1
|
Switzer AR, Charidimou A, McCarter S, Vemuri P, Nguyen AT, Przybelski SA, Lesnick TG, Rabinstein AA, Brown RD, Knopman DS, Petersen RC, Jack CR, Reichard RR, Graff-Radford J. Boston Criteria v2.0 for Cerebral Amyloid Angiopathy Without Hemorrhage: An MRI-Neuropathologic Validation Study. Neurology 2024; 102:e209386. [PMID: 38710005 PMCID: PMC11177590 DOI: 10.1212/wnl.0000000000209386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/20/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Updated criteria for the clinical-MRI diagnosis of cerebral amyloid angiopathy (CAA) have recently been proposed. However, their performance in individuals without symptomatic intracerebral hemorrhage (ICH) presentations is less defined. We aimed to assess the diagnostic performance of the Boston criteria version 2.0 for CAA diagnosis in a cohort of individuals ranging from cognitively normal to dementia in the community and memory clinic settings. METHODS Fifty-four participants from the Mayo Clinic Study of Aging or Alzheimer's Disease Research Center were included if they had an antemortem MRI with gradient-recall echo sequences and a brain autopsy with CAA evaluation. Performance of the Boston criteria v2.0 was compared with v1.5 using histopathologically verified CAA as the reference standard. RESULTS The median age at MRI was 75 years (interquartile range 65-80) with 28/54 participants having histopathologically verified CAA (i.e., moderate-to-severe CAA in at least 1 lobar region). The sensitivity and specificity of the Boston criteria v2.0 were 28.6% (95% CI 13.2%-48.7%) and 65.3% (95% CI 44.3%-82.8%) for probable CAA diagnosis (area under the receiver operating characteristic curve [AUC] 0.47) and 75.0% (55.1-89.3) and 38.5% (20.2-59.4) for any CAA diagnosis (possible + probable; AUC 0.57), respectively. The v2.0 Boston criteria were not superior in performance compared with the prior v1.5 criteria for either CAA diagnostic category. DISCUSSION The Boston criteria v2.0 have low accuracy in patients who are asymptomatic or only have cognitive symptoms. Additional biomarkers need to be explored to optimize CAA diagnosis in this population.
Collapse
Affiliation(s)
- Aaron R Switzer
- From the Department of Neurology (A.R.S., S.M., A.A.R., R.D.B., D.S.K., R.C.P., J.G.-R.), Mayo Clinic Rochester, MN; Department of Neurology (A.R.S.), University of Calgary, Canada; Department of Neurology (A.C.), Boston University Chobanian & Avedisian School of Medicine; and Department of Radiology (P.V., C.R.J.), Department of Pathology (A.T.N., R.R.R.), Department of Quantitative Health Sciences (S.A.P.), and Health Sciences Research (T.G.L.), Mayo Clinic Rochester, MN
| | - Andreas Charidimou
- From the Department of Neurology (A.R.S., S.M., A.A.R., R.D.B., D.S.K., R.C.P., J.G.-R.), Mayo Clinic Rochester, MN; Department of Neurology (A.R.S.), University of Calgary, Canada; Department of Neurology (A.C.), Boston University Chobanian & Avedisian School of Medicine; and Department of Radiology (P.V., C.R.J.), Department of Pathology (A.T.N., R.R.R.), Department of Quantitative Health Sciences (S.A.P.), and Health Sciences Research (T.G.L.), Mayo Clinic Rochester, MN
| | - Stuart McCarter
- From the Department of Neurology (A.R.S., S.M., A.A.R., R.D.B., D.S.K., R.C.P., J.G.-R.), Mayo Clinic Rochester, MN; Department of Neurology (A.R.S.), University of Calgary, Canada; Department of Neurology (A.C.), Boston University Chobanian & Avedisian School of Medicine; and Department of Radiology (P.V., C.R.J.), Department of Pathology (A.T.N., R.R.R.), Department of Quantitative Health Sciences (S.A.P.), and Health Sciences Research (T.G.L.), Mayo Clinic Rochester, MN
| | - Prashanthi Vemuri
- From the Department of Neurology (A.R.S., S.M., A.A.R., R.D.B., D.S.K., R.C.P., J.G.-R.), Mayo Clinic Rochester, MN; Department of Neurology (A.R.S.), University of Calgary, Canada; Department of Neurology (A.C.), Boston University Chobanian & Avedisian School of Medicine; and Department of Radiology (P.V., C.R.J.), Department of Pathology (A.T.N., R.R.R.), Department of Quantitative Health Sciences (S.A.P.), and Health Sciences Research (T.G.L.), Mayo Clinic Rochester, MN
