefore, the modulation of CMA serves as a promising adjuvant target for current HCC therapeutic strategies. Phytochemical extracts found in the medicinal plant, Moringa oleifera (MO), have been shown to induce apoptosis in numerous cancer cells, including HCC. MO leaves have the greatest abundance of phytochemicals displaying anticancer potential. However, the potential interaction between the pro-apoptotic effects of MO aqueous leaf extract and the survival-promoting role of CMA in an in vitro model of HCC remains unclear. This review aims to summarize the latest findings on the role of CMA, and MO in the progression of HCC.
Collapse
Affiliation(s)
- Matlola Bopape
- Department of Basic Medical Sciences, University of the Free State, Bloemfontein, South Africa
| | - Charlette Tiloke
- Department of Basic Medical Sciences, University of the Free State, Bloemfontein, South Africa
| | - Claudia Ntsapi
- Department of Basic Medical Sciences, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
6
|
Parvez AA, Hossain MJ, Hossain MZ, Sohan MSH, Hoque F, Ahsan MH, Hoque MS. Mosquito repellent fabric: Development and characterization of peppermint and garlic mixture finish on knitted fabric to examine mosquito repellency. Heliyon 2023; 9:e15944. [PMID: 37215766 PMCID: PMC10195905 DOI: 10.1016/j.heliyon.2023.e15944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Mosquito-repellent textiles are a part of protective textiles which help in protection from the species that are prone to cause diseases like malaria and dengue fever. This study explored the possibility of natural extract (alcoholic) from peppermint leaves, stems, and garlic cloves to use as a mosquito-repellent finish material on knit fabric. Accordingly, different concentration (5%, 15%, 25%, and 35%) of PGE (Peppermint Garlic Extract) solution was prepared and applied to the developed fabric using an exhaust dyeing process to assess the mosquito (Aedes Aegypti L.) repellency performance. Following WHO (World Health Organization) standard (cone bioassay) and a self-modified cage technique from literature survey, mosquito protection and repellency tests have been performed for characterization. The findings revealed that the PGE-treated fabric samples C (25% PGE) and D (35% PGE) had the highest mosquito mortality (50.00% and 76.67%, respectively) and repellency (78.6% and 85.6%, respectively) rates. Moreover, this study evaluated the prepared PGE formulations' shelf-life performance and colorfastness properties of PGE-treated fabrics, including the impact of washing cycles on the treated fabrics. There was no fungal growth, and the fabric showed excellent colorfastness properties. However, the efficacy of treated fabrics decreased with an increasing number of washes.
Collapse
Affiliation(s)
- Abdullah Al Parvez
- Department of Yarn Manufacturing Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh
| | - Md. Jakir Hossain
- Textile Engineering College, Chittagong, University of Chittagong, Bangladesh
| | - Md. Zabed Hossain
- Wet Processing Engineering, National Institute of Textile Engineering and Research, Dhaka, Bangladesh
| | | | - Fariha Hoque
- Department of Apparel Manufacturing, Bangladesh University of Textiles, Dhaka, Bangladesh
| | - Md. Habibul Ahsan
- Apparel Manufacturing Engineering, National Institute of Textile Engineering and Research, Dhaka, Bangladesh
| | - Md. Saiful Hoque
- Department of Textile Engineering, Daffodil International University, Bangladesh
| |
Collapse
|
7
|
Darwish MIM, Moustafa AM, Youssef AM, Mansour M, Yousef AI, El Omri A, Shawki HH, Mohamed MF, Hassaneen HM, Abdelhamid IA, Oishi H. Novel Tetrahydro-[1,2,4]triazolo[3,4- a]isoquinoline Chalcones Suppress Breast Carcinoma through Cell Cycle Arrests and Apoptosis. Molecules 2023; 28:molecules28083338. [PMID: 37110575 PMCID: PMC10144155 DOI: 10.3390/molecules28083338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Chalcones are interesting anticancer drug candidates which have attracted much interest due to their unique structure and their extensive biological activity. Various functional modifications in chalcones have been reported, along with their pharmacological properties. In the current study, novel chalcone derivatives with the chemical base of tetrahydro-[1,2,4]triazolo[3,4-a]isoquinolin-3-yl)-3-arylprop-2-en-1-one were synthesized, and the structure of their molecules