1
|
Zhan T, Song W, Jing G, Yuan Y, Kang N, Zhang Q. Zebrafish live imaging: a strong weapon in anticancer drug discovery and development. Clin Transl Oncol 2024; 26:1807-1835. [PMID: 38514602 DOI: 10.1007/s12094-024-03406-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/07/2024] [Indexed: 03/23/2024]
Abstract
Developing anticancer drugs is a complex and time-consuming process. The inability of current laboratory models to reflect important aspects of the tumor in vivo limits anticancer medication research. Zebrafish is a rapid, semi-automated in vivo screening platform that enables the use of non-invasive imaging methods to monitor morphology, survival, developmental status, response to drugs, locomotion, or other behaviors. Zebrafish models are widely used in drug discovery and development for anticancer drugs, especially in conjunction with live imaging techniques. Herein, we concentrated on the use of zebrafish live imaging in anticancer therapeutic research, including drug screening, efficacy assessment, toxicity assessment, and mechanism studies. Zebrafish live imaging techniques have been used in numerous studies, but this is the first time that these techniques have been comprehensively summarized and compared side by side. Finally, we discuss the hypothesis of Zebrafish Composite Model, which may provide future directions for zebrafish imaging in the field of cancer research.
Collapse
Affiliation(s)
- Tiancheng Zhan
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Rd, Jinghai District, Tianjin, 301617, People's Republic of China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Wanqian Song
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Rd, Jinghai District, Tianjin, 301617, People's Republic of China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Guo Jing
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Rd, Jinghai District, Tianjin, 301617, People's Republic of China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Yongkang Yuan
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Rd, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Ning Kang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Rd, Jinghai District, Tianjin, 301617, People's Republic of China.
| | - Qiang Zhang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Rd, Jinghai District, Tianjin, 301617, People's Republic of China.
| |
Collapse
|
2
|
Wu X, Hua X, Xu K, Song Y, Lv T. Zebrafish in Lung Cancer Research. Cancers (Basel) 2023; 15:4721. [PMID: 37835415 PMCID: PMC10571557 DOI: 10.3390/cancers15194721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Zebrafish is increasingly used as a model organism for cancer research because of its genetic and physiological similarities to humans. Modeling lung cancer (LC) in zebrafish has received significant attention. This review focuses on the insights gained from using zebrafish in LC research. These insights range from investigating the genetic and molecular mechanisms that contribute to the development and progression of LC to identifying potential drug targets, testing the efficacy and toxicity of new therapies, and applying zebrafish for personalized medicine studies. This review provides a comprehensive overview of the current state of LC research performed using zebrafish, highlights the advantages and limitations of this model organism, and discusses future directions in the field.
Collapse
Affiliation(s)
- Xiaodi Wu
- Department of Clinical Medicine, Medical School of Nanjing University, Nanjing 210093, China; (X.W.); (K.X.)
| | - Xin Hua
- Department of Clinical Medicine, Southeast University Medical College, Nanjing 210096, China;
| | - Ke Xu
- Department of Clinical Medicine, Medical School of Nanjing University, Nanjing 210093, China; (X.W.); (K.X.)
| | - Yong Song
- Department of Clinical Medicine, Southeast University Medical College, Nanjing 210096, China;
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Tangfeng Lv
- Department of Clinical Medicine, Medical School of Nanjing University, Nanjing 210093, China; (X.W.); (K.X.)