| | - Aivi T Nguyen
- From the Department of Neurology (A.R.S., S.M., A.A.R., R.D.B., D.S.K., R.C.P., J.G.-R.), Mayo Clinic Rochester, MN; Department of Neurology (A.R.S.), University of Calgary, Canada; Department of Neurology (A.C.), Boston University Chobanian & Avedisian School of Medicine; and Department of Radiology (P.V., C.R.J.), Department of Pathology (A.T.N., R.R.R.), Department of Quantitative Health Sciences (S.A.P.), and Health Sciences Research (T.G.L.), Mayo Clinic Rochester, MN
| | - Scott A Przybelski
- From the Department of Neurology (A.R.S., S.M., A.A.R., R.D.B., D.S.K., R.C.P., J.G.-R.), Mayo Clinic Rochester, MN; Department of Neurology (A.R.S.), University of Calgary, Canada; Department of Neurology (A.C.), Boston University Chobanian & Avedisian School of Medicine; and Department of Radiology (P.V., C.R.J.), Department of Pathology (A.T.N., R.R.R.), Department of Quantitative Health Sciences (S.A.P.), and Health Sciences Research (T.G.L.), Mayo Clinic Rochester, MN
| | - Timothy G Lesnick
- From the Department of Neurology (A.R.S., S.M., A.A.R., R.D.B., D.S.K., R.C.P., J.G.-R.), Mayo Clinic Rochester, MN; Department of Neurology (A.R.S.), University of Calgary, Canada; Department of Neurology (A.C.), Boston University Chobanian & Avedisian School of Medicine; and Department of Radiology (P.V., C.R.J.), Department of Pathology (A.T.N., R.R.R.), Department of Quantitative Health Sciences (S.A.P.), and Health Sciences Research (T.G.L.), Mayo Clinic Rochester, MN
| | - Alejandro A Rabinstein
- From the Department of Neurology (A.R.S., S.M., A.A.R., R.D.B., D.S.K., R.C.P., J.G.-R.), Mayo Clinic Rochester, MN; Department of Neurology (A.R.S.), University of Calgary, Canada; Department of Neurology (A.C.), Boston University Chobanian & Avedisian School of Medicine; and Department of Radiology (P.V., C.R.J.), Department of Pathology (A.T.N., R.R.R.), Department of Quantitative Health Sciences (S.A.P.), and Health Sciences Research (T.G.L.), Mayo Clinic Rochester, MN
| | - Robert D Brown
- From the Department of Neurology (A.R.S., S.M., A.A.R., R.D.B., D.S.K., R.C.P., J.G.-R.), Mayo Clinic Rochester, MN; Department of Neurology (A.R.S.), University of Calgary, Canada; Department of Neurology (A.C.), Boston University Chobanian & Avedisian School of Medicine; and Department of Radiology (P.V., C.R.J.), Department of Pathology (A.T.N., R.R.R.), Department of Quantitative Health Sciences (S.A.P.), and Health Sciences Research (T.G.L.), Mayo Clinic Rochester, MN
| | - David S Knopman
- From the Department of Neurology (A.R.S., S.M., A.A.R., R.D.B., D.S.K., R.C.P., J.G.-R.), Mayo Clinic Rochester, MN; Department of Neurology (A.R.S.), University of Calgary, Canada; Department of Neurology (A.C.), Boston University Chobanian & Avedisian School of Medicine; and Department of Radiology (P.V., C.R.J.), Department of Pathology (A.T.N., R.R.R.), Department of Quantitative Health Sciences (S.A.P.), and Health Sciences Research (T.G.L.), Mayo Clinic Rochester, MN
| | - Ronald C Petersen
- From the Department of Neurology (A.R.S., S.M., A.A.R., R.D.B., D.S.K., R.C.P., J.G.-R.), Mayo Clinic Rochester, MN; Department of Neurology (A.R.S.), University of Calgary, Canada; Department of Neurology (A.C.), Boston University Chobanian & Avedisian School of Medicine; and Department of Radiology (P.V., C.R.J.), Department of Pathology (A.T.N., R.R.R.), Department of Quantitative Health Sciences (S.A.P.), and Health Sciences Research (T.G.L.), Mayo Clinic Rochester, MN
| | - Clifford R Jack
- From the Department of Neurology (A.R.S., S.M., A.A.R., R.D.B., D.S.K., R.C.P., J.G.-R.), Mayo Clinic Rochester, MN; Department of Neurology (A.R.S.), University of Calgary, Canada; Department of Neurology (A.C.), Boston University Chobanian & Avedisian School of Medicine; and Department of Radiology (P.V., C.R.J.), Department of Pathology (A.T.N., R.R.R.), Department of Quantitative Health Sciences (S.A.P.), and Health Sciences Research (T.G.L.), Mayo Clinic Rochester, MN