was confirmed through NMR spectroscopy. The antitumor activity of these newly synthesized chalcone derivatives was tested on mouse (Luc-4T1) and human (MDA-MB-231) breast cancer cell lines. The antiproliferative effect was evaluated through SRB screening and the MTT assay after 48 h of treatment at different concentrations. Interestingly, among the tested chalcone derivatives, chalcone analogues with a methoxy group were found to have significant anticancer activity and displayed gradient-dependent inhibition against breast cancer cell proliferation. The anticancer properties of these unique analogues were examined further by cytometric analysis of the cell cycle, quantitative PCR, and the caspases-Glo 3/7 assay. Chalcone methoxy derivatives showed the capability of cell cycle arrest and increased Bax/Bcl2 mRNA ratios as well as caspases 3/7 activity. The molecular docking analysis suggests that these chalcone methoxy derivatives may inhibit anti-apoptotic proteins, particularly cIAP1, BCL2, and EGFRK proteins. In conclusion, our findings confirm that chalcone methoxy derivatives could be considered to be potent drug candidates against breast cancer.
Collapse
Affiliation(s)
- Mahmoud I M Darwish
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Ahmed M Moustafa
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Asmaa M Youssef
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
- Animal Health Research Institute, Agriculture Research Center, Giza 12619, Egypt
| | | | - Ahmed I Yousef
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Abdelfatteh El Omri
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha 3050, Qatar
| | - Hossam H Shawki
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
- National Gene Bank of Egypt, Giza 12916, Egypt
| | - Magda F Mohamed
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Hamdi M Hassaneen
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Ismail A Abdelhamid
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Hisashi Oishi
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| |
Collapse
|
8
|
AbdAlla HAM, Wanga VO, Mkala EM, Amenu SG, Amar MH, Chen L, Wang QF. Comparative genomics analysis of endangered wild Egyptian Moringa peregrina (Forssk.) Fiori plastome, with implications for the evolution of Brassicales order. Front Genet 2023; 14:1131644. [PMID: 36992699 PMCID: PMC10040795 DOI: 10.3389/fgene.2023.1131644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/27/2023] [Indexed: 03/14/2023] Open
Abstract
Moringa is a mono-genus belonging to the Moringaceae family, which includes 13 species. Among them, Moringa peregrina is plant species native to the Arabian Peninsula, Southern Sinai in Egypt, and the Horn of Africa, and comprehensive studies on its nutritional, industrial, and medicinal values have been performed. Herein, we sequenced and analyzed the initial complete chloroplast genome of Moringa peregrina. Concurrently, we analyzed the new chloroplast genome along with 25 chloroplast genomes related to species representing eight families in the Brassicales order. The results indicate that the plastome sequence of M. peregrina consists of 131 genes, with an average GC content of 39.23%. There is a disparity in the IR regions of the 26 species ranging from 25,804 to 31,477 bp. Plastome structural variations generated 20 hotspot regions that could be considered prospective DNA barcode locations in the Brassicales order. Tandem repeats and SSR structures are reported as significant evidence of structural variations among the 26 tested specimens. Furthermore, selective pressure analysis was performed to estimate the substitution rate within the Moringaceae family, which revealing that the ndhA and accD genes are under positive selective pressure. The phylogenetic analysis of the Brassicales order produced an accurate monophyletic annotation cluster of the Moringaceae and Capparaceae species, offering unambiguous identification without overlapping groups between M. oleifera and M. peregrina, which are genetically strongly associated. Divergence time estimation suggests that the two Moringa species recently diversified, 0.467 Ma. Our findings highlight the first complete plastome of the Egyptian wild-type of M. peregrina, which can be used for determining plastome phylogenetic relationships and systematic evolution history within studies on the Moringaceae family.
