1
|
Brown ZJ, Krell M, Gitlin S, Ranjbar S, Vega DA, Pawlik TM. Prospects of the surgical management of colorectal peritoneal metastasis. J Gastrointest Surg 2025; 29:101940. [PMID: 39746646 DOI: 10.1016/j.gassur.2024.101940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Colorectal cancer (CRC) is a common malignancy with the propensity to metastasize. Common sites of metastasis include the liver, lungs, and peritoneum, with peritoneal metastases (PMs) having the worst prognosis. Unfortunately, systemic chemotherapy is often less effective in the treatment of PMs. Therefore, removal of all visible tumor via cytoreductive surgery along with intraperitoneal (IP) therapies has been used. METHODS A comprehensive review of the literature was conducted using MEDLINE/PubMed and Web of Science with an end date of September 1, 2024, regarding cytoreductive surgery and heated IP chemotherapy for CRC PMs. RESULTS Recent studies have called into question the utility of IP chemotherapy in the treatment of CRC PMs. However, regardless of IP chemotherapy, cytoreductive surgery has demonstrated an additional survival benefit for patients with PM secondary to CRC. DISCUSSION This study reviews the pathophysiology of CRC PM, the current treatment paradigms, and a pathway for improving outcomes in patients with CRC PM.
Collapse
Affiliation(s)
- Zachary J Brown
- Division of Surgical Oncology, Department of Surgery, New York University Grossman Long Island School of Medicine, New York University Langone Health, Mineola, NY, United States.
| | - Matthew Krell
- Division of Surgical Oncology, Department of Surgery, New York University Grossman Long Island School of Medicine, New York University Langone Health, Mineola, NY, United States
| | - Saige Gitlin
- Division of Surgical Oncology, Department of Surgery, New York University Grossman Long Island School of Medicine, New York University Langone Health, Mineola, NY, United States
| | - Suedeh Ranjbar
- Division of Surgical Oncology, Department of Surgery, New York University Grossman Long Island School of Medicine, New York University Langone Health, Mineola, NY, United States
| | - Diego Alvarez Vega
- Division of Surgical Oncology, Department of Surgery, New York University Grossman Long Island School of Medicine, New York University Langone Health, Mineola, NY, United States
| | - Timothy M Pawlik
- Division of Surgical Oncology, Department of Surgery, Wexner Medical Center and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
2
|
Cao J, Xie M, Sun K, Zhao Y, Zheng J, Wang Y, Zheng Y, Liu S, Yu U. Development of a prognostic model incorporating a cuproptosis-related signature and CNN3 as a predictor in childhood acute myelocytic leukemia. Front Oncol 2024; 14:1494777. [PMID: 39555457 PMCID: PMC11564170 DOI: 10.3389/fonc.2024.1494777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/10/2024] [Indexed: 11/19/2024] Open
Abstract
Background Childhood acute myeloid leukemia (cAML) is the second most common pediatric blood cancer, with high heterogeneity and poor prognosis. Recent studies have highlighted cuproptosis, a newly discovered form of programmed cell death triggered by the accumulation of intracellular copper ions, as a critical mechanism influencing cancer survival and resistance. Given its emerging role in cancer biology, we investigated cuproptosis-related genes (CRGs) in cAML to explore their potential in prognostic prediction and therapeutic targeting. Methods Gene expression data from publicly available sources were analyzed to identify differentially expressed CRGs. Samples were categorized based on their expression profiles, followed by the development of a prognostic risk model using multivariable Cox regression, LASSO, and univariable analyses. The model's performance was evaluated through Kaplan-Meier survival analysis and ROC analysis. Immune infiltration in the tumor microenvironment was assessed using ssGSEA, validated by CIBERSORT. Drug sensitivity correlations were analyzed, and functional validation experiments were conducted on THP-1 and MOLM13 cell lines to assess the role of CNN3. Results A set of 12 differential CRGs was used to build a robust prognostic risk model, with high accuracy in predicting patient outcomes (P < 0.001). Significant differences in immune cell composition were identified between risk groups, particularly in T cells, B cells, monocytes, and dendritic cells. Drug sensitivity analysis revealed altered IC50 values for drugs like 5-fluorouracil and bortezomib. Knockdown of CNN3 in leukemia cell lines led to reduced cell proliferation. Conclusion Our CRGs-based prognostic model shows potential for guiding personalized treatment strategies in cAML. The differences in immune cell infiltration between risk groups suggest that immune modulation is key in cAML progression. CNN3 and LGR4 were identified as modulators of cAML progression, making them potential therapeutic targets. Future studies with larger cohorts are essential to validate these findings and further explore CRGs-targeted therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sixi Liu
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Uet Yu
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
| |
Collapse
|
3
|
Khaleel AQ, Alshahrani MY, Rizaev JA, Malathi H, Devi S, Pramanik A, Mustafa YF, Hjazi A, Muazzamxon I, Husseen B. siRNA-based strategies to combat drug resistance in gastric cancer. Med Oncol 2024; 41:293. [PMID: 39428440 DOI: 10.1007/s12032-024-02528-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024]
Abstract
Chemotherapy is a key treatment option for gastric cancer, but over 50% of patients develop either inherent or acquired resistance to these drugs, resulting in a 5-year survival rate of only about 20%. The primary treatment for advanced gastric cancer typically involves chemotherapy based on platinum or fluorouracil. Several factors can contribute to platinum resistance, including decreased drug uptake, increased drug efflux or metabolism, enhanced DNA repair, activation of pro-survival pathways, and inhibition of pro-apoptotic pathways. In recent years, there has been significant progress in biology aimed at finding innovative and more effective methods to overcome chemotherapy resistance. Small interfering RNAs (siRNAs) have emerged as a significant advancement in gene expression regulation, showing promise in enhancing the sensitivity of gastric cancer cells to chemotherapy drugs. However, siRNA therapies still face major challenges, particularly in terms of stability and efficient delivery in vivo. This article discusses the advances in siRNA therapy and its potential role in overcoming resistance to chemotherapeutic drugs such as cisplatin, 5-FU, doxorubicin, and paclitaxel in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Abdulrahman Qais Khaleel
- Department of Medical Instruments Engineering, College of Engineering, University of Al Maarif, Ramadi, Al Anbar, 31001, Iraq.
