1
|
Munir MM, Zhou X, Chang D. Exploring the pro-angiogenic potential of Chinese herbal medicines: a comprehensive insight into mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2025; 351:120132. [PMID: 40513922 DOI: 10.1016/j.jep.2025.120132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 05/30/2025] [Accepted: 06/09/2025] [Indexed: 06/16/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pro-angiogenic therapy aims to stimulate the formation of new blood vessels, thereby enhancing blood flow to tissues and organs. Current strategies, such as growth factors, gene therapy, and cell-based approaches, are widely employed to promote angiogenesis. However, these interventions often suffer from off-target effects and limited efficacy due to the complex regulation of angiogenesis. Chinese herbal medicine (CHM) provides a rich source of therapeutic agents and offers promising alternatives for the treatment of vascular insufficiency-related disorders. AIM OF THE STUDY This review aims to summarise current research on the pro-angiogenic effects and underlying molecular mechanisms of CHM, including herbal extracts, traditional formulations and key bioactive phytochemicals. METHODS A comprehensive literature search was conducted using electronic databases, including PubMed, Web of Science, and Google Scholar, covering publications from 2003 to 2024. Keywords including "Pro-angiogenic", "Angiogenesis", "Phytochemicals", "Traditional Chinese Medicine", "Natural compounds", "Phytomedicine", "Plant medicine", "Botanical drugs" and "Chinese herbal medicine" were used to retrieve relevant studies. The retrieved articles were then assessed, summarised and synthesized to provide a comprehensive overview of the pro-angiogenic effects of CHMs and the molecular mechanisms underpinning these effects. RESULTS We systematically summarised the key molecular mechanisms involved in angiogenesis, including the vascular endothelial growth factor (VEGF), notch signalling, angiopoietin-tie, fibroblast growth factor, platelet-derived growth factor and hypoxia-inducible factor (HIF) pathways. Mechanistically, CHMs exert pro-angiogenic effects through promoting cell survival, proliferation, and migration, primarily through the upregulation of VEGF, Notch signalling, MAPK signalling, HIF-1α, and PI3K- Protein Kinase B (Akt) signalling pathways. CONCLUSION Multiple Chinese herbal extracts, formulations and key phytochemicals demonstrate significant pro-angiogenic effects. The mechanisms of these effects are multifaceted. The evidence highlights the potential of CHMs as promising candidates for pro-angiogenic therapy, warranting the need for further research and development to fully harness their therapeutic value.
Collapse
Affiliation(s)
- Muhammad Mazhar Munir
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, 2145, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, 2145, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, 2145, Australia.
| |
Collapse
|
2
|
Luo Y, Hu W, Li Z, Zhang X, Chen S, Yang Q, Hu B, Zou X. Integrating Network Pharmacology and in vivo Validation to Explore the Mechanisms of Buyang Huanwu Decoction in Myocardial Ischemia-Reperfusion Injury. J Inflamm Res 2025; 18:7493-7514. [PMID: 40524966 PMCID: PMC12169005 DOI: 10.2147/jir.s512050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 05/28/2025] [Indexed: 06/19/2025] Open
Abstract
Objective Buyang Huanwu Decoction (BYHWD), a traditional Chinese herbal formula, has been widely used to manage cardiovascular disorders. However, its cardioprotective mechanisms in myocardial ischemia/reperfusion injury (MI/RI) remain unclear. This study aims to investigate its pharmacological mechanisms against MI/RI through network pharmacology and experimental validation. Materials and Methods Active components and targets of BYHWD were identified via Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, Encyclopedia of Traditional Chinese Medicine, BATMAN-TCM, and SymMap databases. MI/RI-related targets were retrieved from DisGeNET, GeneCard, Online Mendelian Inheritance in Man, Comparative Toxicogenomics Database, and DrugBank databases. The intersecting targets were analyzed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. Protein-protein interaction (PPI) networks, compound-target networks, and herb-target-pathway networks were constructed using Cytoscape, and molecular docking was performed via AutoDock Vina. A rat MI/RI model was used to assess infarct size, protein expression, and cytokine levels for in vivo validation. Results 95 compounds were identified, with 75 MI/RI-related targets. PPI analyses highlighted ten hub genes, including interleukin-6 (IL6), AKT serine/threonine kinase 1 (AKT1), tumor necrosis factor (TNF), intercellular adhesion molecule 1 (ICAM1), matrix metalloproteinase 9 (MMP9), interleukin-10 (IL10), vascular cell adhesion molecule 1 (VCAM1), nitric oxide synthase 3, albumin, and C-reactive protein. GO and KEGG analyses highlighted TNF signaling, apoptosis, and p53 signaling pathways. Carthami Flos and Radix Astragali emerged as core herbs, with quercetin, kaempferol, baicalein, stigmasterol, baicalin, and beta-sitosterol as key compounds exhibiting strong binding affinities to hub genes. In vivo, BYHWD significantly reduced myocardial infarct size, decreased inflammatory cytokines (IL6 and TNF-α), ICAM1, VCAM1, and MMP9 protein expression, and IL10 and phosphorylated AKT1 expression. Conclusion BYHWD alleviates MI/RI through multicomponent, multitarget, and multipathway mechanisms, primarily modulating TNF and AKT1-mediated inflammatory/apoptotic pathways. These effects collectively support its potential as a complementary treatment for ischemic heart disease.