Collapse
Affiliation(s)
- Heba A. M. AbdAlla
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Plant Biodiversity and Evolution Research Group, University of Chinese Academy of Sciences, Beijing, China
- Botany Department, Agriculture and Biological Institute, National Research Centre, Giza, Egypt
| | - Vincent Okelo Wanga
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Plant Biodiversity and Evolution Research Group, University of Chinese Academy of Sciences, Beijing, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Elijah Mbandi Mkala
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Plant Biodiversity and Evolution Research Group, University of Chinese Academy of Sciences, Beijing, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Sara Getachew Amenu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Plant Biodiversity and Evolution Research Group, University of Chinese Academy of Sciences, Beijing, China
| | - Mohamed Hamdy Amar
- Egyptian Deserts Gene Bank, Desert Research Center, Cairo, Egypt
- *Correspondence: Qing-Feng Wang, ; Lingyun Chen, ; Mohamed Hamdy Amar,
| | - Lingyun Chen
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- *Correspondence: Qing-Feng Wang, ; Lingyun Chen, ; Mohamed Hamdy Amar,
| | - Qing-Feng Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Plant Biodiversity and Evolution Research Group, University of Chinese Academy of Sciences, Beijing, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Qing-Feng Wang, ; Lingyun Chen, ; Mohamed Hamdy Amar,
| |
Collapse
|
9
|
Maher Zahran E, Mohamad SA, Yahia R, Badawi AM, Sayed AM, Ramadan Abdelmohsen U. Anti-otomycotic potential of nanoparticles of Moringa oleifera leaf extract: an integrated in vitro, in silico and phase 0 clinical study. Food Funct 2022; 13:11083-11096. [DOI: 10.1039/d2fo02382b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The work flow of the study.
Collapse
Affiliation(s)
- Eman Maher Zahran
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone, 61111 New Minia City, Egypt
| | - Soad A. Mohamad
- Department of Pharmaceutics and Clinical pharmacy, Faculty of Pharmacy, Deraya University, Universities Zone, 61111 New Minia City, Egypt
| | - Ramadan Yahia
- Department of Microbiology, Faculty of Pharmacy, Deraya University, Universities Zone, 61111 New Minia City, Egypt
| | - Ahmed M. Badawi
- Department of Otorhinolaryngology, Faculty of Medicine, Minia University, Egypt
| | - Ahmed M. Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, 62513 Beni-Suef, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, AlMaaqal University, 61014 Basra, Iraq
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone, 61111 New Minia City, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, 61519Minia, Egypt
| |
Collapse
|
10
|
Santos ADS, Pimentel AL, Oliveira JVLD, Silva MTD, Silva FGC, Borges ALTF, Moura MAFBD, Silva SASD, Nascimento TGD. Phytochemical and pharmacological reports of the hypoglycemic activity of the Moringa oleifera extracts. RODRIGUÉSIA 2022. [DOI: 10.1590/2175-7860202273090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract Moringa oleifera is an arboreal plant belonging to the family Moringaceae distributed in tropical areas and has gained enormous attention in the last decades. This research is a review on the association between aqueous extracts of M. oleifera leaves and diabetes mellitus and understanding its pharmacological functions and underlying mechanisms. The research refinement demonstrated the pharmaceutical potential of M. oleifera and its phytochemicals, given its antidiabetic effect. The prospective analysis showed the amount of application within IPC A61K in health area. The secondary metabolites present in M. oleifera, glucosinolates, flavonoids, and phenolic compounds may be responsible, in part, for the disease control hypoglycemic actions. Glucosinolates, when metabolized by salivary enzymes, give rise to sulforaphanes that act in preventing type 2 diabetes and in reducing insulin resistance. Flavonoids interact with intestinal enzymes by modifying carbohydrate metabolism by regulating glycemic levels, in addition to increasing insulin sensitivity. Phenolic compounds increase the expression of glucose transporters (GLUT4) and reduce the synthesis of fatty acids and cholesterol, contributing to the reduction of glucose resistance and blood sugar control. Moringa oleifera can be used as complementary therapy of the type-2 diabetes.