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Jasur Alimdjanovich Rizaev
- Department of Public Health and Healthcare Management, Rector, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan.
| | - H Malathi
- Department of Biotechnology and Genetics, School of Sciences Jain (Deemed to be University), Bangalore, Karnataka, India
| | - Seema Devi
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjheri, Mohali, 140307, Punjab, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Ismoilova Muazzamxon
- Department of Propaedeutics of Internal Diseases, Fergana Medical Institute of Public Health, Fergana, Uzbekistan
- Western Caspian University, Scientific Researcher, Baku, Azerbaijan
| | - Beneen Husseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
4
|
Mirzaei S, Paskeh MDA, Moghadam FA, Entezari M, Koohpar ZK, Hejazi ES, Rezaei S, Kakavand A, Aboutalebi M, Zandieh MA, Rajabi R, Salimimoghadam S, Taheriazam A, Hashemi M, Samarghandian S. miRNAs as short non-coding RNAs in regulating doxorubicin resistance. J Cell Commun Signal 2023:10.1007/s12079-023-00789-0. [PMID: 38019354 DOI: 10.1007/s12079-023-00789-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 10/27/2023] [Indexed: 11/30/2023] Open
Abstract
The treatment of cancer patients has been prohibited by chemoresistance. Doxorubicin (DOX) is an anti-tumor compound disrupting proliferation and triggering cell cycle arrest via inhibiting activity of topoisomerase I and II. miRNAs are endogenous RNAs localized in cytoplasm to reduce gene level. Abnormal expression of miRNAs changes DOX cytotoxicity. Overexpression of tumor-promoting miRNAs induces DOX resistance, while tumor-suppressor miRNAs inhibit DOX resistance. The miRNA-mediated regulation of cell death and hallmarks of cancer can affect response to DOX chemotherapy in tumor cells. The transporters such as P-glycoprotein are regulated by miRNAs in DOX chemotherapy. Upstream mediators including lncRNAs and circRNAs target miRNAs in affecting capacity of DOX. The response to DOX chemotherapy can be facilitated after administration of agents that are mostly phytochemicals including curcumol, honokiol and ursolic acid. These agents can regulate miRNA expression increasing DOX's cytotoxicity. Since delivery of DOX alone or in combination with other drugs and genes can cause synergistic impact, the nanoparticles have been introduced for drug sensitivity. The non-coding RNAs determine the response of tumor cells to doxorubicin chemotherapy. microRNAs play a key role in this case and they can be sponged by lncRNAs and circRNAs, showing interaction among non-coding RNAs in the regulation of doxorubicin sensitivity.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farhad Adhami Moghadam
- Department of Ophthalmology, Fauclty of Medicine, Tehran Medical Sciences Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shamin Rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Aboutalebi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
5
|
Xing X, Liu M, Wang X, Guo Q, Wang H. Promoting effects of calponin 3 on the growth of diffuse large B‑cell lymphoma cells. Oncol Rep 2023; 49:46. [PMID: 36660952 PMCID: PMC9868891 DOI: 10.3892/or.2023.8483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Diffuse large B‑cell lymphoma (DLBCL) is one of the most common types of lymphoma. Calponin 3 (CNN3) is a thin filament‑associated protein previously known to regulate smooth muscle contraction. Recent evidence illustrates its involvement in carcinogenesis; however, its roles in DLBCL remain unknown. CNN3 was found to be highly expressed in DLBCL specimens according to the online Gene Expression Profiling Interactive Analysis data. The aim of the present study was to investigate the roles of CNN3 in the progression of DLBCL. In vitro, the ectopic expression of CNN3 promoted the proliferation and G1/S transition of DLBCL cells, while its silencing led to opposite alterations. A similar tumor‑promoting role of CNN3 was also demonstrated by injecting nude mice with DLBCL cells over‑ or underexpressing CNN3. The results of dual‑luciferase reporter and chromatin immunoprecipitation assays revealed that forkhead box O3 (FOXO3), a known tumor suppressor in DLBCL, bound to the CNN3 promoter at ‑1955/‑1948 and ‑1190/‑1183, and suppressed the transcription of CNN3. The alterations induced by FOXO3 were partly blocked by CNN3 overexpression. On the whole, the present study demonstrates that CNN3, whose transcriptional activity is negatively regulated by FOXO3, contributes to the malignant behavior of DLBCL cells. The findings of the present study may provide novel diagnostic or therapeutic insight for DLBCL in clinical practice.