Collapse
Affiliation(s)
- Yushan Luo
- Guizhou Medical University, Guiyang, Guizhou, 550004, People’s Republic of China
| | - Wen Hu
- Guizhou Medical University, Guiyang, Guizhou, 550004, People’s Republic of China
| | - Ziyue Li
- Guizhou Medical University, Guiyang, Guizhou, 550004, People’s Republic of China
| | - Xiaoyuan Zhang
- Guizhou Medical University, Guiyang, Guizhou, 550004, People’s Republic of China
| | - Shoujun Chen
- Guizhou Medical University, Guiyang, Guizhou, 550004, People’s Republic of China
| | - Qiang Yang
- Guizhou Medical University, Guiyang, Guizhou, 550004, People’s Republic of China
| | - Bailong Hu
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, People’s Republic of China
| | - Xiaohua Zou
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, People’s Republic of China
| |
Collapse
|
3
|
Pan J, Wang J, Lei Z, Wang H, Zeng N, Zou J, Zhang X, Sun J, Guo D, Luan F, Shi Y. Therapeutic Potential of Chinese Herbal Medicine and Underlying Mechanism for the Treatment of Myocardial Infarction. Phytother Res 2025; 39:189-232. [PMID: 39523856 DOI: 10.1002/ptr.8368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 11/16/2024]
Abstract
Myocardial infarction (MI) is a prevalent disease with high mortality rates worldwide. The course of MI is intricate and variable, necessitating personalized treatment strategies based on different mechanisms. However, variety of postoperative complications and rejections, such as heart failure, arrhythmias, cardiac rupture, and left ventricular thrombus, contribute to a poor prognosis. Despite the inclusion of antiplatelet agents and statins in the conventional treatment regimen, their clinical applicability is constrained by potential adverse effects and limited efficacy. Additionally, the mechanisms leading to MI are complex and diverse. Therefore, the development of novel compounds for MI treatment. The use of traditional Chinese medicine (TCM) in the prevention and treatment of cardiovascular diseases, including MI, is grounded in its profound historical background, comprehensive theoretical system, and accumulated knowledge. An increasing number of contemporary evidence-based medical studies have demonstrated that TCM plays a significant role in alleviating symptoms and improving the quality of life for MI patients. Chinese herbal formulations and active ingredients can intervene in the pathological process of MI through key factors such as inflammation, oxidative stress, apoptosis, ferroptosis, pyroptosis, myocardial fibrosis, angiogenesis, and autophagy. This article critically reviews existing herbal formulations from an evidence-based medicine perspective, evaluating their research status and potential clinical applications. Additionally, it explores recent advancements in the use of herbal medicines and their components for the prevention and treatment of MI, offering detailed insights into their mechanisms of action.
Collapse
Affiliation(s)
- Jiaojiao Pan
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Jinhui Wang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Ziwen Lei
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - He Wang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Junbo Zou
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Xiaofei Zhang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Jing Sun
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Dongyan Guo
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Fei Luan
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Yajun Shi
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| |
Collapse
|
4
|
Li B, Du M, Gao W. Global research hotspots and trends of Buyang huanwu decoction: A visual analysis of the literature based on CiteSpace. Medicine (Baltimore) 2024; 103:e40457. [PMID: 39533635 PMCID: PMC11557023 DOI: 10.1097/md.0000000000040457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Buyang huanwu decoction (BYHWD) has shown significant clinical efficacy in the treatment of several diseases, particularly stroke. However, bibliometric research has not been comprehensive. METHODS BYHWD articles were collected from literature databases published from January 1, 1915, to March 31, 2024, including the China National Knowledge Infrastructure, Weipu, Wanfang, Pubmed, Scopus, and Web of Science Core Collection. Knowledge network graphs of annual publication volume, authors, institutions, countries, keywords, and references were constructed. RESULTS Nine thousand two hundred thirty-eight Chinese literature and 559 English articles published between 1915 and 2024 showed an overall upward trend. The countries, institutions, journals, and authors with the highest output were China, Hunan University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangxian Cai, and Changqing Deng, respectively. Research teams outside China were located at Daejeon University, Gachon University, Aga Khan University, Yale University, etc. The results of keyword co-occurrence and burst analysis included clinical applications, animal experiments, action mechanisms, clinical efficacy, and safety evaluations based on systematic reviews and meta-analyses. Literature co-citation analysis revealed that BYHWD was highly correlated with neuroprotection and reduction of cerebral ischemia/reperfusion injury. CONCLUSION Both Chinese and English literature have shown overall growth trend since 1984 and 1989, respectively. Clinical applications, pharmacological effects, mechanisms, active ingredients, evaluation of clinical efficacy and safety, modified BYHWD, methods, and biological techniques may be hotspots and focus of future research on BYHWD. Hotspot analytical methods and biological techniques include systematic reviews, meta-analyses, data mining, network pharmacology, and molecular docking. Future valuable research fields may include studies on neuroprotection, anti-inflammatory activity, ischemic stroke, bioactive compounds, and their underlying mechanisms.
