1
|
Narang BJ, Drole K, Barber JFP, Goods PSR, Debevec T. Utility of hypoxic modalities for musculoskeletal injury rehabilitation in athletes: A narrative review of mechanisms and contemporary perspectives. J Sports Sci 2024:1-14. [PMID: 39448892 DOI: 10.1080/02640414.2024.2416779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
Recent evidence suggests that different hypoxic modalities might accelerate the rehabilitation process in injured athletes. In this review, the application of hypoxia during rehabilitation from musculoskeletal injury is explored in relation to two principles: (1) facilitating the healing of damaged tissue, and (2) mitigating detraining and inducing training adaptations with a reduced training load. Key literature that explores the underlying mechanisms for these themes is presented, and considerations for practice and future research directions are outlined. For principle (1), passive intermittent hypoxic exposures might accelerate tissue healing through angiogenic and osteogenic mechanisms. Experimental evidence is largely derived from rodent research, so further work is warranted to establish whether clinically meaningful effects can be observed in humans, before optimal protocols are determined (duration, frequency, and hypoxic severity). Regarding principle (2), a hypoxia-related increase in the cardiometabolic stimulus imposed by low-load exercise is appealing for load-compromised athletes. As rehabilitation progresses, a variety of hypoxic modalities can be implemented to enhance adaptation to energy-systems and resistance-based training, and more efficiently return the athlete to competition readiness. While hypoxic modalities seem promising for accelerating musculoskeletal injury rehabilitation in humans, and are already being widely used in practice, a significant gap remains regarding their evidence-based application.
Collapse
Affiliation(s)
- Benjamin Jonathan Narang
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
- Department of Automatics, Biocybernetics, and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Kristina Drole
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | | | - Paul S R Goods
- Physical Activity, Sport and Exercise (PHASE) Research Group, School of Allied Health (Exercise Science), Murdoch University, Perth, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Perth, Australia
| | - Tadej Debevec
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
- Department of Automatics, Biocybernetics, and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
2
|
Chiang MK, Lin TC, Lin KH, Chang YC, Hsieh-Li HM, Lai DM. Hyperbaric Oxygen Therapy Attenuated the Motor Coordination and Cognitive Impairment of Polyglutamine Spinocerebellar Ataxia SCA17 Mice. CEREBELLUM (LONDON, ENGLAND) 2024; 23:401-417. [PMID: 36943575 DOI: 10.1007/s12311-023-01548-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/14/2023] [Indexed: 03/23/2023]
Abstract
Spinocerebellar ataxias (SCAs) are a large and diverse group of autosomal-dominant neurodegenerative diseases. No drugs have been approved for these relentlessly progressive and fatal SCAs. Our previous studies indicate that oxidative stress, neuroinflammation, and neuronal apoptosis are elevated in the SCA17 mice, which are the main therapeutic targets of hyperbaric oxygen treatment (HBOT). HBOT is considered to be an alternative and less invasive therapy for SCAs. In this study, we evaluated the HBOT (2.2 ATA for 14 days) effect and the persistence for the management of SCA17 mice and their wild-type littermates. We found HBOT attenuated the motor coordination and cognitive impairment of SCA17 mice and which persisted for about 1 month after the treatment. The results of several biochemistry and liver/kidney hematoxylin and eosin staining show the HBOT condition has no obvious toxicity in the mice. Immunostaining analyses show that the neuroprotective effect of HBOT could be through the promotion of BDNF production and the amelioration of neuroinflammation. Surprisingly, HBOT executes different effects on the male and female SCA17 mice, including the reduction of neuroinflammation and activation of CaMKII and ERK. This study suggests HBOT is a potential alternative therapeutic treatment for SCA17. Accumulated findings have revealed the similarity in disease pathomechanisms and possible therapeutic strategies in polyQ diseases; therefore, HBOT could be an optional treatment as well as the other polyQ diseases.