Collapse
Affiliation(s)
- Xiaojing Xing
- Department of Hematology and Breast Cancer, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute), Shenyang, Liaoning 110042, P.R. China,Correspondence to: Dr Xiaojing Xing, Department of Hematology and Breast Cancer, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute), 44 Xiaoheyan Road, Shenyang, Liaoning 110042, P.R. China, E-mail:
| | - Meichen Liu
- Department of Hematology and Breast Cancer, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute), Shenyang, Liaoning 110042, P.R. China
| | - Xuguang Wang
- Department of Pathology, Shenyang Medical College, Shenyang, Liaoning 110034, P.R. China
| | - Qianxue Guo
- Department of Hematology and Breast Cancer, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute), Shenyang, Liaoning 110042, P.R. China
| | - Hongyue Wang
- Department of Scientific Research and Academic, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute), Shenyang, Liaoning 110042, P.R. China
| |
Collapse
|
6
|
Xie Y, Ding W, Xiang Y, Wang X, Yang J. Calponin 3 Acts as a Potential Diagnostic and Prognostic Marker and Promotes Glioma Cell Proliferation, Migration, and Invasion. World Neurosurg 2022; 165:e721-e731. [PMID: 35792226 DOI: 10.1016/j.wneu.2022.06.136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Calponin 3 (CNN3) is involved in the proliferation and invasion of cervical cancer and osteosarcoma cells. However, the role of CNN3 in glioma tumorigenesis remains to be elucidated. METHODS CNN3 mRNA expression in normal brain tissue and gliomas, including glioblastoma multiforme and lower-grade glioma, was analyzed using GEPIA 2 and Oncomine. CNN3 levels in glioma tissues were identified using immunohistochemical data provided by the Human Protein Atlas website. The relationship between CNN3 mRNA expression and clinical characteristics of patients with glioma was analyzed using the Oncomine database and The Cancer Genome Atlas. The diagnostic value of CNN3 expression in glioma was analyzed using receiver operating characteristic analysis according to The Cancer Genome Atlas and Genotype-Tissue Expression data. The relationship between CNN3 and prognosis was analyzed using GEPIA 2. The function of CNN3 knockdown in glioma cell lines was analyzed using cell proliferation, Transwell, and Western blot assays. RESULTS Both mRNA and protein levels of CNN3 were distinctly higher in lower-grade glioma and glioblastoma multiforme tissues than those in normal brain tissues, particularly glioblastoma. A higher CNN3 mRNA level had significant relationship with higher World Health Organization grade, isocitrate dehydrogenase wild-type status, and 1p/19q noncodeletion. CNN3 mRNA expression is a highly accurate marker for the diagnosis of glioma. Patients with glioma in the high-CNN3 group had significantly lower disease-free survival and survival rates. In addition, CNN3 silencing significantly inhibited cell proliferation, migration, invasion, and the phosphorylation of P65 NF-κB. CONCLUSIONS CNN3 expression is increased in glioma, particularly glioblastoma. Silencing CNN3 expression inhibited the proliferation, migration, and invasion of glioma cell lines.
Collapse
Affiliation(s)
- Yituan Xie
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China; Department of Neurosurgery, Huizhou First People's Hospital, Huizhou, Guangdong, China
| | - Weilong Ding
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yongsheng Xiang
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Xiangyu Wang
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Junbao Yang
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
7
|
Prognostic Value of TRPM7 Expression and Factor XIIIa-Expressing Tumor-Associated Macrophages in Gastric Cancer. Gastroenterol Res Pract 2021; 2021:7249726. [PMID: 34938330 PMCID: PMC8687815 DOI: 10.1155/2021/7249726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/18/2021] [Indexed: 12/17/2022] Open
Abstract
Purpose TRPM7 is known to play a key role in tumor progression by regulating cellular proliferation, migration, and invasion in various cancer cell lines. However, there are no comprehensive clinical studies about the effect of TRPM7 expression on gastric cancer (GC) prognosis. In this study, it was aimed at investigating the effect of TRPM7 expression on prognosis in GC patients. Additionally, for the first time, it was investigated whether the density of Factor XIIIa-expressing tumor-associated macrophages (TAMs) in GC has an effect on the biological behaviour of the tumor. Methods TRPM7 expression and Factor XIIIa-expressing TAM density were immunohistochemically evaluated in paraffin-embedded tumor tissues of 204 GC patients undergoing surgery at a single institution. Results Tumor size was clearly higher in cases with high TRPM7 expression than those with low expression (p < 0.001, Mann-Whitney U). TRPM7 overexpression was closely related to high depth of tumor invasion (p < 0.001, ANOVA), increased lymph node metastasis (p < 0.001, ANOVA), and high distant metastasis rate (p < 0.001, Mann-Whitney U). These findings exposed that high TRPM7 expression is effective in the progression and aggressiveness of GC. In addition, while high CD8+ TIL density affects the prognosis positively, it was determined that high Factor XIIIa+ TAM density negatively affects the prognosis of patients with GC. Furthermore, multivariate analyses revealed TRPM7 overexpression was independently related with short overall (HR 9.64, 95% CI 5.74–16.19, p < 0.001) and disease-free survival (HR 5.67, 95% CI 3.61-8.92, p < 0.001) in GC patients. Conclusions Our data suggest that high TRPM7 expression is closely related to progressive tumor behaviour in GC and independently negatively affects survival in patients. In addition, it was determined that a high density of Factor XIIIa+ TAMs negatively affects the prognosis of patients with GC.