Collapse
|
11
|
Joshi BC, Juyal V, Sah AN, Verma P, Mukhija M. Review On Documented Medicinal Plants Used For The Treatment Of Cancer. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083807666211011125110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background:
Cancer is a frightful disease and it is the second leading cause of death worldwide. Naturally derived compounds are gaining interest of research workers as they have less toxic side effects as compared to currently used treatments such as chemotherapy. Plants are the pool of chemical compounds which provides a promising future for research on cancer.
Objective:
This review paper provides updated information gathered on medicinal plants and isolated phytoconstituents used as anticancer agents and summarises the plant extracts and their isolated chemical constituents exhibiting anticancer potential on clinical trials.
Methods:
An extensive bibliographic investigation was carried out by analysing worldwide established scientific databases like SCOPUS, PUBMED, SCIELO, ScienceDirect, Springerlink, Web of Science, Wiley, SciFinder and Google Scholar etc. In next few decades, herbal medicine may become a new epoch of medical system.
Results:
Many researches are going on medicinal plants for the treatment of cancer but it is a time to increase further experimental studies on plant extracts and their chemical constituents to find out their mechanism of action at molecular level.
Conclusion:
The article may help many researchers to start off further experimentation that might lead to the drugs for the cancer treatment.
Collapse
Affiliation(s)
- Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Vijay Juyal
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Archana N. Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Piyush Verma
- Department of Pharmacology, School of Pharmaceutical science and Technology, Sardar Bhagwan Singh University, Dehradun-248001, India
| | - Minky Mukhija
- Department of Pharmaceutical Sciences, Ch. Devi Lal College of Pharmacy, Buria Road, Bhagwangarh, Jagadhri-135003, India
| |
Collapse
|
12
|
Alkaloid Extract of Moringa oleifera Lam. Exerts Antitumor Activity in Human Non-Small-Cell Lung Cancer via Modulation of the JAK2/STAT3 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5591687. [PMID: 34211571 PMCID: PMC8208859 DOI: 10.1155/2021/5591687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/12/2021] [Accepted: 05/19/2021] [Indexed: 12/25/2022]
Abstract
Lung cancer is one of the most common malignant tumors diagnosed worldwide. Moringa oleifera Lam. is a valuable medicinal plant native to India and Pakistan. However, the antilung cancer activity of M. oleifera alkaloid extract (MOAE) is unknown. The present study aimed to evaluate the regulatory effect of MOAE on A549 cells by examination of the proliferation, apoptosis, cell cycle, and migration of cells and to elucidate the possible mechanism of action of MOAE. We tested five types of cancer cells and four types of lung cancer cells and found MOAE exerted the strongest growth inhibitory effect against A549 cells but had low toxicity to GES-1 cells (human gastric mucosal epithelial cells). Simultaneously, MOAE induced apoptosis and increased the expression of the apoptosis-related proteins caspase-3 and caspase-9 in A549 cells. Furthermore, MOAE induced cell cycle arrest in the S phase through a decrease in the expression of the proteins cyclin D1 and cyclin E and an increase in the expression of the protein p21. MOAE also inhibited the migratory ability of A549 cells and decreased the expression of the migration-related proteins, matrix metalloproteinase (MMP) 2 and MMP9. In addition, the phosphorylation level of JAK2 and STAT3 proteins was decreased in MOAE-treated A549 cells. Furthermore, AZD1480 (a JAK inhibitor) and MOAE inhibited the proliferation and migration of A549 cells and induced cell apoptosis, and the effects of MOAE and AZD1480 were not additive. These results indicated that MOAE inhibits the proliferation and migration of A549 cells and induces apoptosis and cell cycle arrest through a mechanism that is related to the inhibition of JAK2/STAT3 pathway activation. Thus, this extract has potential for preventing and treating lung cancer.
