1
|
Wu JJ, Zhang SY, Mu L, Dong ZG, Zhang YJ. Heyingwuzi formulation alleviates diabetic retinopathy by promoting mitophagy via the HIF-1α/BNIP3/NIX axis. World J Diabetes 2024; 15:1317-1339. [PMID: 38983802 PMCID: PMC11229969 DOI: 10.4239/wjd.v15.i6.1317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/22/2024] [Accepted: 04/01/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is the primary cause of visual problems in patients with diabetes. The Heyingwuzi formulation (HYWZF) is effective against DR. AIM To determine the HYWZF prevention mechanisms, especially those underlying mitophagy. METHODS Human retinal capillary endothelial cells (HRCECs) were treated with high glucose (hg), HYWZF serum, PX-478, or Mdivi-1 in vitro. Then, cell counting kit-8, transwell, and tube formation assays were used to evaluate HRCEC proliferation, invasion, and tube formation, respectively. Transmission electron microscopy was used to assess mitochondrial morphology, and Western blotting was used to determine the protein levels. Flow cytometry was used to assess cell apoptosis, reactive oxygen species (ROS) production, and mitochondrial membrane potential. Moreover, C57BL/6 mice were established in vivo using streptozotocin and treated with HYWZF for four weeks. Blood glucose levels and body weight were monitored continuously. Changes in retinal characteristics were evaluated using hematoxylin and eosin, tar violet, and periodic acid-Schiff staining. Protein levels in retinal tissues were determined via Western blotting, immunohistochemistry, and immunostaining. RESULTS HYWZF inhibited excessive ROS production, apoptosis, tube formation, and invasion in hg-induced HRCECs via mitochondrial autophagy in vitro. It increased the mRNA expression levels of BCL2-interacting protein 3 (BNIP3), FUN14 domain-containing 1, BNIP3-like (BNIP3L, also known as NIX), PARKIN, PTEN-induced kinase 1, and hypoxia-inducible factor (HIF)-1α. Moreover, it downregulated the protein levels of vascular endothelial cell growth factor and increased the light chain 3-II/I ratio. However, PX-478 and Mdivi-1 reversed these effects. Additionally, PX-478 and Mdivi-1 rescued the effects of HYWZF by decreasing oxidative stress and apoptosis and increasing mitophagy. HYWZF intervention improved the symptoms of diabetes, tissue damage, number of acellular capillaries, and oxidative stress in vivo. Furthermore, in vivo experiments confirmed the results of in vitro experiments. CONCLUSION HYWZF alleviated DR and associated damage by promoting mitophagy via the HIF-1α/BNIP3/NIX axis.
Collapse
Affiliation(s)
- Jia-Jun Wu
- Department of Ophthalmology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Shu-Yan Zhang
- Department of Ophthalmology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lin Mu
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai 200031, China
| | - Zhi-Guo Dong
- Department of Ophthalmology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yin-Jian Zhang
- Department of Ophthalmology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
2
|
Longevity OMAC. Retracted: High Glucose Enhances Bupivacaine-Induced Neurotoxicity via MCU-Mediated Oxidative Stress in SH-SY5Y Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:9814070. [PMID: 38234552 PMCID: PMC10791271 DOI: 10.1155/2024/9814070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
[This retracts the article DOI: 10.1155/2019/7192798.].