Collapse
|
8
|
Xu H, Chai SS, Lv P, Wang JJ. CNN3 in glioma: The prognostic factor and a potential immunotherapeutic target. Medicine (Baltimore) 2021; 100:e27931. [PMID: 34797350 PMCID: PMC8601287 DOI: 10.1097/md.0000000000027931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 11/04/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Gliomas are the most intrinsic type of primary intracranial tumors. The protein encoded by The calponin 3 (CNN3) has been proven to be a member of the calponin family. Its relationships with cervical cancer, colorectal cancer, gastric cancer, and colon cancer have been emphasized by several studies. Our research aims to explore the prognosis value and immunotherapeutic targetability of CNN3 in glioma patients using bioinformatics approach. METHODS CNN3 expression in glioma was analyzed based on GEO and TCGA datasets. Gene expression profiling with clinical information was employed to investigate the correlation between clinicopathological features of glioma patients and relative CNN3 expression levels. Survival analysis was conducted using Kaplan-Meier analysis and the Cox proportional-hazards regression model. Gene set enrichment analysis was conducted to select the pathways significantly enriched for CNN3 associations. Correlations between inflammatory activities, immune checkpoint molecules and CNN3 were probed by gene set variation analysis, correlograms, and correlation analysis. RESULTS CNN3 was enriched in gliomas, and high expression of CNN3 correlated with worse clinicopathological features and prognosis. Associations between CNN3 and several immune-related pathways were confirmed using a bioinformatics approach. Correlation analysis revealed that CNN3 was associated with inflammatory and immune activities, tumor microenvironment, and immune checkpoint molecules. CONCLUSION Our results indicate that high CNN3 expression levels predict poor prognosis, and CNN3 may be a promising immunotherapy target.
Collapse
Affiliation(s)
- Hao Xu
- Department of Neurosurgery, General Hospital of the Yangtze River Shipping, Wuhan, China
| | - Song-shan Chai
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Lv
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Neurosurgery, Suizhou Hospital, Hubei University of Medicine, Suizhou, China
| | - Jia-jing Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
She Y, Li C, Jiang T, Lei S, Zhou S, Shi H, Chen R. Knockdown of CNN3 Impairs Myoblast Proliferation, Differentiation, and Protein Synthesis via the mTOR Pathway. Front Physiol 2021; 12:659272. [PMID: 34305633 PMCID: PMC8295729 DOI: 10.3389/fphys.2021.659272] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/20/2021] [Indexed: 11/22/2022] Open
Abstract
Background Myogenesis is a complex process that requires optimal outside–in substrate–cell signaling. Calponin 3 (CNN3) plays an important role in regulating myogenic differentiation and muscle regeneration; however, the precise function of CNN3 in myogenesis regulation remains poorly understood. Here, we investigated the role of CNN3 in a knockdown model in the mouse muscle cell line C2C12. Methods Myoblast proliferation, migration, differentiation, fusion, and protein synthesis were examined in CNN3 knockdown C2C12 mouse muscle cells. Involvement of the mTOR pathway in CNN3 signaling was explored by treating cells with the mTOR activator MHY1485. The regulatory mechanisms of CNN3 in myogenesis were further examined by RNA sequencing and subsequent gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene set enrichment analysis (GSEA). Results During proliferation, CNN3 knockdown caused a decrease in cell proliferation and migration. During differentiation, CNN3 knockdown inhibited myogenic differentiation, fusion, and protein synthesis in C2C12 cells via the AKT/mTOR and AMPK/mTOR pathways; this effect was reversed by MHY1485 treatment. Finally, KEGG and GSEA indicated that the NOD-like receptor signaling pathway is affected in CNN3 knockdown cell lines. Conclusion CNN3 may promote C2C12 cell growth by regulating AKT/mTOR and AMPK/mTOR signaling. The KEGG and GSEA indicated that inhibiting CNN3 may activate several pathways, including the NOD-like receptor pathway and pathways involved in necroptosis, apoptosis, and inflammation.