Collapse
|
13
|
Anitha R, Subashini R, Kannayiram G, Gayathri D. Chronic Inflammatory-Modulating Potential of Cassia auriculata with Proinflammatory Cytokine IL-1beta and Its Anticancer Effect on Lung Cancer Cell Line. Anticancer Agents Med Chem 2021; 21:343-354. [PMID: 32781968 DOI: 10.2174/1871520620666200811111114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/25/2020] [Accepted: 07/09/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Inflammation is a key element in tumor progression, over time, persistent inflammation causes damage to DNA and leads to cancer. The relationship between chronic inflammation and tumor development is well established, blocking of which can help in cancer prevention and treatment in the future. OBJECTIVE Hence, with this background, the present study aims to evaluate the anti-inflammatory and anticancer potential of Cassia auriculata (CA) solvent fractions through in silico and in vitro means, respectively. METHODS Generally, inflammatory mediators play a key task in chronic inflammation, following its inflection was chosen for their interactions with nine structurally varied phytoconstituents of CA identified through GCMS. The ethanolic extract of CA was assessed for its apoptotic effects on A549 lung cancer cells by 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, JC-10 staining, DNA fragmentation assay and quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). RESULTS The interactions between bioactive components and target protein revealed that important molecules like 5,7-dihydroxy-2-[2-nethoxyphenyl]- 4H-1-Benzopyran-4-one, a flavonoid, and three other components can bind target interleukin 1-beta associated with lung cancer. In vitro data also confirmed that the diverse active components of CA extract might follow the intrinsic mitochondrial pathway to provoke cancer cell death. CONCLUSION Hence, these findings strongly propose that Cassia auriculata (CA) solvent fractions could be exploited in the future to design ligands for obtaining novel leads for treating chronic inflammation linked with lung cancer, and also the extracts of CA can be recommended as a potential agent for lung cancer chemotherapy.
Collapse
Affiliation(s)
- Rajagopal Anitha
- Department of Biomedical Engineering, SSN College of Engineering, Kalavakkam 603110, Tamil Nadu, India
| | - Rajakannu Subashini
- Department of Biomedical Engineering, SSN College of Engineering, Kalavakkam 603110, Tamil Nadu, India
| | - Gomathi Kannayiram
- Department of Biotechnology, Dr. MGR Educational and Research Institute, Maduravoyal, Chennai, Tamil Nadu 600095, India
| | - Dasararaju Gayathri
- Department of Crystallography and Biophysics, University of Madras, Chepauk, Chennai, Tamil Nadu 600005, India
| |
Collapse
|
14
|
Zeng Q, Che Y, Zhang Y, Chen M, Guo Q, Zhang W. Thymol Isolated from Thymus vulgaris L. Inhibits Colorectal Cancer Cell Growth and Metastasis by Suppressing the Wnt/β-Catenin Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2535-2547. [PMID: 32669835 PMCID: PMC7335897 DOI: 10.2147/dddt.s254218] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/26/2020] [Indexed: 12/31/2022]
Abstract
Purpose Colorectal cancer (CRC) is one of the most commonly occurring cancers and is associated with high morbidity and mortality. Nevertheless, there is currently no safe and effective treatment for this condition. Thymol is a phenolic compound that is recognized as safe for use in food as well as medical and cosmetic fields. Increasing evidence has indicated that thymol exerts prominent antitumor effects in a variety of cancers, including CRC. However, how thymol elicits these effects on CRC and the associated underlying mechanisms remains unclear. Methods HCT116 and Lovo cells were treated with different concentrations of thymol. Cell Counting Kit-8 (CCK-8) and transwell migration and invasion assays were used to evaluate cell proliferation, migration, and invasion, respectively. Cell apoptosis and cell cycle distribution were measured by flow cytometry. RT-qPCR, Western blot, and immunohistochemistry were used to detect the expression of related genes and their protein products. Results In this study, we tested the antitumor activity of thymol extracted from a Chinese medicinal herb, Thymus vulgaris L. We show that thymol treatment in vitro inhibited cell proliferation and induced apoptosis and cell cycle arrest in CRC. Furthermore, in vivo treatment with 75 and 150 mg/kg thymol led to a significant decrease in tumor volume. Thymol administration induced CRC cell apoptosis through activation of the BAX/Bcl-2 signaling pathway. In addition, thymol suppressed CRC cell epithelial–mesenchymal transition (EMT), invasion, and metastasis via inhibiting the activation of the Wnt/β-catenin pathway, both in vitro and in vivo. Conclusion Thymol may prevent CRC progression through inhibition of the Wnt/β-catenin signaling pathway, highlighting its potential as a novel therapeutic option for the treatment of CRC.