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| |
Collapse
|
3
|
Cascallar M, Alijas S, Pensado-López A, Vázquez-Ríos AJ, Sánchez L, Piñeiro R, de la Fuente M. What Zebrafish and Nanotechnology Can Offer for Cancer Treatments in the Age of Personalized Medicine. Cancers (Basel) 2022; 14:cancers14092238. [PMID: 35565373 PMCID: PMC9099873 DOI: 10.3390/cancers14092238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer causes millions of deaths each year and thus urgently requires the development of new therapeutic strategies. Nanotechnology-based anticancer therapies are a promising approach, with several formulations already approved and in clinical use. The evaluation of these therapies requires efficient in vivo models to study their behavior and interaction with cancer cells, and to optimize their properties to ensure maximum efficacy and safety. In this way, zebrafish is an important candidate due to its high homology with the human genoma, its large offspring, and the ease in developing specific cancer models. The role of zebrafish as a model for anticancer therapy studies has been highly evidenced, allowing researchers not only to perform drug screenings but also to evaluate novel therapies such as immunotherapies and nanotherapies. Beyond that, zebrafish can be used as an “avatar” model for performing patient-derived xenografts for personalized medicine. These characteristics place zebrafish in an attractive position as a role model for evaluating novel therapies for cancer treatment, such as nanomedicine.
Collapse
Affiliation(s)
- María Cascallar
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; (M.C.); (S.A.); (A.J.V.-R.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (A.P.-L.); (L.S.)
| | - Sandra Alijas
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; (M.C.); (S.A.); (A.J.V.-R.)
| | - Alba Pensado-López
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (A.P.-L.); (L.S.)
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Abi Judit Vázquez-Ríos
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; (M.C.); (S.A.); (A.J.V.-R.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- DIVERSA Technologies S.L., 15782 Santiago de Compostela, Spain
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (A.P.-L.); (L.S.)
- Preclinical Animal Models Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Roberto Piñeiro
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - María de la Fuente
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; (M.C.); (S.A.); (A.J.V.-R.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- DIVERSA Technologies S.L., 15782 Santiago de Compostela, Spain
- Correspondence: ; Tel.: +34-981-955-704
| |
Collapse
|
4
|
Li X, Chen C, Wang Z, Liu J, Sun W, Shen K, Lv Y, Zhu S, Zhan P, Lv T, Song Y. Elevated exosome-derived miRNAs predict osimertinib resistance in non-small cell lung cancer. Cancer Cell Int 2021; 21:428. [PMID: 34391435 PMCID: PMC8364701 DOI: 10.1186/s12935-021-02075-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/05/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutations will inevitably develop drug resistance after being treated with the third-generation EGFR-tyrosine kinase inhibitor (TKI), osimertinib. Recently, the drug resistance information transmitted by exosomal miRNAs has attracted much attention. However, the mechanism of exosome-derived miRNAs in osimertinib resistance remains unexplored. METHODS We extracted and sequenced exosomes from the supernatant of the osimertinib-resistant cell line, H1975-OR, and the sensitive cell line, H1975. The results were compared with plasma exosome sequencing before and after the appearance of drug resistance in three NSCLC clinical patients treated with oral osimertinib. Exosome-derived miRNAs that had significantly increased expression levels after osimertinib resistance were screened for expanded validation in other 64 NSCLC patients. RESULTS Cluster analysis of the target genes revealed that exosomal miRNAs participate in osimertinib resistance mechanisms through the activation of bypass pathways (RAS-MAPK pathway abnormality and PI3K pathway activation). Exosome-derived miR-184 and miR-3913-5p expression levels increased significantly after the onset of osimertinib resistance. Exosomal miR-3913-5p was associated with TNM stage, platelet count, tumor marker carcinoembryonic antigen, and distant metastases. In patients with EGFR exon 21 L858R mutation, the increased expression levels of miR-184 and miR-3913-5p derived from serum exosomes indicated osimertinib resistance. Similarly, for T790M-positive patients, the level of exosome-derived miR-3913-5p can be used as a predictive marker for osimertinib resistance. CONCLUSIONS The expression levels of miR-184 and miR-3913-5p derived from exosomes in the peripheral blood of NSCLC patients could be used as biomarkers to indicate osimertinib resistance.