Collapse
Affiliation(s)
- Yanling She
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Cheng Li
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Ting Jiang
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Si Lei
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shanyao Zhou
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Huacai Shi
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Rui Chen
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
10
|
Kimura A, Arakawa N, Kagawa H, Kimura Y, Hirano H. Phosphorylation of Ser1452 on BRG1 inhibits the function of the SWI/SNF complex in chromatin activation. J Proteomics 2021; 247:104319. [PMID: 34237461 DOI: 10.1016/j.jprot.2021.104319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/16/2021] [Accepted: 06/30/2021] [Indexed: 11/17/2022]
Abstract
BRG1, one of core subunits of the SWI/SNF chromatin remodeling complex, is frequently mutated in cancers. Previously, we reported significant downregulation of the phosphorylation level of BRG1 on Ser1452 (<10%) in cell lines derived from ovarian clear cell carcinoma with frequent recurrence and acquired drug resistance. In this study, we tried to elucidate the roles of BRG1 phosphorylation, using cell lines expressing wild-type, phosphorylation-mimic (brg1-S1452D), or non-phosphorylatable (brg1-S1452A) BRG1. Quantitative proteomic analyses revealed upregulation of proteins and phosphoproteins related to linker histone H1s, histone methylation, and protein ubiquitylation in brg1-S1452D cells, which may coordinately promote the chromatin inactivation and ubiquitin-dependent degradation of target proteins. Consistent with these results, brg1-S1452D cells exhibited an increase in condensed chromatin and polyubiquitylated proteins. In brg1-S1452D cells, we also detected downregulation of various cancer-related proteins (e.g., EGFR and MET) as well as decreased migration, proliferation, and sensitivity to taxanes and oxaliplatin. Together, our results reveal that BRG1 phosphorylation drives tumor malignancy by inhibiting the functions of SWI/SNF complex in chromatin activation, thereby promoting expression of various cancer-related proteins. SIGNIFICANCE: For the first time we demonstrated that the mutation on Ser1452 phosphorylation site of BRG1, a component of SWI/SNF chromatin remodeling complex, changed protein and phosphoprotein levels of linker histone H1s, binding competitor of histone H1s, and histone methylase/demethylase involved in the heterochromatic histone modifications to promote the chromatin inactivation. In phosphorylation-mimic mutant, significant decrease of various cancer-related proteins as well as migration, proliferation, and sensitivity to specific antitumor agents were detected. Our results reveal that BRG1 phosphorylation drives tumor malignancy by inhibiting the functions of SWI/SNF complex in chromatin activation, thereby promoting expression of various cancer-related proteins.
Collapse
Affiliation(s)
- Ayuko Kimura
- Advanced Medical Research Center, Yokohama City University and Graduate School of Medical Life Science, Yokohama City University, Fukuura 3-9, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan; Graduate School of Health Science, Gunma Paz University, Tonyamachi 1-7-1, Takasaki City, Gunma 370-0006, Japan.
| | - Noriaki Arakawa
- Advanced Medical Research Center, Yokohama City University and Graduate School of Medical Life Science, Yokohama City University, Fukuura 3-9, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan; Division of Medicinal Safety Science, National Institute of Health Sciences, Kawasaki, Tonomachi 3-25-26, Kawasaki-ku, Kawasaki City, Kanagawa 210-9501, Japan
| | - Hiroyuki Kagawa
- Advanced Medical Research Center, Yokohama City University and Graduate School of Medical Life Science, Yokohama City University, Fukuura 3-9, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Yayoi Kimura
- Advanced Medical Research Center, Yokohama City University and Graduate School of Medical Life Science, Yokohama City University, Fukuura 3-9, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Hisashi Hirano
- Advanced Medical Research Center, Yokohama City University and Graduate School of Medical Life Science, Yokohama City University, Fukuura 3-9, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan; Graduate School of Health Science, Gunma Paz University, Tonyamachi 1-7-1, Takasaki City, Gunma 370-0006, Japan
| |
Collapse
|
11
|
Yang C, Zhu S, Feng W, Chen X. Calponin 3 suppresses proliferation, migration and invasion of non-small cell lung cancer cells. Oncol Lett 2021; 22:634. [PMID: 34267826 PMCID: PMC8258620 DOI: 10.3892/ol.2021.12895] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023] Open
Abstract
Calponin 3 (CNN3) is known to serve a role in certain types of cancer, such as gastric cancer and colorectal cancer. The present study investigated the clinical significance of CNN3 in non-small cell lung cancer (NSCLC) by evaluating its expression profile and relationship with disease prognosis using the Gene Expression Omnibus repository, Gene Expression Profiling Interactive Analysis 2 (GEPIA2) and Kaplan-Meier plotter analysis. CNN3 mRNA expression was measured using reverse transcription-quantitative PCR, while the protein expression level was measured using western blot analysis. Cell proliferation, cell cycle and apoptosis, and migration and invasion were analyzed using MTS assay, flow cytometry and Transwell assays, respectively. These results revealed that CNN3 mRNA expression was downregulated in NSCLC tissues compared with that in normal tissues. Additionally, CNN3 expression had a high diagnostic value based on the GSE2514 dataset and the data from The Cancer Genome Atlas and the Genotype Tissue Expression database, whereas it had a low diagnostic value based on the GSE10072 dataset. Furthermore, CNN3 expression was associated with survival in patients with lung adenocarcinoma (LUAD), whereas it was not associated with survival in patients with lung squamous cell carcinoma (LUSC) according to the Kaplan-Meier plotter results. According to the data from GEPIA2, and the GSE72094, GSE41271 and GSE31210 datasets, CNN3 expression was not associated with the prognosis of patients with LUAD and LUSC. The mRNA and protein expression levels of CNN3 were lower in two NSCLC cell lines (A549 and SK-MES-1) than in a human bronchial epithelial cell line (BEAS-2B). CNN3 overexpression suppressed cell proliferation, migration and invasion, induced G1-phase arrest, promoted apoptosis and suppressed PI3K/AKT signaling pathway activation in the NSCLC cell lines, whereas CNN3 overexpression had no effect on cell morphology. In conclusion, CNN3 suppressed the proliferation and metastasis of NSCLC cells by downregulating the PI3K/AKT signaling pathway, making it a potential therapeutic target in this disease.