Collapse
|
3
|
Wu L, Wei S, Pei D, Yao Y, Xiang Z, Yu E, Chen Z, Du Z, Qu S. Activation of the Akt Attenuates Ropivacaine-Induced Myelination Impairment in Spinal Cord and Sensory Dysfunction in Neonatal Rats. Mol Neurobiol 2023; 60:7009-7020. [PMID: 37523045 DOI: 10.1007/s12035-023-03498-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/11/2023] [Indexed: 08/01/2023]
Abstract
Prolonged exposure to local anesthetics (LAs) or intrathecal administration of high doses of LAs can cause spinal cord damage. Intraspinal administration of LAs is increasingly being used in children and neonates. Therefore, it is important to study LA-related spinal cord damage and the underlying mechanism in developmental models. First, neonatal Sprague-Dawley rats received three intrathecal injections of 0.5% ropivacaine, 1% ropivacaine, 2% ropivacaine or saline (90-min interval) on postnatal day 7. Electron microscopy, luxol fast blue staining and behavioral tests were performed to evaluate the spinal neurotoxicity caused by ropivacaine at different concentrations. Western blot analysis and immunostaining was performed to detect the expression changes of p-Akt, Akt, myelin gene regulatory factor (MYRF) and myelin basic protein (MBP) in the spinal cord treated with different concentrations of ropivacaine. Our results showed that 1% or 2% ropivacaine impaired myelination in the spinal cord and induced sensory dysfunction, but 0.5% ropivacaine did not. Moreover, 1% or 2% ropivacaine decreased the expression of p-Akt, MYRF and MBP in the spinal cord. Then, in order to further explore the role of these proteins in this model, the Akt-specific activator (SC79) was intraperitoneally injected 30 min before 2% ropivacaine treatment. Interestingly, SC79-mediated activation of Akt partly rescued ropivacaine-induced myelination impairments and sensory dysfunction. Overall, the results showed that ropivacaine caused spinal neurotoxicity in a dose-dependent manner in neonatal rats and that activation of the Akt partly rescued ropivacaine-induced these changes. These data provide insight into the neurotoxicity to the developing spinal cord caused by LAs.
Collapse
Affiliation(s)
- Lei Wu
- Department of Anesthesiology, Hunan Children's Hospital, No.86 Ziyuan Rd, Changsha, 410007, Hunan, China
| | - Siwei Wei
- Department of Anesthesiology, Hunan Children's Hospital, No.86 Ziyuan Rd, Changsha, 410007, Hunan, China
| | - Dongjie Pei
- Department of Anesthesiology, Hunan Children's Hospital, No.86 Ziyuan Rd, Changsha, 410007, Hunan, China
| | - Yiyi Yao
- Department of Anesthesiology, Hunan Children's Hospital, No.86 Ziyuan Rd, Changsha, 410007, Hunan, China
| | - Zhen Xiang
- Department of Anesthesiology, Hunan Children's Hospital, No.86 Ziyuan Rd, Changsha, 410007, Hunan, China
| | - Eryou Yu
- Department of Anesthesiology, Hunan Children's Hospital, No.86 Ziyuan Rd, Changsha, 410007, Hunan, China
| | - Zheng Chen
- Department of Anesthesiology, Hunan Children's Hospital, No.86 Ziyuan Rd, Changsha, 410007, Hunan, China
| | - Zhen Du
- Department of Anesthesiology, Hunan Children's Hospital, No.86 Ziyuan Rd, Changsha, 410007, Hunan, China.
| | - Shuangquan Qu
- Department of Anesthesiology, Hunan Children's Hospital, No.86 Ziyuan Rd, Changsha, 410007, Hunan, China.
| |
Collapse
|
4
|
Li J, Hui Y, Xu Z, Tan J, Yin K, Kuang L, Tang Y, Wei J, Zhong Q, Zheng T. Non-canonical function of DPP4 promotes cognitive impairment through ERp29-associated mitochondrial calcium overload in diabetes. iScience 2023; 26:106271. [PMID: 36936785 PMCID: PMC10014273 DOI: 10.1016/j.isci.2023.106271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/15/2023] [Accepted: 02/19/2023] [Indexed: 03/02/2023] Open
Abstract
DPP4 has been shown to induce diabetes-associated mitochondrial dysfunction and cognitive impairment through its non-canonical function. Here, we report that enhanced DPP4 expression in diabetes contributes to IP3R2-mediated mitochondria-associated ER membrane (MAM) formation, mitochondria calcium overload, and cognitive impairment, and its knockdown showed opposite effects. Mechanistically, DPP4 binds to PAR2 in hippocampal neurons and activates ERK1/2/CEBPB signaling, which upregulates ERp29 expression and promotes its binding to IP3R2, thereby inhibiting IP3R2 degradation and promoting MAM formation, mitochondria calcium overload, and cognitive impairment. Meanwhile, targeting DPP4-mediated PAR2/ERK1/2/CEBPB/ERp29 signaling achieved satisfactory therapeutic effects on MAM formation, mitochondria calcium overload, and cognitive impairment. Notably, DPP4 activates this pathway in an enzymatic activity-independent manner, suggesting the non-canonical role of DPP4 in the pathogenesis of mitochondria calcium overload and cognitive impairment in diabetes. Together, these results identify DPP4-mediated PAR2/ERK1/2/CEBPB/ERp29 signaling as a promising therapeutic target for the treatment of cognitive impairment in type 2 diabetes.