Collapse
Affiliation(s)
- Qiongyao Zeng
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Kunming 650500, People's Republic of China.,Medical School, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Yuncheng Che
- Medical School, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Yu Zhang
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, Yunnan Provincial Institute of Digestive Medicine, Kunming 650032, People's Republic of China
| | - Mei Chen
- Medical School, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Qiang Guo
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Kunming 650500, People's Republic of China.,Medical School, Kunming University of Science and Technology, Kunming 650500, People's Republic of China.,Department of Gastroenterology, The First People's Hospital of Yunnan Province, Yunnan Provincial Institute of Digestive Medicine, Kunming 650032, People's Republic of China
| | - Wenjing Zhang
- Medical School, Kunming University of Science and Technology, Kunming 650500, People's Republic of China.,Department of Medical Oncology, The First People's Hospital of Yunnan Province, Kunming 650032, People's Republic of China
| |
Collapse
|
15
|
Do BH, Hoang NS, Nguyen TPT, Ho NQC, Le TL, Doan CC. Phenolic Extraction of Moringa Oleifera Leaves Induces Caspase-Dependent and Caspase-Independent Apoptosis through the Generation of Reactive Oxygen Species and the Activation of Intrinsic Mitochondrial Pathway in Human Melanoma Cells. Nutr Cancer 2020; 73:869-888. [PMID: 32530312 DOI: 10.1080/01635581.2020.1776885] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Moringa oleifera Lam. has long been used to treat many diseases, including diabetes, aging, inflammatory, and cancer. Many studies have revealed that the crude extract of Moringa oleifera Lam. leaves possesses anticancer property. Therefore, in this study, the extract of Moringa oleifera leaves was fractionated using different solvents to figure out the most effective fraction for anti-proliferative effect on melanoma cells. Methanol extract (MO-ME), hexane fraction (MO-HE), chloroform fraction (MO-CH), ethyl acetate fraction (MO-EA), and water-soluble fraction (MO-WA) of Moringa oleifera leaves were prepared. Total phenolic and flavonoid contents were determined. The anti-proliferative activity on melanoma cells and normal cells was investigated using WST-1 assay. The apoptotic activity was assessed by testing DNA condensation, DNA fragmentation, and phosphatidylserine (PS) externalization. The expression of apoptosis-related genes, the mitochondrial depolarization, and reactive oxygen species (ROS) were then examined to clarify the underlying molecular mechanisms. In this regard, MO-ME, MO-EA, and MO-CH inhibited the proliferation of both A375 human melanoma cells and A2058 human melanoma cells, but had little effect on WS1 normal human skin fibroblasts and primary normal human dermal fibroblasts (NHDF). Among fractions, the phenolic-rich MO-EA markedly inhibited the growth of A375 cells in a dose- and time-dependent manner. The anti-proliferation was supposed to be mediated via apoptosis, which was demonstrated by the significant increase of condensed chromatin, DNA fragmentation, and PS externalization. The apoptosis was stimulated by enhanced ROS production and reduction of mitochondrial membrane potential. MO-EA activated Bax while reducing Bcl-2 expression, leading to an increase in Bax/Bcl-2 ratio. The mechanisms of cell death involved in activation of Caspase-3/7 and Caspase-9 (Caspase-dependent pathway), activation, and translocation of apoptosis-inducing factor (AIF) into the nucleus (Caspase-independent pathway). Our study indicated that the phenolic-rich fraction exerted significant anticancer effects on melanoma cells in vitro which involved in Caspase-dependent and Caspase-independent apoptosis pathways mediated by mitochondrial ROS. These results provided a fundament for the using of phenolic-rich fraction of Moringa oleifera leaves to treat skin cancer effectively.