Collapse
Affiliation(s)
- Bowen Li
- Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, China
| | - Maobo Du
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Weijuan Gao
- Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, China
| |
Collapse
|
5
|
Gao J, Guo H, Li J, Zhan M, You Y, Xin G, Liu Z, Fan X, Gao Q, Liu J, Zhang Y, Fu J. Buyang Huanwu decoction ameliorates myocardial injury and attenuates platelet activation by regulating the PI3 kinase/Rap1/integrin α(IIb)β(3) pathway. Chin Med 2024; 19:109. [PMID: 39160598 PMCID: PMC11331649 DOI: 10.1186/s13020-024-00976-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/31/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Buyang Huanwu Decoction (BYHWD) is a traditional Chinese medicine to treat the syndrome of qi deficiency and blood stasis. Platelets play an important role in regulating thrombus and inflammation after ischemic injury, studies have shown that BYHWD regulate myocardial fibrosis and exert anti-inflammatory effects through IL-17 and TLR4 pathways, but the mechanism of platelet activation by BYHWD in stable coronary heart disease is still unknown. In the present study, model of left anterior descending coronary artery ligation was applied to investigate the mechanisms of BYHWD on modulating platelets hyperreactivity and heart function after fibrosis of ischemic myocardial infarction (MI). METHODS Myocardial infarction model was constructed by ligation of the left anterior descending coronary artery. The rats were randomly divided into five groups: sham, model, MI with aspirin (positive), MI with a low dosage of BYHWD (BYHWD-ld) and MI with a high dosage of BYHWD (BYHWD-hd) for 28 days. RESULTS Coronary artery ligation prominently induced left ventricle dysfunction, increased cardiomyocyte fibrosis, which was accompanied by platelets with hyperreactivity, and high levels of inflammatory factors. BYHWD obviously reversed cardiac dysfunction and fibrosis, increased the thickness of the left ventricular wall, and inhibited aggregation ratio and CD62p expression. BYHWD restored the mitochondrial respiration of platelets after MI, concomitant with an increased telomere expression and decreased inflammation. According to the result of transcriptome sequencing, we found that 106 differentially expressed genes compared model with BYHWD treatment. Enrichment analysis screened out the Ras-related protein Rap-1 (Rap1) signaling pathway and platelet activation biological function. Quantitative real-time PCR and Western blotting were applied to found that BYHWD reduced the expression of Rap1/PI3K-Akt/Src-CDC42 genes and attenuated the overactivity of PI3 kinase/Rap1/integrin α(IIb)β(3) pathway. CONCLUSION BYHWD reduced inflammation and platelet activation via the PI3 kinase/Rap1/integrin α(IIb)β(3) pathway and improved heart function after MI.
Collapse
Affiliation(s)
- Jiaming Gao
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China
| | - Hao Guo
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China
| | - Junmei Li
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China
| | - Min Zhan
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China
| | - Yue You
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China
| | - Gaojie Xin
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China
| | - Zixin Liu
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China
| | - Xiaodi Fan
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China
| | - Qinghe Gao
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China
| | - Jianxun Liu
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China.
| | - Yehao Zhang
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China.
| | - Jianhua Fu
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China.
| |
Collapse
|
6
|
Wu Y, Peng W, Chen S, Zeng X, Zhu J, Zhu P. CAV1 Protein Encapsulated in Mouse BMSC-Derived Extracellular Vesicles Alleviates Myocardial Fibrosis Following Myocardial Infarction by Blocking the TGF-β1/SMAD2/c-JUN Axis. J Cardiovasc Transl Res 2024; 17:523-539. [PMID: 38092988 DOI: 10.1007/s12265-023-10472-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/27/2023] [Indexed: 07/03/2024]
Abstract
Extracellular vesicles (EVs) derived from mouse bone marrow mesenchymal stem cells (mBMSCs) convey the CAV1 protein, influencing the TGF-β1/SMAD2/c-JUN pathway and thus the molecular mechanisms underlying myocardial fibrosis (MF) post-myocardial infarction (MI). Through various experimental methods, including transmission electron microscopy, Nanosight analysis, Western blot, ELISA, and qRT-PCR, we isolated, purified, and identified EVs originating from mBMSCs. Bioinformatics and experimental findings show a reduced expression of CAV1 in myocardial fibrosis tissue. Furthermore, our findings suggest that mBMSC-EVs can deliver CAV1 to cardiac fibroblasts (CFs) and that silencing CAV1 in mBMSC-EVs promotes CF fibrosis. In vivo studies further corroborated these findings. In conclusion, mBMSC-EVs mitigate myocardial fibrosis in MI mice by delivering the CAV1 protein, inhibiting the TGF-β1/SMAD2/c-JUN pathway.
