1
|
Uta D, Nakamura H, Maruo K, Matsumura K, Usami Y, Kume T. Potassium/Sodium Citrate Attenuates Paclitaxel-Induced Peripheral Neuropathy. Int J Mol Sci 2025; 26:3329. [PMID: 40244201 PMCID: PMC11989248 DOI: 10.3390/ijms26073329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a significant adverse event with unclear mechanisms and limited treatment alternatives. This study aimed to investigate the efficacy of two alkalizing agents, a mixture of potassium citrate and sodium citrate (K/Na citrate) or sodium bicarbonate (NaHCO3), in preventing and treating paclitaxel (PTX)-induced mechanical allodynia in rodents. The results from rodent models demonstrated that repeated prophylactic administration of K/Na citrate or NaHCO3 could inhibit the development of PTX-induced mechanical allodynia. Moreover, K/Na citrate was effective in preventing the PTX-induced exacerbation of mechanical allodynia, even when treatment was initiated immediately after the onset of allodynia. K/Na citrate also reduced the levels of the plasma complement component anaphylatoxin C3a in a PTX-induced CIPN rat model. Complement activation, resulting in the production of C3a, has been implicated in the pathogenesis of this model. Additionally, pretreatment with Na citrate significantly prevented the reduction in neurite outgrowth caused by PTX. Furthermore, K/Na citrate inhibited spontaneous and mechanical stimuli-induced firing in spinal dorsal horn neurons. These findings indicate that K/Na citrate may regulate the development of PTX-induced mechanical allodynia by modulating complement activation and providing neuroprotection against PTX-induced peripheral nerve injury. This study implies that alkalization could help prevent PTX-induced peripheral neuropathy and mitigate its exacerbation.
Collapse
Affiliation(s)
- Daisuke Uta
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan;
| | - Hideki Nakamura
- Discovery Research Laboratories, Nippon Chemiphar Co., Ltd., Saitama 341-0005, Japan; (H.N.); (K.M.); (K.M.); (Y.U.)
| | - Kengo Maruo
- Discovery Research Laboratories, Nippon Chemiphar Co., Ltd., Saitama 341-0005, Japan; (H.N.); (K.M.); (K.M.); (Y.U.)
| | - Kanoko Matsumura
- Discovery Research Laboratories, Nippon Chemiphar Co., Ltd., Saitama 341-0005, Japan; (H.N.); (K.M.); (K.M.); (Y.U.)
| | - Yohei Usami
- Discovery Research Laboratories, Nippon Chemiphar Co., Ltd., Saitama 341-0005, Japan; (H.N.); (K.M.); (K.M.); (Y.U.)
| | - Toshiaki Kume
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan;
| |
Collapse
|
2
|
Meng Y, Shen HL. Role of N-Methyl-D-Aspartate Receptor NR2B Subunit in Inflammatory Arthritis-Induced Chronic Pain and Peripheral Sensitized Neuropathic Pain: A Systematic Review. J Pain Res 2022; 15:2005-2013. [PMID: 35880050 PMCID: PMC9307865 DOI: 10.2147/jpr.s367982] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/06/2022] [Indexed: 11/23/2022] Open
Abstract
Arthritis is a common clinical disease that affects millions of people in the world. The most common types of arthritis are osteoarthritis and rheumatoid arthritis. Inflammatory arthritis (IA), a chronic painful disease, is characterized by synovitis and cartilage destruction in the early stages. Pathologically, IA causes inflammatory changes in the joints and eventually leads to joint destruction. Pain is associated with inflammation and abnormal regulation of the nervous system pathways involved in pain promotion and inhibition. In addition, the occurrence of pain is associated with depression and anxiety. We found that there are many factors affecting pain, in addition to inflammatory factors, glutamate receptor may be the possible cause of long-term chronic pain caused by IA. N-methyl-d-aspartate receptor subunit 2B (NR2B) has been reported to involved in IA and nervous system diseases, especially peripheral neuropathic pain. In this review, we summarized the mechanisms of the NR2B subunit of the N-methyl-D-aspartate (NMDA) receptor in peripheral nerve sensitization during IA and chronic pain.
Collapse
Affiliation(s)
- Yu Meng
- Department of Pain, The Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Hai Li Shen
- Department of Rheumatology and Immunology, The Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| |
Collapse
|
3
|
Lee JH, Kim N, Park S, Kim SK. Analgesic effects of medicinal plants and phytochemicals on chemotherapy-induced neuropathic pain through glial modulation. Pharmacol Res Perspect 2021; 9:e00819. [PMID: 34676990 PMCID: PMC8532132 DOI: 10.1002/prp2.819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/27/2021] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) frequently occurs in cancer patients. This side effect lowers the quality of life of patients and may cause the patients to abandon chemotherapy. Several medications (e.g., duloxetine and gabapentin) are recommended as remedies to treat CIPN; however, usage of these drugs is limited because of low efficacy or side effects such as dizziness, nausea, somnolence, and vomiting. From ancient East Asia, the decoction of medicinal herbal formulas or single herbs have been used to treat pain and could serve as alternative therapeutic option. Recently, the analgesic potency of medicinal plants and their phytochemicals on CIPN has been reported, and a majority of their effects have been shown to be mediated by glial modulation. In this review, we summarize the analgesic efficacy of medicinal plants and their phytochemicals, and discuss their possible mechanisms focusing on glial modulation in animal studies.