Collapse
Affiliation(s)
- Meng-Ke Chiang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ta-Chun Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | | | - Ya-Chin Chang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan.
| | - Dar-Ming Lai
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
3
|
Wang X, Jia Y, Zhao J, Lesner NP, Menezes CJ, Shelton SD, Venigalla SSK, Xu J, Cai C, Mishra P. A mitofusin 2/HIF1α axis sets a maturation checkpoint in regenerating skeletal muscle. J Clin Invest 2022; 132:e161638. [PMID: 36125902 PMCID: PMC9711883 DOI: 10.1172/jci161638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
A fundamental issue in regenerative medicine is whether there exist endogenous regulatory mechanisms that limit the speed and efficiency of the repair process. We report the existence of a maturation checkpoint during muscle regeneration that pauses myofibers at a neonatal stage. This checkpoint is regulated by the mitochondrial protein mitofusin 2 (Mfn2), the expression of which is activated in response to muscle injury. Mfn2 is required for growth and maturation of regenerating myofibers; in the absence of Mfn2, new myofibers arrested at a neonatal stage, characterized by centrally nucleated myofibers and loss of H3K27me3 repressive marks at the neonatal myosin heavy chain gene. A similar arrest at the neonatal stage was observed in infantile cases of human centronuclear myopathy. Mechanistically, Mfn2 upregulation suppressed expression of hypoxia-induced factor 1α (HIF1α), which is induced in the setting of muscle damage. Sustained HIF1α signaling blocked maturation of new myofibers at the neonatal-to-adult fate transition, revealing the existence of a checkpoint that delays muscle regeneration. Correspondingly, inhibition of HIF1α allowed myofibers to bypass the checkpoint, thereby accelerating the repair process. We conclude that skeletal muscle contains a regenerative checkpoint that regulates the speed of myofiber maturation in response to Mfn2 and HIF1α activity.
Collapse
Affiliation(s)
- Xun Wang
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yuemeng Jia
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jiawei Zhao
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Nicholas P. Lesner
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Cameron J. Menezes
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Spencer D. Shelton
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Siva Sai Krishna Venigalla
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jian Xu
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Harold C. Simmons Comprehensive Cancer Center
- Hamon Center for Regenerative Science and Medicine
- Department of Pediatrics, and
| | - Chunyu Cai
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Prashant Mishra
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Harold C. Simmons Comprehensive Cancer Center
- Department of Pediatrics, and
| |
Collapse
|
4
|
Veljković M, Pavlović DR, Stojanović NM, Džopalić T, Popović Dragonjić L. Behavioral and Dietary Habits That Could Influence Both COVID-19 and Non-Communicable Civilization Disease Prevention-What Have We Learned Up to Now? MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1686. [PMID: 36422225 PMCID: PMC9695647 DOI: 10.3390/medicina58111686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 08/10/2023]
Abstract
The massive expansion of the new coronavirus SARS-CoV-2 has urged countries to introduce lockdowns and set restrictive actions worldwide. The focus of the studies was to determine how COVID-19 induces damage to the lungs in order to find an alternative or adjuvant therapy that could lead to preventing COVID-19 or at least ameliorating it. This paper aims to survey the literature and provide new insights into behavioral and dietary habits that could influence the prevention of COVID-19. Maintaining an adequate mental health status, sleep, and taking moderate exercise are often disrupted in the conditions of lockdown and are followed by weakened immunity. Mediterranean and vegetarian diets are superior to other eating patterns in terms of immunity boosting and fighting COVID-19. Our study showed how adequate hydration, green tea intake, and supplementation with vitamins D, C, and E can increase our chances of avoiding the infection and even help us sleep better. Another focus of the research was on determining what level of hygiene really increases one's chances of not contracting SARS-CoV-2, but this seems a little counter-intuitive at first. Since an immunocompromised state is a familiar predisposing factor for all contagious diseases, maintaining healthy behavioral and dietary habits could be a crucial step in boosting immunity and preventing COVID-19.