Collapse
Affiliation(s)
- Yijin Wu
- Department of Cardiovascular Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No.106 Zhongshan Er Road, Yuexiu District, Guangzhou, 510100, China
| | - Wenying Peng
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510100, China
| | - Siyao Chen
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510100, China
| | - Xiaodong Zeng
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510100, China
| | - Jiade Zhu
- Department of Cardiovascular Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No.106 Zhongshan Er Road, Yuexiu District, Guangzhou, 510100, China
| | - Ping Zhu
- Department of Cardiovascular Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No.106 Zhongshan Er Road, Yuexiu District, Guangzhou, 510100, China.
| |
Collapse
|
7
|
Liu Z, Xie G, Li Z, Luo H, Zhou J, Cheng J, Wang X, Huang X, Zou G. Detoxification and Activating Blood Circulation Decoction Promotes Reendothelialization of Damaged Blood Vessels via VEGF Signaling Pathway Activation by miRNA-126. Biol Pharm Bull 2024; 47:955-964. [PMID: 38644204 DOI: 10.1248/bpb.b23-00858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The occurrence of in-stent restenosis (ISR) poses a significant challenge for percutaneous coronary intervention (PCI). Thus, the promotion of vascular reendothelialization is essential to inhibit endothelial proliferation. In this study, we clarified the mechanism by which Detoxification and Activating Blood Circulation Decoction (DABCD) promotes vascular reendothelialization to avoid ISR by miRNA-126-mediated modulation of the vascular endothelial growth factor (VEGF) signaling pathway. A rat model of post-PCI restenosis was established by balloon injury. The injured aortic segment was collected 14 and 28 d after model establishment. Our findings indicate that on the 14th and 28th days following balloon injury, DABCD reduced intimal hyperplasia and inflammation and promoted vascular reendothelialization. Additionally, DABCD markedly increased nitric oxide (NO) expression and significantly decreased ET-1 production in rat serum. DABCD also increased the mRNA level of endothelial nitric oxide synthase (eNOS) and the protein expression of VEGF, p-Akt, and p-extracellular signal-regulated kinase (ERK)1/2 in vascular tissue. Unexpectedly, the expression of miR-126a-5p mRNA was significantly lower in the aortic tissue of balloon-injured rats than in the aortic tissue of control rats, and higher miR-126a-5p levels were observed in the DABCD groups. The results of this study indicated that the vascular reendothelialization effect of DABCD on arterial intimal injury is associated with the inhibition of neointimal formation and the enhancement of vascular endothelial activity. More specifically, the effects of DABCD were mediated, at least in part, through miR-126-mediated VEGF signaling pathway activation.
Collapse
Affiliation(s)
| | | | - Zuwei Li
- The Affiliated Hospital of Jiangxi University of Chinese Medicine
| | - Hanbin Luo
- The Affiliated Hospital of Jiangxi University of Chinese Medicine
| | | | - Jie Cheng
- Jiangxi University of Chinese Medicine
| | | | - Xiaoyan Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research
| | - Guohui Zou
- The Affiliated Hospital of Jiangxi University of Chinese Medicine
| |
Collapse
|
8
|
Yu Q, Zhang Y, Zeng W, Sun Y, Zhang X, Guo L, Zhang Y, Yu B, Guo M, Wang Y, Li H, Suo Y, Jiang X, Song L. Buyang Huanwu Decoction Alleviates Atherosclerosis by Regulating gut Microbiome and Metabolites in Apolipoprotein E-deficient Mice fed with High-fat Diet. JOURNAL OF PHYSIOLOGICAL INVESTIGATION 2024; 67:88-102. [PMID: 38780293 DOI: 10.4103/ejpi.ejpi-d-23-00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/25/2024] [Indexed: 05/25/2024]
Abstract
ABSTRACT The traditional Chinese herbal prescription Buyang Huanwu decoction (BHD), effectively treats atherosclerosis. However, the mechanism of BHD in atherosclerosis remains unclear. We aimed to determine whether BHD could alleviate atherosclerosis by altering the microbiome-associated metabolic changes in atherosclerotic mice. An atherosclerotic model was established in apolipoprotein E-deficient mice fed high-fat diet, and BHD was administered through gavage for 12 weeks at 8.4 g/kg/d and 16.8 g/kg/d. The atherosclerotic plaque size, composition, serum lipid profile, and inflammatory cytokines, were assessed. Mechanistically, metabolomic and microbiota profiles were analyzed by liquid chromatography-mass spectrometry and 16S rRNA gene sequencing, respectively. Furthermore, intestinal microbiota and atherosclerosis-related metabolic parameters were correlated using Spearman analysis. Atherosclerotic mice treated with BHD exhibited reduced plaque area, aortic lumen occlusion, and lipid accumulation in the aortic root. Nine perturbed serum metabolites were significantly restored along with the relative abundance of microbiota at the family and genus levels but not at the phylum level. Gut microbiome improvement was strongly negatively correlated with improved metabolite levels. BHD treatment effectively slows the progression of atherosclerosis by regulating altered intestinal microbiota and perturbed metabolites.