| | - R Ross Reichard
- From the Department of Neurology (A.R.S., S.M., A.A.R., R.D.B., D.S.K., R.C.P., J.G.-R.), Mayo Clinic Rochester, MN; Department of Neurology (A.R.S.), University of Calgary, Canada; Department of Neurology (A.C.), Boston University Chobanian & Avedisian School of Medicine; and Department of Radiology (P.V., C.R.J.), Department of Pathology (A.T.N., R.R.R.), Department of Quantitative Health Sciences (S.A.P.), and Health Sciences Research (T.G.L.), Mayo Clinic Rochester, MN
| | - Jonathan Graff-Radford
- From the Department of Neurology (A.R.S., S.M., A.A.R., R.D.B., D.S.K., R.C.P., J.G.-R.), Mayo Clinic Rochester, MN; Department of Neurology (A.R.S.), University of Calgary, Canada; Department of Neurology (A.C.), Boston University Chobanian & Avedisian School of Medicine; and Department of Radiology (P.V., C.R.J.), Department of Pathology (A.T.N., R.R.R.), Department of Quantitative Health Sciences (S.A.P.), and Health Sciences Research (T.G.L.), Mayo Clinic Rochester, MN
| |
Collapse
|
2
|
Jellinger KA. Are there morphological differences between Parkinson's disease-dementia and dementia with Lewy bodies? Parkinsonism Relat Disord 2022; 100:24-32. [PMID: 35691178 DOI: 10.1016/j.parkreldis.2022.05.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/21/2022] [Accepted: 05/30/2022] [Indexed: 12/17/2022]
Abstract
Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB) are two major neurocognitive disorders in the spectrum of Lewy body diseases that overlap in many clinical and neuropathological features, although they show several differences. Clinically distinguished mainly based on the duration of parkinsonism prior to development of dementia, their morphology is characterized by a variable combination of Lewy body (LB) and Alzheimer's disease (AD) pathologies, the latter usually being more frequent and severe in DLB. OBJECTIVE The aims of the study were to investigate essential neuropathological differences between PDD and DLB in a larger cohort of autopsy cases. METHODS 110 PDD autopsy cases were compared with 78 DLB cases. The major demographic, clinical (duration of illness, final MMSE) and neuropathological data were assessed retrospectively. Neuropathological studies used standardized methods and immunohistochemistry for phospho-tau, β-amyloid (Aß) and α-synuclein, with semiquantitative assessment of the major histological lesions. RESULTS PDD patients were significantly older at death than DLB ones (mean 83.9 vs. 79.8 years), with a significantly longer disease duration (mean 9.2 vs. 6.7 years). Braak LB scores and particularly neuritic Braak stages were significantly higher in the DLB group (mean 5.1and 5.1 vs. 4.2 and 4.4, respectively), as were Thal Aβ phases (mean 4.1 vs. 3.0). Diffuse striatal Aβ plaques were considerable in 55% and moderate in 45% of DLB cases, but were extremely rare in PDD. The most significant differences concerned the frequency and degree of cerebral amyloid angiopathy (CAA), being significantly higher in DLB (98.7 vs. 50%, and mean degree of 2.9 vs. 0.72, respectively). Worse prognosis in DLB than in PDD was linked to both increased Braak neuritic stages and more severe CAA. INTERPRETATION These and other recent studies imply the association of CAA, more severe concomitant AD pathology, and striatal Aβ load with cognitive decline and more rapid disease process that distinguishes DLB from PDD, while the influence of other cerebrovascular diseases or co-pathologies in both disorders was not specifically examined. The importance of both CAA and tau pathology in DLB and much less in PDD supports the concept of a pathogenetic continuum from Parkinson's disease (PD) - > PDD - > DLB - > DLB + AD and subtypes of AD with LB pathology within the spectrum of age-related proteinopathies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Vienna, Austria, Alberichgasse 5/13, A-1150, Vienna, Austria.