Collapse
Affiliation(s)
- Milica Veljković
- Department of Physiology, Medical Faculty, University of Niš, 18000 Niš, Serbia
| | - Dragana R. Pavlović
- Department of Pharmacy, Medical Faculty, University of Niš, 18000 Niš, Serbia
| | | | - Tanja Džopalić
- Department of Immunology, Medical Faculty, University of Niš, 18000 Niš, Serbia
| | - Lidija Popović Dragonjić
- Department of Infectious Diseases and Epidemiology, Medical Faculty, University of Niš, 18000 Niš, Serbia
- Clinic for Infectology, University Clinical Center Niš, 18000 Niš, Serbia
| |
Collapse
|
5
|
Aidar FJ, Fraga GS, Getirana-Mota M, Marçal AC, Santos JL, de Souza RF, Vieira-Souza LM, Ferreira ARP, de Matos DG, de Almeida-Neto PF, Garrido ND, Díaz-de-Durana AL, Knechtle B, de Araújo Tinoco Cabral BG, Murawska-Ciałowicz E, Nobari H, Silva AF, Clemente FM, Badicu G. Evaluation of Ibuprofen Use on the Immune System Indicators and Force in Disabled Paralympic Powerlifters of Different Sport Levels. Healthcare (Basel) 2022; 10:1331. [PMID: 35885857 PMCID: PMC9323516 DOI: 10.3390/healthcare10071331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Paralympic powerlifting (PP) training is typically intense and causes fatigue and alterations in the immune system. Objective: To analyze whether IBU would affect performance and the immune system after training in PP. Methodology: 10 athletes at the national level (NL) and 10 at the regional level (RL) participated in the study, where force and blood indicators were evaluated after training. The study took place over three weeks: (1) familiarization and (2 and 3) comparison between recovery methods, with ibuprofen or placebo (IBU vs. PLA), 800 mg. In the evaluation of the force, the peak torque (PT), fatigue index (FI), and blood immune system biomarkers were analyzed. The training consisted of five sets of five repetitions with 80% of one maximum repetition (5 × 5, 80% 1RM) on the bench press. Results: The PT at the national level using IBU was higher than with PLA (p = 0.007, η2p = 0.347), and the FI in the NL was lower with IBU than with PLA (p = 0.002, η2p = 0.635), and when comparing the use of IBU, the NL showed less fatigue than the regional level (p = 0.004, η2p = 0.414). Leukocytes, with the use of IBU in the NL group, were greater than in the RL (p = 0.001, η2p = 0.329). Neutrophils, in the NL with IBU, were greater than in the RL with IBU and PLA (p = 0.025, η2p = 0.444). Lymphocytes, in NL with IBU were lower than in RL with IBU and PLA (p = 0.001, η2p = 0.491). Monocytes, in the NL with IBU and PLA, were lower than in the RL with IBU (p = 0.049, η2p = 0.344). For hemoglobin, hematocrit, and erythrocyte, the NL with IBU and PLA were higher than the RL with IBU and PLA (p < 0.05). Ammonia, with the use of IBU in the NL, obtained values higher than in the RL (p = 0.007), and with the use of PLA, the NL was higher than the RL (p = 0.038, η2p = 0.570). Conclusion: The training level tends to influence the immune system and, combined with the use of the IBU, it tends to improve recovery and the immune system.
Collapse
Affiliation(s)
- Felipe J. Aidar
- Graduate Program of Physical Education, Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil; (F.J.A.); (G.S.F.); (M.G.-M.); (A.C.M.); (J.L.S.); (R.F.d.S.); (L.M.V.-S.)
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports (GEPEPS), Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil
- Department of Physical Education, Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil
- Graduate Program of Physiological Science, Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil
| | - Guacira S. Fraga
- Graduate Program of Physical Education, Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil; (F.J.A.); (G.S.F.); (M.G.-M.); (A.C.M.); (J.L.S.); (R.F.d.S.); (L.M.V.-S.)
| | - Márcio Getirana-Mota
- Graduate Program of Physical Education, Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil; (F.J.A.); (G.S.F.); (M.G.-M.); (A.C.M.); (J.L.S.); (R.F.d.S.); (L.M.V.-S.)
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports (GEPEPS), Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil
| | - Anderson Carlos Marçal
- Graduate Program of Physical Education, Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil; (F.J.A.); (G.S.F.); (M.G.-M.); (A.C.M.); (J.L.S.); (R.F.d.S.); (L.M.V.-S.)
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports (GEPEPS), Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil
| | - Jymmys L. Santos
- Graduate Program of Physical Education, Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil; (F.J.A.); (G.S.F.); (M.G.-M.); (A.C.M.); (J.L.S.); (R.F.d.S.); (L.M.V.-S.)
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports (GEPEPS), Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil
| | - Raphael Fabricio de Souza
- Graduate Program of Physical Education, Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil; (F.J.A.); (G.S.F.); (M.G.-M.); (A.C.M.); (J.L.S.); (R.F.d.S.); (L.M.V.-S.)