Collapse
Affiliation(s)
- Qun Yu
- School of Preclinical Medicine, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Yilin Zhang
- School of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Wenyun Zeng
- Oncology, Ganzhou People's Hospital, Ganzhou, China
| | - Yingxin Sun
- School of Faculty of Health and Exercise Science, Tianjin University of Sport, Tianjin, China
| | - Xiaolu Zhang
- School of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Lin Guo
- School of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Yue Zhang
- School of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Bin Yu
- School of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Maojuan Guo
- School of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Yu Wang
- School of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Huhu Li
- School of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Yanrong Suo
- Oncology, Ganzhou People's Hospital, Ganzhou, China
| | - Xijuan Jiang
- School of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Lili Song
- School of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| |
Collapse
|
9
|
Xu F, Wu J, Hu Y, Chu C, Liu W, Li X, Zheng W, Yang W, Zhao B, Guo J, Wang Z, Jia Y, Xiao W. Mechanisms of action underlying the effect of Tongsaimai on wound healing based on experimental and network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116451. [PMID: 37031824 DOI: 10.1016/j.jep.2023.116451] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/23/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tongsaimai (TSM) is a traditional Chinese medicine that has several therapeutic qualities, including anti-inflammatory, anti-oxidative, and anti-vasculitis effects. However, its impacts and underlying mechanisms on wound healing remain unclear. AIM OF THE STUDY The aim of our study was to evaluate TSM for its pro-healing effect and the relevant mechanisms using both experimental validation and network pharmacology analysis. MATERIALS AND METHODS The components of TSM were detected by high-performance liquid chromatography combined with diode array detector (HPLC-DAD). Skin wounds with a diameter of 4 mm were created on the backs of mice, after which, topical treatments of 2.5-10% TSM were applied onto the lesions once daily for either 2 or 7 days. Then, the wound tissues were collected to determine the impacts of TSM on collagen deposition, epithelial cell proliferation, oxidative stress, inflammation, and angiogenesis. Moreover, the effects of TSM (0.5-2 mg/mL) on the cell viability of HUVECs and HaCaT cells were evaluated. RESULTS A total of 11 components in TSM were identified by HPLC-DAD. TSM was found to enhance the rate of wound contraction and increase epithelial thickness and collagen deposition during the healing process. In addition, TSM increased SOD activity and downregulated MDA and IL-1β levels in the wound tissues. Immunofluorescence analysis further indicated an increased expression of Ki67, CD31, and VEGF in wound tissues following TSM administration. Results of the network pharmacology analysis revealed that multiple pathways including VEGF, PI3K/Akt, and MAPK pathways were involved in the pharmacological actions of TSM on wound healing. Accordantly, in vitro experiments revealed that TSM promoted the proliferation of HUVECs and HaCaT cells while activating the PI3K/Akt pathway. CONCLUSIONS Our results suggest that TSM may serve as a therapeutic medication to improve wound healing by employing multiple regulatory mechanisms that affect proliferation, angiogenesis, collagen deposition, oxidative stress, and inflammation.
Collapse
Affiliation(s)
- Fanxing Xu
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jingxian Wu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yumei Hu
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China
| | - Chun Chu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Wenjun Liu
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China
| | - Xiang Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Wen Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Weishuo Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Boyan Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jiangxue Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhenzhong Wang
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China
| | - Ying Jia
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, 222001, China.
| |
Collapse
|
10
|
Song YY, Liang D, Liu DK, Lin L, Zhang L, Yang WQ. The role of the ERK signaling pathway in promoting angiogenesis for treating ischemic diseases. Front Cell Dev Biol 2023; 11:1164166. [PMID: 37427386 PMCID: PMC10325625 DOI: 10.3389/fcell.2023.1164166] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
The main treatment strategy for ischemic diseases caused by conditions such as poor blood vessel formation or abnormal blood vessels involves repairing vascular damage and encouraging angiogenesis. One of the mitogen-activated protein kinase (MAPK) signaling pathways, the extracellular signal-regulated kinase (ERK) pathway, is followed by a tertiary enzymatic cascade of MAPKs that promotes angiogenesis, cell growth, and proliferation through a phosphorylation response. The mechanism by which ERK alleviates the ischemic state is not fully understood. Significant evidence suggests that the ERK signaling pathway plays a critical role in the occurrence and development of ischemic diseases. This review briefly describes the mechanisms underlying ERK-mediated angiogenesis in the treatment of ischemic diseases. Studies have shown that many drugs treat ischemic diseases by regulating the ERK signaling pathway to promote angiogenesis. The prospect of regulating the ERK signaling pathway in ischemic disorders is promising, and the development of drugs that specifically act on the ERK pathway may be a key target for promoting angiogenesis in the treatment of ischemic diseases.