Collapse
Affiliation(s)
- Jiaxiu Li
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P. R. China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541199, P. R. China
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi 541199, P. R. China
| | - Ya Hui
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P. R. China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541199, P. R. China
| | - Zhiqiang Xu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P. R. China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541199, P. R. China
| | - Jie Tan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi 541199, P. R. China
| | - Kai Yin
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541199, P. R. China
| | - Liuyu Kuang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P. R. China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541199, P. R. China
| | - Yunyun Tang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P. R. China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541199, P. R. China
| | - Junjie Wei
- Lingui Clinical Medical College, Guilin Medical University, Guilin, Guangxi 541199, P. R. China
| | - Qiongsui Zhong
- Lingui Clinical Medical College, Guilin Medical University, Guilin, Guangxi 541199, P. R. China
| | - Tianpeng Zheng
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P. R. China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541199, P. R. China
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi 541199, P. R. China
- Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P. R. China
- Corresponding author
| |
Collapse
|
5
|
Luo J, Zeng L, Li J, Xu S, Zhao W. Oxidative DNA Damage-induced PARP-1-mediated Autophagic Flux Disruption Contributes to Bupivacaine-induced Neurotoxicity During Pregnancy. Curr Neuropharmacol 2023; 21:2134-2150. [PMID: 37021417 PMCID: PMC10556365 DOI: 10.2174/1570159x21666230404102122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 04/07/2023] Open
Abstract
OBJECTIVE Severe neurologic complications after spinal anesthesia are rare but highly distressing, especially in pregnant women. Bupivacaine is widely used in spinal anesthesia, but its neurotoxic effects have gained attention. METHODS Furthermore, the etiology of bupivacaine-mediated neurotoxicity in obstetric patients remains unclear. Female C57BL/6 mice were intrathecally injected with 0.75% bupivacaine on the 18th day of pregnancy. We used immunohistochemistry to examine DNA damage after bupivacaine treatment in pregnant mice and measured γ-H2AX (Ser139) and 8-OHdG in the spinal cord. A PARP-1 inhibitor (PJ34) and autophagy inhibitor (3-MA) were administered with bupivacaine in pregnant mice. Parp-1flox/flox mice were crossed with Nes-Cre transgenic mice to obtain neuronal conditional knockdown mice. Then, LC3B and P62 staining were performed to evaluate autophagic flux in the spinal cords of pregnant wild-type (WT) and Parp-1-/- mice. We performed transmission electron microscopy (TEM) to evaluate autophagosomes. RESULTS The present study showed that oxidative stress-mediated DNA damage and neuronal injury were increased after bupivacaine treatment in the spinal cords of pregnant mice. Moreover, PARP-1 was significantly activated, and autophagic flux was disrupted. Further studies revealed that PARP-1 knockdown and autophagy inhibitors could alleviate bupivacaine-mediated neurotoxicity in pregnant mice. CONCLUSION Bupivacaine may cause neuronal DNA damage and PARP-1 activation in pregnant mice. PARP-1 further obstructed autophagic flux and ultimately led to neurotoxicity.