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports (GEPEPS), Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil
- Department of Physical Education, Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil
| | - Lucio Marques Vieira-Souza
- Graduate Program of Physical Education, Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil; (F.J.A.); (G.S.F.); (M.G.-M.); (A.C.M.); (J.L.S.); (R.F.d.S.); (L.M.V.-S.)
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports (GEPEPS), Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil
- Department of Physical Education, State Univerity of Minas Gerais (UEMG), Passos 37900-106, Brazil
| | | | - Dihogo Gama de Matos
- Cardiovascular & Physiology of Exercise Laboratory, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Paulo Francisco de Almeida-Neto
- Department of Physical Education, Federal University of Rio Grande do Norte, Natal 59064-741, Brazil; (P.F.d.A.-N.); (B.G.d.A.T.C.)
| | - Nuno Domingos Garrido
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal;
| | - Alfonso López Díaz-de-Durana
- Sports Department, Physical Activity and Sports Faculty-INEF, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Beat Knechtle
- Institute of Primary Care, University of Zurich, 8091 Zurich, Switzerland;
- Medbase St. Gallen Am Vadianplatz, 9001 St. Gallen, Switzerland
| | | | - Eugenia Murawska-Ciałowicz
- Physiology and Biochemistry Department, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland;
| | - Hadi Nobari
- Department of Exercise Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran;
- Faculty of Sport Sciences, University of Extremadura, 10003 Cáceres, Spain
| | - Ana Filipa Silva
- Escola Superior de Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal; (A.F.S.); (F.M.C.)
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), Polytechnic Institute of Maia, Maia, 5001-801 Vila Real, Portugal
| | - Filipe Manuel Clemente
- Escola Superior de Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal; (A.F.S.); (F.M.C.)
- Instituto de Telecomunicações, Delegação da Covilhã, 1049-001 Lisboa, Portugal
| | - Georgian Badicu
- Department of Physical Education and Special Motricity, Transilvania University of Brasov, 500068 Brasov, Romania
| |
Collapse
|
6
|
Aidar FJ, Fraga GS, Getirana-Mota M, Marçal AC, Santos JL, de Souza RF, Ferreira ARP, Neves EB, Zanona ADF, Bulhões-Correia A, de Almeida-Neto PF, Fernandes TLB, Garrido ND, Cirilo-Sousa MDS, Merino-Fernández M, Díaz-de-Durana AL, Murawska-Ciałowicz E, Cabral BGDAT, Clemente FM. Effects of Ibuprofen Use on Lymphocyte Count and Oxidative Stress in Elite Paralympic Powerlifting. BIOLOGY 2021; 10:986. [PMID: 34681085 PMCID: PMC8533337 DOI: 10.3390/biology10100986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/12/2021] [Accepted: 09/23/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Paralympic Powerlifting (PP) training tends to promote fatigue and oxidative stress. OBJECTIVE To analyze the effects of ibuprofen use on performance and oxidative stress in post-training PP athletes. METHODOLOGY Ten national level PP athletes (age: 27.13 ± 5.57) were analyzed for oxidative stress in post-training. The study was carried out in three weeks, (1) familiarization and (2 and 3) evaluated the recovery with the use of a placebo (PLA) and ibuprofen (IBU), 800 mg. The Peak Torque (PT), Torque Development Rate (TDR), Fatigue Index (FI), reactive substances to thiobarbituric acid (TBARS) and sulfhydryl groups (SH) were evaluated. The training consisted of five sets of five repetitions (80-90%) 1-Repetition Maximum (1-RM) in the bench press. RESULTS The IBU showed a higher PT (24 and 48 h, p = 0.04, ɳ2 p = 0.39), a lower FI (24 h, p = 0.01, ɳ2p = 0.74) and an increased lymphocyte count (p < 0.001; ɳ2p = 4.36). There was no change in oxidative stress. CONCLUSIONS The use of IBU provided improvements in strength and did not protect against oxidative stress.
Collapse
Affiliation(s)
- Felipe J. Aidar
- Graduate Program of Physical Education, Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil; (G.S.F.); (M.G.-M.); (A.C.M.); (J.L.S.); (R.F.d.S.)