Collapse
Affiliation(s)
- Chenglin Yang
- Traditional Chinese Medicine Department, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Shiping Zhu
- Traditional Chinese Medicine Department, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Weifeng Feng
- Traditional Chinese Medicine Department, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xuexin Chen
- Department of Respiratory and Critical Care Medicine, The General Hospital of Yima Coal Industry Group Co. Ltd., Yima, Henan 472300, P.R. China
| |
Collapse
|
12
|
Curcumin Treatment Identifies Therapeutic Targets within Biomarkers of Liver Colonization by Highly Invasive Mesothelioma Cells-Potential Links with Sarcomas. Cancers (Basel) 2020; 12:cancers12113384. [PMID: 33207594 PMCID: PMC7696465 DOI: 10.3390/cancers12113384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Aggressive sarcomatoid tumors designed in inbred strains of immunocompetent rats represent useful tools for both the identification of biomarkers of invasiveness and evaluation of innovative therapies. Our aim was to investigate the molecular determinants of liver colonization and potential common biomarkers of sarcomas and sarcomatoid tumors, using the most invasive (M5-T1) of our four experimental models of peritoneal sarcomatoid malignant mesothelioma in the F344 rat. Using an advanced and robust technique of quantitative proteomics and a bank of paraffin-embedded tumor and tissue samples, we analyzed changes in the proteotype patterns of the liver from normal rats, adjacent non-tumorous liver from untreated tumor-bearing rats, and liver from tumor-bearing rats positively responding to repeated administrations of curcumin given intraperitoneally. The identification of proteome alterations accounting for the antitumor effects of curcumin and changes in the liver microenvironment, which favored the induction of an immune response, could be useful to the research community. Abstract Investigations of liver metastatic colonization suggest that the microenvironment is preordained to be intrinsically hospitable to the invasive cancer cells. To identify molecular determinants of that organotropism and potential therapeutic targets, we conducted proteomic analyses of the liver in an aggressive model of sarcomatoid peritoneal mesothelioma (M5-T1). The quantitative changes between SWATH-MS (sequential window acquisition of all theoretical fragmentation spectra) proteotype patterns of the liver from normal rats (G1), adjacent non-tumorous liver from untreated tumor-bearing rats (G2), and liver from curcumin-treated rats without hepatic metastases (G3) were compared. The results identified 12 biomarkers of raised immune response against M5-T1 cells in G3 and 179 liver biomarker changes in (G2 vs. G1) and (G3 vs. G2) but not in (G3 vs. G1). Cross-comparing these 179 candidates with proteins showing abundance changes related to increasing invasiveness in four different rat mesothelioma tumor models identified seven biomarkers specific to the M5-T1 tumor. Finally, analysis of correlations between these seven biomarkers, purine nucleoside phosphorylase being the main biomarker of immune response, and the 179 previously identified proteins revealed a network orchestrating liver colonization and treatment efficacy. These results highlight the links between potential targets, raising interesting prospects for optimizing therapies against highly invasive cancer cells exhibiting a sarcomatoid phenotype and sarcoma cells.
Collapse
|
13
|
Dai F, Luo F, Zhou R, Zhou Q, Xu J, Zhang Z, Xiao J, Song L. Calponin 3 is associated with poor prognosis and regulates proliferation and metastasis in osteosarcoma. Aging (Albany NY) 2020; 12:14037-14049. [PMID: 32667904 PMCID: PMC7425500 DOI: 10.18632/aging.103224] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 03/31/2020] [Indexed: 04/11/2023]
Abstract
Osteosarcoma is a malignant, life-threatening tumor that affects children and adolescents. In this study, we identified high levels of calponin 3 (CNN3) protein in osteosarcoma tissues and cell lines. The receiver operating characteristic curve analysis revealed that CNN3 has diagnostic value for patients with osteosarcoma. We also found that high CNN3 expression was associated with tumor size, tumor stage, and lymph node and distant metastases. Moreover, high levels of CNN3 mRNA were associated with a poor overall survival rate and a shorter disease-free survival period. CNN3 silencing inhibited cell proliferation, induced apoptosis and cell cycle arrest at the G1 stage, and inhibited cell migration and invasion in vitro. Furthermore, CNN3 silencing also inhibited subcutaneous tumor growth and lung metastasis in vivo. Western blotting revealed that silencing of CNN3 resulted in downregulated expression of MMP9, VEGF, and vimentin, and upregulation of E-cadherin. CNN3 silencing also resulted in downregulation of the ERK1/2 and p38 signaling pathways. In conclusion, high CNN3 expression was found to help in the diagnosis of osteosarcoma, and was found to be associated with poor prognosis in patients. Therefore, CNN3 may play an oncogenic role during the progression of osteosarcoma by activating the ERK1/2 and p38 pathways.