Collapse
Affiliation(s)
- Jiaming Luo
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Lei Zeng
- Division of Laboratory Science, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Ji Li
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Shiyuan Xu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Wei Zhao
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| |
Collapse
|
6
|
Liu Z, Xu S, Ji Z, Xu H, Zhao W, Xia Z, Xu R. Mechanistic study of mtROS-JNK-SOD2 signaling in bupivacaine-induced neuron oxidative stress. Aging (Albany NY) 2021; 12:13463-13476. [PMID: 32658869 PMCID: PMC7377901 DOI: 10.18632/aging.103447] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/23/2020] [Indexed: 12/27/2022]
Abstract
Manganese superoxide dismutase (SOD2) is a key enzyme to scavenge free radical superoxide in the mitochondrion. SOD2 deficiency leads to oxidative injury in cells. Bupivacaine, a local anesthetic commonly used in clinic, could induce neurotoxic injury via oxidative stress. The role and the mechanism of SOD2 regulation in bupivacaine-induced oxidative stress remains unclear. Here, bupivacaine was used to treat Sprague-Dawley rats with intrathecal injection and culture human neuroblastoma cells for developing vivo injury model and vitro injury model. The results showed that bupivacaine caused the over-production of mitochondrial reactive oxygen species (mtROS), the activation of C-Jun N-terminal kinase (JNK), and the elevation of SOD2 transcription. Decrease of mtROS with N-acetyl-L-cysteine attenuated the activation of JNK and the increase of SOD2 transcription. Inhibition of JNK signaling with a small interfering RNA (siRNA) or with sp600125 down-regulated the increase of SOD2 transcription. SOD2 gene knock-down exacerbated bupivacaine-induced mtROS generation and neurotoxic injury but had no effect on JNK phosphorylation. Mito-TEMPO (a mitochondria-targeted antioxidant) could protect neuron against bupivacaine-induced toxic injury. Collectively, our results confirm that mtROS stimulates the transcription of SOD2 via activating JNK signaling in bupivacaine-induced oxidative stress. Enhancing antioxidant ability of SOD2 might be crucial in combating bupivacaine-induced neurotoxic injury.
Collapse
Affiliation(s)
- Zhongjie Liu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shiyuan Xu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhonghua Ji
- Department of Anesthesiology, Affiliated Zhuhai Hospital of Jinan University, Zhuhai, Guangdong Province, China
| | - Huali Xu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Wei Zhao
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhengyuan Xia
- Department of Anesthesiology, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Rui Xu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
7
|
Wang B, Li Y, You C. miR-129-3p Targeting of MCU Protects Against Glucose Fluctuation-Mediated Neuronal Damage via a Mitochondrial-Dependent Intrinsic Apoptotic Pathway. Diabetes Metab Syndr Obes 2021; 14:153-163. [PMID: 33488104 PMCID: PMC7815084 DOI: 10.2147/dmso.s285179] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/12/2020] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Glucose fluctuations have an adverse effect on several diabetes-related complications, especially for the nervous system, but the underlying mechanisms are not clear. MicroRNAs are critical regulators of posttranscription in many physiological processes, such as apoptosis. Our study clarified the neuroprotective effects of miR-129-3p targeting mitochondrial calcium uniporter (MCU) in glucose fluctuation-mediated neuronal damage and the specific mechanisms involved. METHODS The expression of MCU and miR-129-3p was examined by real-time PCR and Western blot in the glucose fluctuation cell model. Dual-luciferase reporter assay was performed to confirm the transcriptional regulation of miR-129-3p by MCU. Fluorescent probe and assay kit assay was used to determine oxidative stress condition. Mitochondrial-dependent intrinsic apoptotic factors were examined by flow cytometry assay, enzyme-linked immunosorbent assay (ELISA), and gene and protein expression assays. RESULTS We found an upregulation of MCU and downregulation of miR-129-3p in glucose fluctuation-treated primary hippocampal neuronal cells, and miR-129-3p directly targeted MCU. miR-129-3p overexpression produced a dramatic reduction in calcium overload, reactive oxygen species (ROS) generation, GSH-to-GSSG ratio, MMP-2 expression in the mitochondrial-dependent intrinsic apoptosis pathway and an increase in MnSOD activity. Increasing MCU expression rescued the effects of miR-129-3p overexpression. miR-129-3p downregulation produced a significant increase in calcium overload, reactive oxygen species (ROS) generation, MMP-2 expression, cytochrome c release and cell apoptosis, and antioxidant N-acetyl cysteine (NAC) rescued the effects of miR-129-3p downregulation. CONCLUSION Therefore, miR-129-3p suppressed glucose fluctuation-mediated neuronal damage by targeting MCU via a mitochondrial-dependent intrinsic apoptotic pathway. The miR-129-3p/MCU axis may be a promising therapeutic target for glucose fluctuation-mediated neuronal damage.