Collapse
Affiliation(s)
- Yue-Yue Song
- Innovation Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dan Liang
- Innovation Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - De-Kun Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Lin
- Innovation Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wen-Qing Yang
- Innovation Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Province Cardiovascular Disease Chinese Medicine Precision Diagnosis Engineering Laboratory, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
11
|
Zhao X, Yang X, An Z, Liu L, Yong J, Xing H, Huang R, Tian J, Song X. Pathophysiology and molecular mechanism of caveolin involved in myocardial protection strategies in ischemic conditioning. Biomed Pharmacother 2022; 153:113282. [PMID: 35750009 DOI: 10.1016/j.biopha.2022.113282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 11/02/2022] Open
Abstract
Multiple pathophysiological pathways are activated during the process of myocardial injury. Various cardioprotective strategies protect the myocardium from ischemia, infarction, and ischemia/reperfusion (I/R) injury through different targets, yet the clinical translation remains limited. Caveolae and its structure protein, caveolins, have been suggested as a bridge to transmit damage-preventing signals and mediate the protection of ultrastructure in cardiomyocytes under pathological conditions. In this review, we first briefly introduce caveolae and caveolins. Then we review the cardioprotective strategies mediated by caveolins through various pathophysiological pathways. Finally, some possible research directions are proposed to provide future experiments and clinical translation perspectives targeting caveolin based on the investigative evidence.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, 2 Anzhen Road, Beijing 100029, PR China
| | - Xueyao Yang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, 2 Anzhen Road, Beijing 100029, PR China
| | - Ziyu An
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, 2 Anzhen Road, Beijing 100029, PR China
| | - Libo Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, 2 Anzhen Road, Beijing 100029, PR China
| | - Jingwen Yong
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, 2 Anzhen Road, Beijing 100029, PR China
| | - Haoran Xing
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, 2 Anzhen Road, Beijing 100029, PR China
| | - Rongchong Huang
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, 95th Yong An Road, Xuan Wu District, Beijing 100050, PR China
| | - Jinfan Tian
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, 2 Anzhen Road, Beijing 100029, PR China.
| | - Xiantao Song
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, 2 Anzhen Road, Beijing 100029, PR China.
| |
Collapse
|
12
|
Li D, Li Y, Yang S, Yu Z, Xing Y, Wu M. Mechanism and Potential Target of Blood-Activating Chinese Botanical Drugs Combined With Anti-Platelet Drugs: Prevention and Treatment of Atherosclerotic Cardiovascular Diseases. Front Pharmacol 2022; 13:811422. [PMID: 35721128 PMCID: PMC9204194 DOI: 10.3389/fphar.2022.811422] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/25/2022] [Indexed: 11/14/2022] Open
Abstract
Atherosclerotic cardiovascular diseases (ASCVDs) are the most important diseases that endanger people’s health, leading to high morbidity and mortality worldwide. In addition, various thrombotic events secondary to cardiovascular and cerebrovascular diseases need must be considered seriously. Therefore, the development of novel anti-platelet drugs with high efficiency, and fewer adverse effects has become a research focus for preventing of cardiovascular diseases (CVDs). Blood-activation and stasis-removal from circulation have been widely considered as principles for treating syndromes related to CVDs. Blood-activating Chinese (BAC botanical drugs, as members of traditional Chinese medicine (TCM), have shown to improve hemodynamics and hemorheology, and inhibit thrombosis and atherosclerosis. Modern medical research has identified that a combination of BAC botanical drugs and anti-platelet drugs, such as aspirin or clopidogrel, not only enhances the anti-platelet effects, but also reduces the risk of bleeding and protects the vascular endothelium. The anti-platelet mechanism of Blood-activating Chinese (BAC) botanical drugs and their compounds is not clear; therefore, their potential targets need to be explored. With the continuous development of bioinformatics and “omics” technology, some unconventional applications of BAC botanical drugs have been discovered. In this review, we will focus on the related targets and signaling pathways of anti-atherosclerotic treatments involving a combination of BAC botanical drugs and anti-platelet drugs reported in recent years.
Collapse
Affiliation(s)
- Dan Li
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yujuan Li
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengjie Yang
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zongliang Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanwei Xing
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Wu
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Li Z, Huo X, Chen K, Yang F, Tan W, Zhang Q, Yu H, Li C, Zhou D, Chen H, Zhao B, Wang Y, Chen Z, Du X. Profilin 2 and Endothelial Exosomal Profilin 2 Promote Angiogenesis and Myocardial Infarction Repair in Mice. Front Cardiovasc Med 2022; 9:781753. [PMID: 35479278 PMCID: PMC9036097 DOI: 10.3389/fcvm.2022.781753] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide, wherein myocardial infarction (MI) is the most dangerous one. Promoting angiogenesis is a prospective strategy to alleviate MI. Our previous study indicated that profilin 2 (PFN2) may be a novel target associated with angiogenesis. Further results showed higher levels of serum PFN2 and exosomal PFN2 in patients, mice, and pigs with MI. In this study, we explored whether PFN2 and endothelial cell (EC)-derived exosomal PFN2 could increase angiogenesis and be beneficial for the treatment of MI. Serum PFN2, exosomes, and exosomal PFN2 were elevated in rats with MI. PFN2 and exosomes from PFN2-overexpressing ECs (OE-exo) enhanced EC proliferation, migration, and tube formation ability. OE-exo also significantly increased the vessel number in zebrafish and protected the ECs from inflammatory injury. Moreover, OE-exo-treated mice with MI showed improvement in motor ability, ejection fraction, left ventricular shortening fraction, and left ventricular mass, as well as increased vessel numbers in the MI location, and decreased infarction volume. Mechanistically, PI3K might be the upstream regulator of PFN2, while ERK might be the downstream regulator in the PI3K-PFN2-ERK axis. Taken together, our findings demonstrate that PFN2 and exosomal PFN2 promote EC proliferation, migration, and tube formation through the PI3K-PFN2-ERK axis. Exosomal PFN2 may be a valuable target in the repair of MI injury via angiogenesis.