Collapse
Affiliation(s)
- Fei Dai
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Fei Luo
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Rui Zhou
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Qiang Zhou
- Department of Orthopaedics, Third Affliated Hospital, Medical University of Chongqing, Chongqing 401120, China
| | - Jianzhong Xu
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Zehua Zhang
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Jun Xiao
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Lei Song
- Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| |
Collapse
|
14
|
Wei L, Sun J, Zhang N, Zheng Y, Wang X, Lv L, Liu J, Xu Y, Shen Y, Yang M. Noncoding RNAs in gastric cancer: implications for drug resistance. Mol Cancer 2020; 19:62. [PMID: 32192494 PMCID: PMC7081551 DOI: 10.1186/s12943-020-01185-7] [Citation(s) in RCA: 332] [Impact Index Per Article: 66.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/12/2020] [Indexed: 12/18/2022] Open
Abstract
Gastric cancer is the fourth most common malignancy and the third leading cause of cancer-related deaths worldwide. Advanced gastric cancer patients can notably benefit from chemotherapy including adriamycin, platinum drugs, 5-fluorouracil, vincristine, and paclitaxel as well as targeted therapy drugs. Nevertheless, primary drug resistance or acquisition drug resistance eventually lead to treatment failure and poor outcomes of the gastric cancer patients. The detailed mechanisms involved in gastric cancer drug resistance have been revealed. Interestingly, different noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), are critically involved in gastric cancer development. Multiple lines of evidences demonstrated that ncRNAs play a vital role in gastric cancer resistance to chemotherapy reagents and targeted therapy drugs. In this review, we systematically summarized the emerging role and detailed molecular mechanisms of ncRNAs impact drug resistance of gastric cancer. Additionally, we propose the potential clinical implications of ncRNAs as novel therapeutic targets and prognostic biomarkers for gastric cancer.
Collapse
Affiliation(s)
- Ling Wei
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Jujie Sun
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Yan Zheng
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Xingwu Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Liyan Lv
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Jiandong Liu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Yeyang Xu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Yue Shen
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China.
| |
Collapse
|
15
|
Dong Y, Li X, Lin Z, Zou W, Liu Y, Qian H, Jia J. HOXC-AS1-MYC regulatory loop contributes to the growth and metastasis in gastric cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:502. [PMID: 31870402 PMCID: PMC6929373 DOI: 10.1186/s13046-019-1482-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/15/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Gastric cancer (GC) is one of the most prevalent and deadly malignancies worldwide. Accumulating reports have indicated the participation of long non-coding RNAs (lncRNAs) in the onset and progression of GC. METHODS GSE109476 data was utilized to screen out lncRNAs dysregulated in GC. Gene expressions were determined by qRT-PCR and western blot. Both in vitro and in vivo experiments were carried out to assess the function of HOXC-AS1 in GC. The association between genes was verified via RIP, ChIP, CoIP, RNA pull down and luciferase reporter assays, as appropriate. RESULTS HOXC-AS1 was discovered to be upregulated in GC and located both in cytoplasm and in nucleus in GC cells. Functionally, inhibition of HOXC-AS1 restrained GC cell growth and metastasis both in vitro and in vivo. Moreover, HOXC-AS1 was proved to be trans-activated by c-MYC in GC. In return, HOXC-AS1 positively regulated MYC expression in GC through targeting miR-590-3p/MYC axis in cytoplasm and modulating BRG1/β-catenin complex-activated MYC transcription in nucleus. Furthermore, the rescue assays verified that MYC mediated HOXC-AS1-affected GC progression. CONCLUSION Our research illustrated a feedback loop of HOXC-AS1-MYC in aggravating GC cell growth and metastasis, highlighting HOXC-AS1 as a promising target for GC diagnosis and treatment.
Collapse
Affiliation(s)
- Yangyang Dong
- 2nd Department of Gastrointestinal Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, 248-252 East Street, Licheng District, Quanzhou City, 362000, Fujian Province, China.