Collapse
Affiliation(s)
- Bich Hang Do
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City, Vietnam.,Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Nghia Son Hoang
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City, Vietnam.,Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Thi Phuong Thao Nguyen
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City, Vietnam.,Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Nguyen Quynh Chi Ho
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Thanh Long Le
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City, Vietnam.,Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Chinh Chung Doan
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City, Vietnam.,Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| |
Collapse
|
16
|
Do BH, Nguyen TPT, Ho NQC, Le TL, Hoang NS, Doan CC. Mitochondria-mediated Caspase-dependent and Caspase-independent apoptosis induced by aqueous extract from Moringa oleifera leaves in human melanoma cells. Mol Biol Rep 2020; 47:3675-3689. [PMID: 32372172 DOI: 10.1007/s11033-020-05462-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 04/17/2020] [Indexed: 11/26/2022]
Abstract
Malignant melanoma is a very aggressive and serious type of cutaneous cancer. Previous studies indicated the anti-cancer activity of aqueous extract of Moringa oleifera Lam. leaves (MOE) against a variety of cell lines. However, there has not been much research about the effect of MOE on melanoma. Therefore, this study was about to investigate the anti-proliferation mediated by apoptosis of MOE on human melanoma cell lines. Furthermore, the related molecular mechanisms of the apoptosis were also examined. An aqueous extract of Moringa oleifera leaves was prepared and the anti-proliferative activity on melanoma cells and normal cells was tested using WST-1 assay. The apoptotic hallmarks including DNA condensation and phosphatidylserine (PS) externalization were assessed. The expression of apoptosis-related genes and the depolarization of mitochondrial membrane potential were then examined to clarify the underlying molecular mechanisms. MOE inhibited cell growth of A375 cells and A2058 cells in a dose-dependent manner but had little effect on human normal fibroblasts. The cell growth inhibition was induced by apoptosis which was expressed via chromatin condensation and PS externalization. MOE decreased mitochondrial membrane potential. Additionally, MOE increased Bax/Bcl-2 ratio, activated Caspase-3/7, Caspase-9, PARP and AIF translocation, leading to apoptotic cell death. Our study indicated that MOE exerted significant anti-cancer effects on melanoma cells in vitro which involved mitochondria-mediated Caspase-dependent and Caspase-independent apoptosis pathways. These results provided a scientific approach for using Moringa oleifera leaves as an alternative therapy to treat skin cancer.
Collapse
Affiliation(s)
- Bich Hang Do
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, 9/621 Xa lo Ha Noi Street, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Thi Phuong Thao Nguyen
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, 9/621 Xa lo Ha Noi Street, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Nguyen Quynh Chi Ho
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, 9/621 Xa lo Ha Noi Street, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Thanh Long Le
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, 9/621 Xa lo Ha Noi Street, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Nghia Son Hoang
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, 9/621 Xa lo Ha Noi Street, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Chinh Chung Doan
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi, Vietnam.
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, 9/621 Xa lo Ha Noi Street, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam.