Collapse
Affiliation(s)
- Bo Wang
- Department of Neurosurgery, West China School of Medicine/West China Hospital of Sichuan University, Chengdu, Sichuan610041, People’s Republic of China
- Department of Neurosurgery, Kunming Medical University First Affiliated Hospital, Kunming, Yunnan650032, People’s Republic of China
| | - Yang Li
- Intensive Care Unit, West China School of Medicine/West China Hospital of Sichuan University, Chengdu, Sichuan610041, People’s Republic of China
| | - Chao You
- Department of Neurosurgery, West China School of Medicine/West China Hospital of Sichuan University, Chengdu, Sichuan610041, People’s Republic of China
- Correspondence: Chao You Department of Neurosurgery, West China School of Medicine/West China Hospital of Sichuan University, Chengdu, Sichuan610041, People’s Republic of ChinaTel +86 28-85422026 Email
| |
Collapse
|
8
|
Urolithin A suppresses high glucose-induced neuronal amyloidogenesis by modulating TGM2-dependent ER-mitochondria contacts and calcium homeostasis. Cell Death Differ 2020; 28:184-202. [PMID: 32704090 DOI: 10.1038/s41418-020-0593-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 12/19/2022] Open
Abstract
Hyperglycemia in diabetes mellitus (DM) patients is a causative factor for amyloidogenesis and induces neuropathological changes, such as impaired neuronal integrity, neurodegeneration, and cognitive impairment. Regulation of mitochondrial calcium influx from the endoplasmic reticulum (ER) is considered a promising strategy for the prevention of mitochondrial ROS (mtROS) accumulation that occurs in the Alzheimer's disease (AD)-associated pathogenesis in DM patients. Among the metabolites of ellagitannins that are produced in the gut microbiome, urolithin A has received an increasing amount of attention as a novel candidate with anti-oxidative and neuroprotective effects in AD. Here, we investigated the effect of urolithin A on high glucose-induced amyloidogenesis caused by mitochondrial calcium dysregulation and mtROS accumulation resulting in neuronal degeneration. We also identified the mechanism related to mitochondria-associated ER membrane (MAM) formation. We found that urolithin A-lowered mitochondrial calcium influx significantly alleviated high glucose-induced mtROS accumulation and expression of amyloid beta (Aβ)-producing enzymes, such as amyloid precursor protein (APP) and β-secretase-1 (BACE1), as well as Aβ production. Urolithin A injections in a streptozotocin (STZ)-induced diabetic mouse model alleviated APP and BACE1 expressions, Tau phosphorylation, Aβ deposition, and cognitive impairment. In addition, high glucose stimulated MAM formation and transglutaminase type 2 (TGM2) expression. We first discovered that urolithin A significantly reduced high glucose-induced TGM2 expression. In addition, disruption of the AIP-AhR complex was involved in urolithin A-mediated suppression of high glucose-induced TGM2 expression. Markedly, TGM2 silencing inhibited inositol 1, 4, 5-trisphosphate receptor type 1 (IP3R1)-voltage-dependent anion-selective channel protein 1 (VDAC1) interactions and prevented high glucose-induced mitochondrial calcium influx and mtROS accumulation. We also found that urolithin A or TGM2 silencing prevented Aβ-induced mitochondrial calcium influx, mtROS accumulation, Tau phosphorylation, and cell death in neuronal cells. In conclusion, we suggest that urolithin A is a promising candidate for the development of therapies to prevent DM-associated AD pathogenesis by reducing TGM2-dependent MAM formation and maintaining mitochondrial calcium and ROS homeostasis.
Collapse
|