Collapse
Affiliation(s)
- Xinying Li
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, China.,Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China.,Nanjing University Institute of Respiratory Medicine, Nanjing, China
| | - Cen Chen
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, The first School of Clinical Medicine, Southern Medical University (Guangzhou), Nanjing, China
| | - Zimu Wang
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, China.,Nanjing University Institute of Respiratory Medicine, Nanjing, China
| | - Jiaxin Liu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, China.,Nanjing University Institute of Respiratory Medicine, Nanjing, China
| | - Wei Sun
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Southeast University, Nanjing, China
| | - Kaikai Shen
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Yanling Lv
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Suhua Zhu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, China
| | - Ping Zhan
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, China.,Nanjing University Institute of Respiratory Medicine, Nanjing, China
| | - Tangfeng Lv
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, China. .,Nanjing University Institute of Respiratory Medicine, Nanjing, China.
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing University School of Medicine, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, China. .,Nanjing University Institute of Respiratory Medicine, Nanjing, China.
| |
Collapse
|
5
|
Letrado P, Mole H, Montoya M, Palacios I, Barriuso J, Hurlstone A, Díez-Martínez R, Oyarzabal J. Systematic Roadmap for Cancer Drug Screening Using Zebrafish Embryo Xenograft Cancer Models: Melanoma Cell Line as a Case Study. Cancers (Basel) 2021; 13:cancers13153705. [PMID: 34359605 PMCID: PMC8345186 DOI: 10.3390/cancers13153705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Currently, there is no consensus in the scientific literature regarding the zebrafish embryo xenotransplantation procedure for drug screening. Thus, this study sets systematic guidelines for maximizing the reproducibility of drug screening in zebrafish-embryo cancer xenograft models based on evaluating every step of the procedure in a real case scenario in which the chemical properties of the compounds are unknown or not optimal. It aims to be a stepping stone to bring the versatility of zebrafish embryos to drug screening for cancer. The present work helps our group to pursue the objective of establishing zebrafish embryos as a valuable alternative to mice models; and hopefully, will help other groups in this field to progress in the same direction. Abstract Zebrafish embryo tumor transplant models are widely utilized in cancer research. Compared with traditional murine models, the small size and transparency of zebrafish embryos combined with large clutch sizes that increase statistical power and cheap husbandry make them a cost-effective and versatile tool for in vivo drug discovery. However, the lack of a comprehensive analysis of key factors impacting the successful use of these models impedes the establishment of basic guidelines for systematic screening campaigns. Thus, we explored the following crucial factors: (i) user-independent inclusion criteria, focusing on sample homogeneity; (ii) metric definition for data analysis; (iii) tumor engraftment criteria; (iv) image analysis versus quantification of human cancer cells using qPCR (RNA and gDNA); (v) tumor implantation sites; (vi) compound distribution (intratumoral administration versus alternative inoculation sites); and (vii) efficacy (intratumoral microinjection versus compound solution in media). Based on these analyses and corresponding assessments, we propose the first roadmap for systematic drug discovery screening in zebrafish xenograft cancer models using a melanoma cell line as a case study. This study aims to help the wider cancer research community to consider the adoption of this versatile model for cancer drug screening projects.
Collapse
Affiliation(s)
- Patricia Letrado
- Ikan Biotech SL, Centro Europeo de Empresas e Innovación de Navarra (CEIN), 31110 Noain, Spain;
- Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Correspondence: (P.L.); (J.O.)
| | - Holly Mole
- Division of Cancer Sciences, School of Medical Sciences, The University of Manchester, Manchester M13 9PL, UK; (H.M.); (J.B.)
| | - María Montoya
- Cellomics Unit, Spanish National Center for Cardiovascular Research (CNIC), 28029 Madrid, Spain; (M.M.); (I.P.)
| | - Irene Palacios
- Cellomics Unit, Spanish National Center for Cardiovascular Research (CNIC), 28029 Madrid, Spain; (M.M.); (I.P.)
| | - Jorge Barriuso
- Division of Cancer Sciences, School of Medical Sciences, The University of Manchester, Manchester M13 9PL, UK; (H.M.); (J.B.)