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports (GEPEPS), Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil
- Department of Physical Education, Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil
- Graduate Program of Physiological Science, Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil
| | - Guacira S. Fraga
- Graduate Program of Physical Education, Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil; (G.S.F.); (M.G.-M.); (A.C.M.); (J.L.S.); (R.F.d.S.)
| | - Márcio Getirana-Mota
- Graduate Program of Physical Education, Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil; (G.S.F.); (M.G.-M.); (A.C.M.); (J.L.S.); (R.F.d.S.)
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports (GEPEPS), Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil
| | - Anderson Carlos Marçal
- Graduate Program of Physical Education, Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil; (G.S.F.); (M.G.-M.); (A.C.M.); (J.L.S.); (R.F.d.S.)
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports (GEPEPS), Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil
| | - Jymmys L. Santos
- Graduate Program of Physical Education, Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil; (G.S.F.); (M.G.-M.); (A.C.M.); (J.L.S.); (R.F.d.S.)
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports (GEPEPS), Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil
| | - Raphael Fabricio de Souza
- Graduate Program of Physical Education, Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil; (G.S.F.); (M.G.-M.); (A.C.M.); (J.L.S.); (R.F.d.S.)
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports (GEPEPS), Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil
- Department of Physical Education, Federal University of Sergipe (UFS), São Cristovão 49100-000, Brazil
| | | | - Eduardo Borba Neves
- Graduate Program in Biomedical Engineering, Federal Technological University of Paraná (UTFPR), Curitiba 80230-901, Brazil;
| | | | - Alexandre Bulhões-Correia
- Department of Physical Education, Federal University of Rio Grande do Norte, Natal 59064-741, Brazil; (A.B.-C.); (P.F.d.A.-N.); (B.G.d.A.T.C.)
| | - Paulo Francisco de Almeida-Neto
- Department of Physical Education, Federal University of Rio Grande do Norte, Natal 59064-741, Brazil; (A.B.-C.); (P.F.d.A.-N.); (B.G.d.A.T.C.)
| | - Tulio Luiz Banja Fernandes
- Institute of Physical Education and Sport, Federal University of Ceará (UFC), Fortaleza 60020-181, Brazil;
| | - Nuno Domingos Garrido
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal;
| | - Maria do Socorro Cirilo-Sousa
- Graduate Program Association of Physical Education, Federal University of Paraíba (UFPB), João Pessoa 58051-900, Brazil;
- Department of Physical Education, Regional of University (URCA), Crato 63105-010, Brazil
| | - María Merino-Fernández
- Faculty of Health Sciences, Universidad Francisco de Vitoria (UFV), 28223 Madrid, Spain;
| | - Alfonso López Díaz-de-Durana
- Sports Department, Physical Activity and Sports Faculty-INEF, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Eugenia Murawska-Ciałowicz
- Physiology and Biochemistry Department, University School of Physical Education, 51-612 Wroclaw, Poland;
| | | | - Filipe Manuel Clemente
- Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal;
- Instituto de Telecomunicações, Delegação da Covilhã, 1049-001 Lisboa, Portugal
| |
Collapse
|
7
|
Bosco G, Paganini M, Giacon TA, Oppio A, Vezzoli A, Dellanoce C, Moro T, Paoli A, Zanotti F, Zavan B, Balestra C, Mrakic-Sposta S. Oxidative Stress and Inflammation, MicroRNA, and Hemoglobin Variations after Administration of Oxygen at Different Pressures and Concentrations: A Randomized Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189755. [PMID: 34574676 PMCID: PMC8468581 DOI: 10.3390/ijerph18189755] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023]
Abstract
Exercise generates reactive oxygen species (ROS), creating a redox imbalance towards oxidation when inadequately intense. Normobaric and hyperbaric oxygen (HBO) breathed while not exercising induces antioxidant enzymes expression, but literature is still poor. Twenty-two athletes were assigned to five groups: controls; 30%, or 50% O2; 100% O2 (HBO) at 1.5 or 2.5 atmosphere absolute (ATA). Twenty treatments were administered on non-training days. Biological samples were collected at T0 (baseline), T1 (end of treatments), and T2 (1 month after) to assess ROS, antioxidant capacity (TAC), lipid peroxidation, redox (amino-thiols) and inflammatory (IL-6, 10, TNF-α) status, renal function (i.e., neopterin), miRNA, and hemoglobin. At T1, O2 mixtures and HBO induced an increase of ROS, lipid peroxidation and decreased TAC, counterbalanced at T2. Furthermore, 50% O2 and HBO treatments determined a reduced state in T2. Neopterin concentration increased at T1 breathing 50% O2 and HBO at 2.5 ATA. The results suggest that 50% O2 treatment determined a reduced state in T2; HBO at 1.5 and 2.5 ATA similarly induced protective mechanisms against ROS, despite the latter could expose the body to higher ROS levels and neopterin concentrations. HBO resulted in increased Hb levels and contributed to immunomodulation by regulating interleukin and miRNA expression.