| |
Collapse
|
17
|
Ahmad R, Khan MA, Srivastava A, Gupta A, Srivastava A, Jafri TR, Siddiqui Z, Chaubey S, Khan T, Srivastava AK. Anticancer Potential of Dietary Natural Products: A Comprehensive Review. Anticancer Agents Med Chem 2020; 20:122-236. [DOI: 10.2174/1871520619666191015103712] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
Abstract
Nature is a rich source of natural drug-like compounds with minimal side effects. Phytochemicals
better known as “Natural Products” are found abundantly in a number of plants. Since time immemorial, spices
have been widely used in Indian cuisine as flavoring and coloring agents. Most of these spices and condiments
are derived from various biodiversity hotspots in India (which contribute 75% of global spice production) and
form the crux of India’s multidiverse and multicultural cuisine. Apart from their aroma, flavor and taste, these
spices and condiments are known to possess several medicinal properties also. Most of these spices are mentioned
in the Ayurveda, the indigenous system of medicine. The antimicrobial, antioxidant, antiproliferative,
antihypertensive and antidiabetic properties of several of these natural products are well documented in
Ayurveda. These phytoconstituemts are known to act as functional immunoboosters, immunomodulators as well
as anti-inflammatory agents. As anticancer agents, their mechanistic action involves cancer cell death via induction
of apoptosis, necrosis and autophagy. The present review provides a comprehensive and collective update
on the potential of 66 commonly used spices as well as their bioactive constituents as anticancer agents. The
review also provides an in-depth update of all major in vitro, in vivo, clinical and pharmacological studies done
on these spices with special emphasis on the potential of these spices and their bioactive constituents as potential
functional foods for prevention, treatment and management of cancer.
Collapse
Affiliation(s)
- Rumana Ahmad
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Mohsin A. Khan
- Chancellor, Era University, Sarfarazganj, Hardoi Road, Lucknow-226003, UP, India
| | - A.N. Srivastava
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Anamika Gupta
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Aditi Srivastava
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tanvir R. Jafri
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Zainab Siddiqui
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Sunaina Chaubey
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow 226026, UP, India
| | - Arvind K. Srivastava
- Department of Food and Nutrition, Era University, Sarfarazganj, Lucknow-226003, UP, India
| |
Collapse
|
18
|
Pomegranate Seeds Extract Possesses a Protective Effect against Tramadol-Induced Testicular Toxicity in Experimental Rats. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2732958. [PMID: 32219129 PMCID: PMC7085358 DOI: 10.1155/2020/2732958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 12/22/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023]
Abstract
Tramadol is a centrally acting opioid analgesic that is extensively used. The chronic exposure to tramadol induces oxidative stress and toxicity especially for patients consuming it several times a day. Previously, we and others reported that tramadol induces testicular damage in rats. This study was conducted to investigate the possible protective effect of pomegranate seed extract (PgSE) against tramadol-induced testicular damage in adult and adolescent rats. Male rats were orally treated with tramadol or in a combination with PgSE for three weeks. Testes were then dissected and analyzed. Histological and ultrastructural examinations indicated that tramadol induced many structural changes in the testes of adult and adolescent rats including hemorrhage of blood vessels, intercellular spaces, interstitial vacuoles, exfoliation of germ cells in lumen, cell apoptosis, chromatin degeneration of elongated spermatids, and malformation of sperm axonemes. Interestingly, these abnormalities were not observed in tramadol/PgSE cotreated rats. The morphometric analysis revealed that tramadol disrupted collagen metabolism by elevating testicular levels of collagen fibers but that was protected in tramadol/PgSE cotreatment at both ages. In addition, DNA ploidy revealed that S phase of the cell cycle was diminished when adult and adolescent rats were treated with tramadol. However, the S phase had a normal cell population in the cotreated adult rats, but adolescent rats had a lower population than controls. Furthermore, the phytochemistry of PgSE revealed a high content of total polyphenols and total flavonoids within this extract; besides, the DPPH free radical scavenging activity was high. In conclusion, this study indicated that PgSE has a prophylactic effect against tramadol-induced testicular damage in both adult and adolescent ages, although the tramadol toxicity was higher in adolescent age to be completely protected. This prophylactic effect might be due to the high antioxidant compounds within the pomegranate seeds.
Collapse
|
19
|
Emerging Insights into Anticancer Chemopreventive Activities of Nutraceutical Moringa oleifera: Molecular Mechanisms, Signal Transduction and In Vivo Efficacy. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s40495-020-00210-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|