| |
Collapse
|
3
|
Hijazi Z, Yassi N, O'Brien JT, Watson R. The influence of cerebrovascular disease in dementia with Lewy bodies and Parkinson's disease dementia. Eur J Neurol 2021; 29:1254-1265. [PMID: 34923713 DOI: 10.1111/ene.15211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/08/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Lewy body dementia (LBD), including dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD), is a common form of neurodegenerative dementia. The frequency and influence of comorbid cerebrovascular disease is not understood but has potentially important clinical management implications. METHODS A systematic literature search was conducted (Medline and Embase) for studies including participants with DLB and/or PDD assessing cerebrovascular lesions (imaging and pathological studies). They included white matter changes, cerebral amyloid angiopathy (CAA), cerebral microbleeds (CMB), macroscopic infarcts, micro-infarcts and intracerebral haemorrhage. RESULTS Of 4411 articles, 63 studies were included. Cerebrovascular lesions commonly studied included white matter changes (41 studies) and CMB (18 studies). There was an increased severity of white matter changes on magnetic resonance imaging (visualized as white matter hyperintensities, WMH), but not neuropathology, in LBD compared to PD without dementia and age-matched controls. CMB prevalence in DLB was highly variable but broadly similar to Alzheimer's disease (AD) (0-48%), with a lobar predominance. No relationship was found between large cortical or small subcortical infarcts or intracerebral haemorrhage and presence of LBD. CONCLUSION The underlying mechanisms of WMH in LBD require further exploration, as their increased severity in LBD was not supported by neuropathological examination of white matter. CMB in LBD had a similar prevalence as AD. There is a need for larger studies assessing the influence of cerebrovascular lesions on clinical symptoms, disease progression and outcomes.
Collapse
Affiliation(s)
- Zina Hijazi
- Monash University School of Rural Health, Bendigo Hospital, Bendigo, VIC, Australia.,Department of Medicine, Bendigo Hospital, Bendigo, VIC, Australia
| | - Nawaf Yassi
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.,Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Neurology, Melbourne Brain Centre at The Royal Melbourne Hospital, University of Melbourne, Parkville, Australia
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge, Level E4, Box 189, Cambridge, CB2 0QC, UK
| | - Rosie Watson
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.,Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| |
Collapse
|
4
|
Jäkel L, De Kort AM, Klijn CJM, Schreuder FHBM, Verbeek MM. Prevalence of cerebral amyloid angiopathy: A systematic review and meta-analysis. Alzheimers Dement 2021; 18:10-28. [PMID: 34057813 PMCID: PMC9290643 DOI: 10.1002/alz.12366] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 01/05/2023]
Abstract
Reported prevalence estimates of sporadic cerebral amyloid angiopathy (CAA) vary widely. CAA is associated with cognitive dysfunction and intracerebral hemorrhage, and linked to immunotherapy‐related side‐effects in Alzheimer's disease (AD). Given ongoing efforts to develop AD immunotherapy, accurate estimates of CAA prevalence are important. CAA can be diagnosed neuropathologically or during life using MRI markers including strictly lobar microbleeds. In this meta‐analysis of 170 studies including over 73,000 subjects, we show that in patients with AD, CAA prevalence based on pathology (48%) is twice that based on presence of strictly lobar cerebral microbleeds (22%); in the general population this difference is three‐fold (23% vs 7%). Both methods yield similar estimated prevalences of CAA in cognitively normal elderly (5% to 7%), in patients with intracerebral hemorrhage (19% to 24%), and in patients with lobar intracerebral hemorrhage (50% to 57%). However, we observed large heterogeneity among neuropathology and MRI protocols, which calls for standardized assessment and reporting of CAA.