- The Christie NHS Foundation Trust, Manchester M20 4BX, UK
| | - Adam Hurlstone
- Division of Infection, Immunology and Respiratory Medicine, School of Biological Science, The University of Manchester, Manchester M13 9PT, UK;
| | - Roberto Díez-Martínez
- Ikan Biotech SL, Centro Europeo de Empresas e Innovación de Navarra (CEIN), 31110 Noain, Spain;
| | - Julen Oyarzabal
- Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Correspondence: (P.L.); (J.O.)
| |
Collapse
|
6
|
Al-Thani HF, Shurbaji S, Yalcin HC. Zebrafish as a Model for Anticancer Nanomedicine Studies. Pharmaceuticals (Basel) 2021; 14:625. [PMID: 34203407 PMCID: PMC8308643 DOI: 10.3390/ph14070625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022] Open
Abstract
Nanomedicine is a new approach to fight against cancer by the development of anticancer nanoparticles (NPs) that are of high sensitivity, specificity, and targeting ability to detect cancer cells, such as the ability of Silica NPs in targeting epithelial cancer cells. However, these anticancer NPs require preclinical testing, and zebrafish is a useful animal model for preclinical studies of anticancer NPs. This model affords a large sample size, optical imaging, and easy genetic manipulation that aid in nanomedicine studies. This review summarizes the numerous advantages of the zebrafish animal model for such investigation, various techniques for inducing cancer in zebrafish, and discusses the methods to assess cancer development in the model and to test for the toxicity of the anticancer drugs and NPs. In addition, it summarizes the recent studies that used zebrafish as a model to test the efficacy of several different anticancer NPs in treating cancer.
Collapse
Affiliation(s)
- Hissa F Al-Thani
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Samar Shurbaji
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Huseyin C Yalcin
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
7
|
Balkrishna A, Verma S, Solleti SK, Khandrika L, Varshney A. Calcio-Herbal Medicine Divya-Swasari-Vati Ameliorates SARS-CoV-2 Spike Protein-Induced Pathological Features and Inflammation in Humanized Zebrafish Model by Moderating IL-6 and TNF-α Cytokines. J Inflamm Res 2020; 13:1219-1243. [PMID: 33414643 PMCID: PMC7783203 DOI: 10.2147/jir.s286199] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection has grown into a pandemic and without a specific cure, disease management is the need of the hour through symptomatic interventions. Studies with severe acute respiratory syndrome-coronavirus (SARS-CoV) have highlighted the role of herbal medicines either in combination with antiviral drugs or by themselves in curtailing the severity of infection and associated inflammation. Divya-Swasari-Vati is an Indian ayurvedic formulation used in the treatment of chronic cough and lung inflammation, which is one of the first symptoms of SARS-CoV-2 infections. METHODS In this study, we used a A549 cell xenotransplant in the swim bladder of zebrafish and modeled the SARS-CoV-2 infection by injecting the fish with a recombinant spike protein. The different groups were given normal feed or feed mixed with either dexamethasone (as the control drug) or Divya-Swasari-Vati. The changes in behavioral fever, infiltration of pro-inflammatory cells in the swim bladder, degeneration or presence of necrotic cells in the kidney, and gene expression of pro-inflammatory cytokines were studied to determine the rescue of the diseased phenotype. RESULTS Challenge with the spike protein caused changes in the swim bladder cytology with infiltrating pro-inflammatory cells, skin hemorrhage, and increase in behavioral fever. This was also accompanied by increased mortality of the disease control fish. Treatment with Divya-Swasari-Vati reversed most of the disease symptoms including damage to the kidney glomerulocytes, and complete reversal of behavioral fever. Dexamethasone, used as a comparator, was only able to partly rescue the behavioral fever phenotype. Divya-Swasari-Vati also suppressed the pro-inflammatory cytokines, IL-6 and TNF-α, levels in a dose-dependent manner, under in vivo and in vitro conditions. CONCLUSION The study showed that the A549 xenotransplanted zebrafish injected with the recombinant spike protein of SARS-CoV-2 is an efficient model for the disease; and treatment with Divya-Swasari-Vati medicine rescued most of the inflammatory damage caused by the viral spike protein while increasing survival of the experimental fish.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand249 405, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, Uttarakhand249 405, India
| | - Sudeep Verma
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand249 405, India
| | - Siva Kumar Solleti
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand249 405, India
| | - Lakshmipathi Khandrika
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand249 405, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand249 405, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, Uttarakhand249 405, India
| |
Collapse
|
8
|
Nakayama J, Makinoshima H. Zebrafish-Based Screening Models for the Identification of Anti-Metastatic Drugs. Molecules 2020; 25:E2407. [PMID: 32455810 PMCID: PMC7287578 DOI: 10.3390/molecules25102407] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
Metastasis, a leading contributor to the morbidity of cancer patients, occurs through a multi-step process: invasion, intravasation, extravasation, colonization, and metastatic tumor formation. Each process is not only promoted by cancer cells themselves but is also affected by their microenvironment. Given this complexity, drug discovery for anti-metastatic drugs must consider the interaction between cancer cells and their microenvironments. The zebrafish is a suitable vertebrate animal model for in vivo high-throughput screening studies with physiological relevance to humans. This review covers the zebrafish model used to identify anti-metastatic drugs.