Collapse
Affiliation(s)
- Zhenkun Li
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xueyun Huo
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
| | - Keyan Chen
- Department of Laboratory Animal Science, China Medical University, Dalian, China
| | - Fenghua Yang
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Weijiang Tan
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Qi Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Haixu Yu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Changlong Li
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
| | - Deshan Zhou
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
| | - Hao Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Baoquan Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Yuan Wang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhenwen Chen
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
| | - Xiaoyan Du
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
| |
Collapse
|
14
|
Zhou HY, Yang N, Sui H, Du XN, Luo Q, Zhao YJ, Zhou YW, Guan Q, Zhou Y, Qian HJ, Liu L, Wang DP, Lin HL. WITHDRAWN: The Role of the Vascular Niche in Organ Fibrosis and COVID-19-Related Organ Damage and the Countermeasures adopted by Chinese and Western Medicine. PHARMACOLOGICAL RESEARCH - MODERN CHINESE MEDICINE 2022. [PMCID: PMC8960293 DOI: 10.1016/j.prmcm.2022.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
This article has been withdrawn at
the request of the author(s) and/or editor. The Publisher apologizes for
any inconvenience this may cause. The full Elsevier Policy on Article
Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
|
15
|
Deng F, Zhang LQ, Wu H, Chen Y, Yu WQ, Han RH, Han Y, Zhang XQ, Sun QS, Lin ZB, Wang Y, Liu YP, Chen JY, Liu KX, Hu JJ. Propionate alleviates myocardial ischemia-reperfusion injury aggravated by Angiotensin II dependent on caveolin-1/ACE2 axis through GPR41. Int J Biol Sci 2022; 18:858-872. [PMID: 35002530 PMCID: PMC8741842 DOI: 10.7150/ijbs.67724] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/27/2021] [Indexed: 02/06/2023] Open
Abstract
Myocardial ischemia/reperfusion (I/R) injury is still a lack of effective therapeutic drugs, and its molecular mechanism is urgently needed. Studies have shown that the intestinal flora plays an important regulatory role in cardiovascular injury, but the specific mechanism has not been fully elucidated. In this study, we found that an increase in Ang II in plasma was accompanied by an increase in the levels of myocardial injury during myocardial reperfusion in patients with cardiopulmonary bypass. Furthermore, Ang II treatment enhanced mice myocardial I/R injury, which was reversed by caveolin-1 (CAV-1)-shRNA or strengthened by angiotensin-converting enzyme 2 (ACE2)-shRNA. The results showed that CAV-1 and ACE2 have protein interactions and inhibit each other's expression. In addition, propionate, a bacterial metabolite, inhibited the elevation of Ang II and myocardial injury, while GPR41-shRNA abolished the protective effects of propionate on myocardial I/R injury. Clinically, the propionate content in the patient's preoperative stool was related to Ang II levels and myocardial I/R injury levels during myocardial reperfusion. Taken together, propionate alleviates myocardial I/R injury aggravated by Ang II dependent on CAV-1/ACE2 axis through GPR41, which provides a new direction that diet to regulate the intestinal flora for treatment of myocardial I/R injury.
Collapse
Affiliation(s)
- Fan Deng
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China.,Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Liang-Qing Zhang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Han Wu
- Department of Dermatology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Yu Chen
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wen-Qian Yu
- The First Ward of Pain Department, Hubei NO. 3 People's Hospital of Jianghan University, Wuhan 430000, China
| | - Rong-Hui Han
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Yuan Han
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiao-Qi Zhang
- Major of Clinical Medicine, Nanshan College, Guangzhou Medical University, Guangzhou 510515, China
| | - Qi-Shun Sun
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ze-Bin Lin
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yu Wang
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Yong-Pan Liu
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Jing-Yi Chen
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Ke-Xuan Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jing-Juan Hu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
16
|
Buyang Huanwu Decoction Enhances Revascularization via Akt/GSK3 β/NRF2 Pathway in Diabetic Hindlimb Ischemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1470829. [PMID: 34900083 PMCID: PMC8664534 DOI: 10.1155/2021/1470829] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/16/2021] [Accepted: 10/28/2021] [Indexed: 11/18/2022]
Abstract