Collapse
Affiliation(s)
- Gerardo Bosco
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (T.A.G.); (A.O.); (T.M.); (A.P.)
- Correspondence: (G.B.); (M.P.)
| | - Matteo Paganini
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (T.A.G.); (A.O.); (T.M.); (A.P.)
- Correspondence: (G.B.); (M.P.)
| | - Tommaso Antonio Giacon
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (T.A.G.); (A.O.); (T.M.); (A.P.)
| | - Alberto Oppio
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (T.A.G.); (A.O.); (T.M.); (A.P.)
| | - Alessandra Vezzoli
- Institute of Clinical Physiology, National Research Council (CNR), 20162 Milan, Italy; (A.V.); (C.D.); (S.M.-S.)
| | - Cinzia Dellanoce
- Institute of Clinical Physiology, National Research Council (CNR), 20162 Milan, Italy; (A.V.); (C.D.); (S.M.-S.)
| | - Tatiana Moro
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (T.A.G.); (A.O.); (T.M.); (A.P.)
| | - Antonio Paoli
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (T.A.G.); (A.O.); (T.M.); (A.P.)
| | - Federica Zanotti
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.Z.); (B.Z.)
| | - Barbara Zavan
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.Z.); (B.Z.)
| | - Costantino Balestra
- Environmental, Occupational, Ageing (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1180 Brussels, Belgium;
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Research Council (CNR), 20162 Milan, Italy; (A.V.); (C.D.); (S.M.-S.)
| |
Collapse
|
8
|
Effects of Hyperbaric Oxygen Therapy on Inflammation, Oxidative/Antioxidant Balance, and Muscle Damage after Acute Exercise in Normobaric, Normoxic and Hypobaric, Hypoxic Environments: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17207377. [PMID: 33050362 PMCID: PMC7601270 DOI: 10.3390/ijerph17207377] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
The purpose of this study was to investigate the effects of hyperbaric oxygen therapy (HBOT) on inflammation, the oxidative/antioxidant balance, and muscle damage after acute exercise in normobaric, normoxic (NN) and hypobaric, hypoxic (HH) environments. Eighteen healthy males were selected and randomly assigned to three groups: exercise in NN conditions (NN group, n = 6), HBOT treatment after exercise in NN conditions (HNN group, n = 6), and HBOT treatment after exercise in HH conditions (HHH group, n = 6). All subjects performed treadmill running for 60 min at 75–80% maximum heart rate (HRmax) exercise intensity under each condition. The HBOT treatments consisted of breathing 100% oxygen at 2.5 atmosphere absolute (ATA) for 60 min. Blood samples were collected before exercise (BE), after exercise (AE), and after HBOT (AH) to examine inflammation (fibrinogen, interleukin-6 [IL-6], and tumor necrosis factor-α (TNF-α)), the oxidative/antioxidant balance (derivatives of reactive oxygen metabolites (d-ROMs) and the biological antioxidant potential (BAP)), and muscle damage (creatine kinase (CK) and lactate dehydrogenase (LDH)). Plasma fibrinogen, serum IL-6, CK, and LDH levels were significantly increased AE compared to BE in all groups (p < 0.05). Plasma fibrinogen levels were significantly decreased AH compared to AE in all groups (p < 0.05), and the HNN group had a significantly lower AH compared to BE (p < 0.05). Serum IL-6 levels were significantly decreased AH compared to AE in the HNN and HHH groups (p < 0.05). Serum CK levels were significantly decreased AH compared to AE in the HHH group (p < 0.05). Serum LDH levels were significantly decreased AH compared to AE in the HNN and HHH groups (p < 0.05), and the NN and HNN groups had significantly higher AH serum LDH levels compared to BE (p < 0.05). These results suggest that acute exercise in both the NN and HH environments could induce temporary inflammatory responses and muscle damage, whereas HBOT treatment may be effective in alleviating exercise-induced inflammatory responses and muscle damage.