Collapse
Affiliation(s)
- Joji Nakayama
- Shonai Regional Industry Promotion Center, Tsuruoka, Yamagata 997-0052, Japan
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Mizukami 246-2, Kakuganji, Tsuruoka, Yamagata 975-0052, Japan;
| | - Hideki Makinoshima
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Mizukami 246-2, Kakuganji, Tsuruoka, Yamagata 975-0052, Japan;
- Division of Translational Research, Exploratory Oncology Research, and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba 277-8577, Japan
| |
Collapse
|
9
|
Zhao Z, Li L, Wang Z, Duan J, Bai H, Wang J. The Status of the EGFR T790M Mutation is associated with the Clinical Benefits of Osimertinib Treatment in Non-small Cell Lung Cancer Patients: A Meta-Analysis. J Cancer 2020; 11:3106-3113. [PMID: 32231715 PMCID: PMC7097959 DOI: 10.7150/jca.38411] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 11/30/2019] [Indexed: 01/26/2023] Open
Abstract
Background and Purpose: Pervious studies have demonstrated that the loss of EGFR T790M after Osimertinib treatment may be the cause of Osimertinib resistance. Here, we conducted a meta-analysis to evaluate the association between the persistence of EGFR T790M and the clinical benefits of Osimertinib in non-small cell lung cancer (NSCLC) patients with baseline EGFR T790M mutation. Experimental design and Methods: PUBMED, EMBASE, and Cochrane databases were searched for eligible studies that provided the survival outcomes including overall survival (OS), progression-free survival (PFS) or time to discontinuation (TTD) data for each patient treated with Osimertinib with the status of the T790M mutation tested after Osimertinib resistance. The hazard ratios (HRs) and their 95% confidence intervals (CI) were calculated for each study. Results: In total, eight eligible studies were included in the analysis, among which six studies provided the data on PFS, and the other two studies provided the TTD data. Overall, 312 patients (151 patients with the persistence of T790M) were identified. The persistence of T790M was associated with longer PFS (HR, 0.40; 95% CI, 0.19-0.84; P=0.01) and TTD (HR, 0.54; 95% CI, 0.39-0.76; P=0.0004). Furthermore, overall analysis the survival outcomes including PFS and TTD subgroups also showed preferable clinical benefits for patients with the T790M persistence (HR, 0.57; 95%CI, 0.45-0.73; P<0.00001). Conclusions: Our findings confirm the persistence of T790M is associated with the clinical benefits of Osimertinib in NSCLC patients with baseline EGFR T790M mutation treated with Osimertinib.
Collapse
Affiliation(s)
- Zhe Zhao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lu Li
- Health Service Department of the Guard Bureau of the Joint Staff Department, Beijing, 100017, China
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jianchun Duan
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hua Bai
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| |
Collapse
|