Collapse
Affiliation(s)
- Ji Hwan Lee
- Department of PhysiologyCollege of Korean MedicineKyung Hee UniversitySeoulKorea
| | - Nari Kim
- Department of Science in Korean MedicineGraduate SchoolKyung Hee UniversitySeoulKorea
| | - Sangwon Park
- Department of Korean MedicineGraduate SchoolKyung Hee UniversitySeoulKorea
| | - Sun Kwang Kim
- Department of PhysiologyCollege of Korean MedicineKyung Hee UniversitySeoulKorea
- Department of Science in Korean MedicineGraduate SchoolKyung Hee UniversitySeoulKorea
- Department of Korean MedicineGraduate SchoolKyung Hee UniversitySeoulKorea
| |
Collapse
|
4
|
Warncke UO, Toma W, Meade JA, Park AJ, Thompson DC, Caillaud M, Bigbee JW, Bryant CD, Damaj MI. Impact of Dose, Sex, and Strain on Oxaliplatin-Induced Peripheral Neuropathy in Mice. FRONTIERS IN PAIN RESEARCH 2021; 2:683168. [PMID: 35295533 PMCID: PMC8915759 DOI: 10.3389/fpain.2021.683168] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common, dose limiting, and long-lasting side effect of chemotherapy treatment. Unfortunately, no treatment has proven efficacious for this side effect. Rodent models play a crucial role in the discovery of new mechanisms underlying the initiation, progression, and recovery of CIPN and the potential discovery of new therapeutics. However, there is limited consistency in the dose, the sex, age, and genetic background of the animal used in these studies and the outcome measures used in evaluation of CIPN rely primarily on noxious and reflexive measures. The main objective of this study was to provide a comprehensive and systematic characterization of oxaliplatin-induced peripheral neuropathy in mice by using a battery of behavioral, sensory, electrophysiological, and morphometric measures in both sexes of the two widely used strains of mice, C57BL/6J and BALB/cJ. Mice received intraperitoneal injections of 3 or 30 mg/kg cumulative doses of oxaliplatin over the course of 2 weeks. Both doses induced long-term and time-dependent mechanical and cold hypersensitivity. Our results show that 30 mg/kg oxaliplatin reduced the locomotor activity in C57BL/6J mice, and C57BL/6J females showed anxiety-like behavior one-week post completion of treatment. In the same dose group, BALB/cJ males and females sustained a larger decrease in sucrose preference than either male or female C57BL/6J mice. Both strains failed to show significant changes in burrowing and nesting behaviors. Two clinically relevant assessments of changes to the peripheral nerve fibers, nerve conduction and intraepidermal nerve fiber density (IENFD) were evaluated. Only BALB/cJ females showed significant reduction in the nerve conduction amplitude 1 week after 30 mg/kg oxaliplatin regimen. Moreover, this dose of the chemo agent reduced the IENF density in both sexes and strains. Our findings suggest that mouse strain, sex, and assay type should be carefully considered when assessing the effects of oxaliplatin and potential therapeutic interventions.
Collapse
Affiliation(s)
- Urszula O Warncke
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, United States
- Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, United States
| | - Wisam Toma
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, United States
| | - Julie A Meade
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, United States
| | - Abigail J Park
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, United States
| | - Danielle C Thompson
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, United States
| | - Martial Caillaud
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, United States
| | - John W Bigbee
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Camron D Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, United States
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
5
|
Pozzi E, Fumagalli G, Chiorazzi A, Canta A, Meregalli C, Monza L, Carozzi VA, Oggioni N, Rodriguez-Menendez V, Cavaletti G, Marmiroli P. The relevance of multimodal assessment in experimental oxaliplatin-induced peripheral neurotoxicity. Exp Neurol 2020; 334:113458. [PMID: 32889007 DOI: 10.1016/j.expneurol.2020.113458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 12/21/2022]
Abstract
Chemotherapy-induced peripheral neurotoxicity represents one of the most relevant dose-limiting side effects that can affect cancer patients treated with the common antineoplastic agents. Since the severity of neurotoxicity often leads to dose reduction or early cessation of chemotherapy, the investigation of molecular mechanisms underlying chemotherapy-induced peripheral neurotoxicity is an urgent clinical need in order to better understand its physiopathology and find effective strategies for neuroprotection. Several in vivo preclinical models of chemotherapy-induced peripheral neurotoxicity have been developed but a great variability in mouse strain, dose, route of administration of the drug, treatment schedule and assessment of neurotoxicity is observed between the different published studies making difficult the comparison and interpretation of their results. In many of these studies only behavioural tests are used as outcome measures, while possible neurophysiological and neuropathological changes are not evaluated. In this study, focused on experimental oxaliplatin-induced peripheral neurotoxicity, we reproduced and compared four mouse models with very different drug dose (low or high dose-intensity) and treatment schedules (short or long-term treatment), selected from the literature. Using a multimodal assessment based on behavioural, neurophysiological and neuropathological methods, we evidenced remarkable differences in the results obtained in the selected animal models. This work suggests the importance of a multimodal approach including extensive pathological investigation to confirm the behavioural results.
Collapse
Affiliation(s)
- Eleonora Pozzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Giulia Fumagalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Alessia Chiorazzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Annalisa Canta
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Cristina Meregalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Laura Monza
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Valentina Alda Carozzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Norberto Oggioni
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| | - Paola Marmiroli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| |
Collapse
|