| | - Xinyu Li
- 2nd Department of Gastrointestinal Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, 248-252 East Street, Licheng District, Quanzhou City, 362000, Fujian Province, China
| | - Zhibin Lin
- 2nd Department of Gastrointestinal Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, 248-252 East Street, Licheng District, Quanzhou City, 362000, Fujian Province, China
| | - Wenbing Zou
- 2nd Department of Gastrointestinal Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, 248-252 East Street, Licheng District, Quanzhou City, 362000, Fujian Province, China
| | - Yan Liu
- 2nd Department of Gastrointestinal Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, 248-252 East Street, Licheng District, Quanzhou City, 362000, Fujian Province, China
| | - Huiyang Qian
- 2nd Department of Gastrointestinal Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, 248-252 East Street, Licheng District, Quanzhou City, 362000, Fujian Province, China
| | - Jing Jia
- 2nd Department of Gastrointestinal Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, 248-252 East Street, Licheng District, Quanzhou City, 362000, Fujian Province, China
| |
Collapse
|
16
|
Belousov PV, Afanasyeva MA, Gubernatorova EO, Bogolyubova AV, Uvarova AN, Putlyaeva LV, Ramanauskaite EM, Kopylov AT, Demin DE, Tatosyan KA, Ustiugova AS, Prokofjeva MM, Lanshchakov KV, Vanushko VE, Zaretsky AR, Severskaia NV, Dvinskikh NY, Abrosimov AY, Kuprash DV, Schwartz AM. Multi-dimensional immunoproteomics coupled with in vitro recapitulation of oncogenic NRAS Q61R identifies diagnostically relevant autoantibody biomarkers in thyroid neoplasia. Cancer Lett 2019; 467:96-106. [PMID: 31326556 DOI: 10.1016/j.canlet.2019.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 01/08/2023]
Abstract
Tumor-associated antigen (TAA)-specific autoantibodies have been widely implicated in cancer diagnosis. However, cancer cell lines that are typically exploited as candidate TAA sources in immunoproteomic studies may fail to accurately represent the autoantigen-ome of lower-grade neoplasms. Here, we established an integrated strategy for the identification of disease-relevant TAAs in thyroid neoplasia, which combined NRASQ61R oncogene expression in non-tumorous thyroid Nthy-ori 3-1 cells with a multi-dimensional proteomic technique DISER that consisted of profiling NRASQ61R-induced proteins using 2-dimensional difference gel electrophoresis (2D-DIGE) coupled with serological proteome analysis (SERPA) of the TAA repertoire of patients with thyroid encapsulated follicular-patterned/RAS-like phenotype (EFP/RLP) tumors. We identified several candidate cell-based (nicotinamide phosphoribosyltransferase NAMPT, glutamate dehydrogenase GLUD1, and glutathione S-transferase omega-1 GSTO1) and autoantibody (fumarate hydratase FH, calponin-3 CNN3, and pyruvate kinase PKM autoantibodies) biomarkers, including NRASQ61R-induced TAA phosphoglycerate kinase 1 PGK1. Meta-profiling of the reactivity of the identified autoantibodies across an independent SERPA series implicated the PKM autoantibody as a histological phenotype-independent biomarker of thyroid malignancy (11/38 (29%) patients with overtly malignant and uncertain malignant potential (UMP) tumors vs 0/22 (p = 0.0046) and 0/20 (p = 0.011) patients with non-invasive EFP/RLP tumors and healthy controls, respectively). PGK1 and CNN3 autoantibodies were identified as EFP/RLP-specific biomarkers, potentially suitable for further discriminating tumors with different malignant potential (PGK1: 7/22 (32%) patients with non-invasive EFP/RLP tumors vs 0/38 (p = 0.00044) and 0/20 (p = 0.0092) patients with other tumors and healthy controls, respectively; СNN3: 9/29 (31%) patients with malignant and borderline EFP/RLP tumors vs 0/31 (p = 0.00068) and 0/20 (p = 0.0067) patients with other tumors and healthy controls, respectively). The combined use of PKM, CNN3, and PGK1 autoantibodies allowed the reclassification of malignant/UMP tumor risk in 19/41 (46%) of EFP/RLP tumor patients. Taken together, we established an experimental pipeline DISER for the concurrent identification of cell-based and TAA biomarkers. The combination of DISER with in vitro oncogene expression allows further targeted identification of oncogene-induced TAAs. Using this integrated approach, we identified candidate autoantibody biomarkers that might be of value for differential diagnostic purposes in thyroid neoplasia.
Collapse
Affiliation(s)
- Pavel V Belousov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Marina A Afanasyeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina O Gubernatorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Apollinariya V Bogolyubova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Center for Genetics and Life Sciences, Educational Center «Sirius», Sochi, Russia
| | - Aksinya N Uvarova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Lidia V Putlyaeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | | | | | - Denis E Demin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Moscow Institute of Physics and Technology, Moscow, Russia
| | - Karina A Tatosyan
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alina S Ustiugova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Maria M Prokofjeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Kirill V Lanshchakov
- National Medical Research Center for Endocrinology, Ministry of Health of the Russian Federation, Moscow, Russia; Central Clinical Hospital of the Presidential Administration of the Russian Federation, Moscow, Russia
| | - Vladimir E Vanushko
- National Medical Research Center for Endocrinology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrew R Zaretsky
- Shemyakin-Ovchinnikov Research Institute for Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Evrogen Lab LLC, Moscow, Russia
| | - Natalya V Severskaia
- Tsyb Medical Radiological Research Center, Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Nina Y Dvinskikh
- Tsyb Medical Radiological Research Center, Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Alexander Y Abrosimov
- National Medical Research Center for Endocrinology, Ministry of Health of the Russian Federation, Moscow, Russia; National University of Science & Technology «MISIS», Moscow, Russia
| | - Dmitry V Kuprash
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Anton M Schwartz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|