Collapse
|
9
|
Alkhatib A. Antiviral Functional Foods and Exercise Lifestyle Prevention of Coronavirus. Nutrients 2020; 12:E2633. [PMID: 32872374 PMCID: PMC7551447 DOI: 10.3390/nu12092633] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Novel coronavirus (COVID-19) is causing global mortality and lockdown burdens. A compromised immune system is a known risk factor for all viral influenza infections. Functional foods optimize the immune system capacity to prevent and control pathogenic viral infections, while physical activity augments such protective benefits. Exercise enhances innate and adaptive immune systems through acute, transient, and long-term adaptations to physical activity in a dose-response relationship. Functional foods prevention of non-communicable disease can be translated into protecting against respiratory viral infections and COVID-19. Functional foods and nutraceuticals within popular diets contain immune-boosting nutraceuticals, polyphenols, terpenoids, flavonoids, alkaloids, sterols, pigments, unsaturated fatty-acids, micronutrient vitamins and minerals, including vitamin A, B6, B12, C, D, E, and folate, and trace elements, including zinc, iron, selenium, magnesium, and copper. Foods with antiviral properties include fruits, vegetables, fermented foods and probiotics, olive oil, fish, nuts and seeds, herbs, roots, fungi, amino acids, peptides, and cyclotides. Regular moderate exercise may contribute to reduce viral risk and enhance sleep quality during quarantine, in combination with appropriate dietary habits and functional foods. Lifestyle and appropriate nutrition with functional compounds may offer further antiviral approaches for public health.
Collapse
Affiliation(s)
- Ahmad Alkhatib
- School of Health and Life sciences, Teesside University, Tees Valley, Middlesbrough TS1 3BX, UK
| |
Collapse
|
10
|
Anserine Reverses Exercise-Induced Oxidative Stress and Preserves Cellular Homeostasis in Healthy Men. Nutrients 2020; 12:nu12041146. [PMID: 32325914 PMCID: PMC7231017 DOI: 10.3390/nu12041146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
The study tested whether anserine (beta-alanyl-3-methyl-l-histidine), the active ingredient of chicken essence affects exercise-induced oxidative stress, cell integrity, and haematology biomarkers. In a randomized placebo-controlled repeated-measures design, ten healthy men ingested anserine in either a low dose (ANS-LD) 15 mg·kg−1·bw−1, high dose (ANS-HD) 30 mg·kg−1·bw−1, or placebo (PLA), following an exercise challenge (time to exhaustion), on three separate occasions. Anserine supplementation increased superoxide dismutase (SOD) by 50% (p < 0.001, effect size d = 0.8 for both ANS-LD and ANS-HD), and preserved catalase (CAT) activity suggesting an improved antioxidant activity. However, both ANS-LD and ANS-HD elevated glutathione disulfide (GSSG), (both p < 0.001, main treatment effect), and consequently lowered the glutathione to glutathione disulfide (GSH/GSSG) ratio compared with PLA (p < 0.01, main treatment effect), without significant effects on thiobarbituric acid active reactive substances (TBARS). Exercise-induced cell damage biomarkers of glutamic-oxaloacetic transaminase (GOT) and myoglobin were unaffected by anserine. There were slight but significant elevations in glutamate pyruvate transaminase (GPT) and creatine kinase isoenzyme (CKMB), especially in ANS-HD (p < 0.05) compared with ANS-LD or PLA. Haematological biomarkers were largely unaffected by anserine, its dose, and without interaction with post exercise time-course. However, compared with ANS-LD and PLA, ANS-HD increased the mean cell volume (MCV), and decreased the mean corpuscular haemoglobin concentration (MCHC) (p < 0.001). Anserine preserves cellular homoeostasis through enhanced antioxidant activity and protects cell integrity in healthy men, which is important for chronic disease prevention. However, anserine temporal elevated exercise-induced cell-damage, together with enhanced antioxidant activity and haematological responses suggest an augmented exercise-induced adaptative response and recovery.
Collapse
|