Background Peripheral arterial disease (PAD) is a typical disease of atherosclerosis, most commonly influencing the lower extremities. In patients with PAD, revascularization remains a preferred treatment strategy. Buyang Huanwu decoction (BHD) is a popular Chinese herbal prescription which has showed effects of cardiovascular protection through conducting antioxidant, antiapoptotic, and anti-inflammatory effects. Here, we intend to study the effect of BHD on promoting revascularization via the Akt/GSK3β/NRF2 pathway in diabetic hindlimb ischemia (HLI) model of mice. Materials and Methods All db/db mice (n = 60) were randomly divided into 6 groups by table of random number. (1) Sham group (N = 10): 7-0 suture thread passed through the underneath of the femoral artery and vein without occlusion. The remaining 5 groups were treated differently on the basis of the HLI (the femoral artery and vein from the inguinal ligament to the knee joint were transected and the vascular stump was ligated with 7-0 silk sutures) model: (2) HLI+NS group (N = 15): 0.2 ml NS was gavaged daily for 3 days before modeling and 14 days after occlusion; (3) HLI+BHD group (N = 15): 0.2 ml BHD (20 g/kg/day) was gavaged daily for 3 days before modeling and 14 days after occlusion; (4) HLI+BHD+sh-NC group (N = 8): local injection of adenovirus vector carrying the nonsense shRNA (Ad-GFP) in the hindlimbs of mice before treatment; (5) HLI+BHD+sh-NRF2 group (N = 8): knockdown of NRF2 in the hindlimbs of mice by local intramuscular injection of adenovirus vector carrying NRF2 shRNA (Ad-NRF2-shRNA) before treatment; and (6) HLI+BHD+LY294002 group (N = 4): intravenous injection of LY294002 (1.5 mg/kg) once a day for 14 days on the basis of the HLI+BHD group. Laser Doppler examination, vascular cast, and immunofluorescence staining were applied to detect the revascularization of lower limbs in mice. Western blot analysis was used to detect the expression of vascular endothelial growth factor (VEGF), interleukin-1beta (IL-1β), interleukin-6 (IL-6), tumor necrosis factor- (TNF-) α, heme oxygenase-1 (HO-1), NAD(P)H dehydrogenase quinone-1 (NQO-1), catalase (CAT), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphorylated protein kinase B (p-AKT), and phosphorylated glycogen synthase kinase-3 beta (p-GSK3β). HE staining was used to assess the level of muscle tissue damage and inflammation in the lower extremities. Local multipoint injection of Ad-NRF2-shRNA was used to knock down NRF2, and qPCR was applied to detect the mRNA level of NRF2. The blood glucose, triglyceride, cholesterol, MDA, and SOD levels of mice were tested using corresponding kits. The SPSS 20.0 software and GraphPad Prism 6.05 were used to do all statistics. Values of P < 0.05 were considered as statistically significant. Results and Conclusions. BHD could enhance the revascularization of lower limbs in HLI mice, while BHD has no effect on blood glucose and lipid level in db/db mice (P > 0.05). BHD could elevate the protein expression of VEGF, HO-1, NQO-1, and CAT (P < 0.05) and decrease the expression of IL-1β, IL-6, and TNF-α (P < 0.05) in HLI mice. Meanwhile, BHD could activate NRF2 and promote the phosphorylation of AKT/GSK3β during revascularization (P < 0.05). In contrast, knockdown of NRF2 impaired the protective effects of BHD on HLI (P < 0.05). LY294002 inhibited the upregulation of NRF2 activated by BHD through inhibiting the phosphorylation of the AKT/GSK3β pathway (P < 0.05). The present study demonstrated that BHD could promote revascularization on db/db mice with HLI through targeting antioxidation, anti-inflammation, and angiogenesis via the AKT/GSK3β/NRF2 pathway.
Collapse
|
17
|
Bu L, Dai O, Zhou F, Liu F, Chen JF, Peng C, Xiong L. Traditional Chinese medicine formulas, extracts, and compounds promote angiogenesis. Biomed Pharmacother 2020; 132:110855. [PMID: 33059257 DOI: 10.1016/j.biopha.2020.110855] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023] Open
Abstract
Ischemic diseases, such as ischemic heart diseases and ischemic stroke, are the leading cause of death worldwide. Angiogenic therapy is a wide-ranging approach to fighting ischemic diseases. However, compared with anti-angiogenesis therapy for tumors, less attention has been paid to therapeutic angiogenesis. Recently, Traditional Chinese medicine (TCM) has garnered increasing interest for its definite curative effect and low toxicity. A growing number of studies have reported that TCM formulas, extracts, and compounds from herbal medicines exert pro-angiogenic activity, which has been confirmed in a few clinical trials. For comprehensive analysis of relevant literature, global and local databases including PubMed, Web of Science, and China National Knowledge Infrastructure were searched using keywords such as "angiogenesis," "neovascularization," "traditional Chinese medicine," "formula," "extract," and "compound." Articles were chosen that are closely and directly related to pro-angiogenesis. This review summarizes the pro-angiogenic activity and the mechanism of TCM formulas, extracts, and compounds; it delivers an in-depth understanding of the relationship between TCM and pro-angiogenesis and will provide new ideas for clinical practice.
Collapse
Affiliation(s)
- Lan Bu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ou Dai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fei Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fei Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jin-Feng Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Liang Xiong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
18
|
Shi X, Luo X, Xu X. Dimethylarginine dimethylaminohydrolase-1 contributes to exercise-induced cardiac angiogenesis in mice. Biosci Trends 2020; 14:115-122. [PMID: 32238672 DOI: 10.5582/bst.2019.01351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xiaowei Shi
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xueting Luo
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xin Xu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Department of Exercise Rehabilitation, Shanghai University of Sport, Shanghai, China
| |
Collapse
|