Collapse
Affiliation(s)
- Lieke Jäkel
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Cente, Nijmegen, The Netherlands
| | - Anna M De Kort
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Cente, Nijmegen, The Netherlands
| | - Catharina J M Klijn
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Cente, Nijmegen, The Netherlands
| | - Floris H B M Schreuder
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Cente, Nijmegen, The Netherlands
| | - Marcel M Verbeek
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Cente, Nijmegen, The Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Jellinger KA. Significance of cerebral amyloid angiopathy and other co-morbidities in Lewy body diseases. J Neural Transm (Vienna) 2021; 128:687-699. [PMID: 33928445 DOI: 10.1007/s00702-021-02345-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/22/2021] [Indexed: 01/12/2023]
Abstract
Lewy body dementia (LBD) and Parkinson's disease-dementia (PDD) are two major neurocognitive disorders with Lewy bodies (LB) of unknown etiology. There is considerable clinical and pathological overlap between these two conditions that are clinically distinguished based on the duration of Parkinsonism prior to development of dementia. Their morphology is characterized by a variable combination of LB and Alzheimer's disease (AD) pathologies. Cerebral amyloid angiopathy (CAA), very common in aged persons and particularly in AD, is increasingly recognized for its association with both pathologies and dementia. To investigate neuropathological differences between LB diseases with and without dementia, 110 PDD and 60 LBD cases were compared with 60 Parkinson's disease (PD) cases without dementia (PDND). The major demographic and neuropathological data were assessed retrospectively. PDD patients were significantly older than PDND ones (83.9 vs 77.8 years; p < 0.05); the age of LB patients was in between both groups (mean 80.2 years), while the duration of disease was LBD < PDD < PDND (mean 6.7 vs 12.5 and 14.3 years). LBD patients had higher neuritic Braak stages (mean 5.1 vs 4.5 and 4.0, respectively), LB scores (mean 5.3 vs 4.2 and 4.0, respectively), and Thal amyloid phases (mean 4.1 vs 3.0 and 2.3, respectively) than the two other groups. CAA was more common in LBD than in the PDD and PDND groups (93 vs 50 and 21.7%, respectively). Its severity was significantly greater in LBD than in PDD and PDND (p < 0.01), involving mainly the occipital lobes. Moreover, striatal Aβ deposition highly differentiated LBD brains from PDD. Braak neurofibrillary tangle (NFT) stages, CAA, and less Thal Aβ phases were positively correlated with LB pathology (p < 0.05), which was significantly higher in LBD than in PDD < PDND. Survival analysis showed worse prognosis in LBD than in PDD (and PDND), which was linked to both increased Braak tau stages and more severe CAA. These and other recent studies imply the association of CAA-and both tau and LB pathologies-with cognitive decline and more rapid disease progression that distinguishes LBD from PDD (and PDND).
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
6
|
Schoemaker D, Charidimou A, Zanon Zotin MC, Raposo N, Johnson KA, Sanchez JS, Greenberg SM, Viswanathan A. Association of Memory Impairment With Concomitant Tau Pathology in Patients With Cerebral Amyloid Angiopathy. Neurology 2021; 96:e1975-e1986. [PMID: 33627498 DOI: 10.1212/wnl.0000000000011745] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 01/13/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Relying on tau-PET imaging, this cross-sectional study explored whether memory impairment is linked to the presence of concomitant tau pathology in individuals with cerebral amyloid angiopathy (CAA). METHODS Forty-six patients with probable CAA underwent a neuropsychological examination and an MRI for quantification of structural markers of cerebral small vessel disease. A subset of these participants also completed a [11C]-Pittsburgh compound B (n = 39) and [18F]-flortaucipir (n = 40) PET for in vivo estimation of amyloid and tau burden, respectively. Participants were classified as amnestic or nonamnestic on the basis of neuropsychological performance. Statistical analyses were performed to examine differences in cognition, structural markers of cerebral small vessel disease, and amyloid- and tau-PET retention between participants with amnestic and those with nonamnestic CAA. RESULTS Patients with probable CAA with an amnestic presentation displayed a globally more severe profile of cognitive impairment, smaller hippocampal volume (p < 0.001), and increased tau-PET binding in regions susceptible to Alzheimer disease neurodegeneration (p = 0.003) compared to their nonamnestic counterparts. Amnestic and nonamnestic patients with CAA did not differ on any other MRI markers or on amyloid-PET binding. In a generalized linear model including all evaluated neuroimaging markers, tau-PET retention (β = -0.85, p = 0.001) and hippocampal volume (β = 0.64 p = 0.01) were the only significant predictors of memory performance. The cognitive profile of patients with CAA with an elevated tau-PET retention was distinctly characterized by a significantly lower performance on the memory domain (p = 0.004). CONCLUSIONS These results suggest that the presence of objective memory impairment in patients with probable CAA could serve as a marker for underlying tau pathology. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that tau-PET retention is related to the presence of objective memory impairment in patients with CAA.
Collapse
Affiliation(s)
- Dorothee Schoemaker
- From the Departments of Psychiatry (D.S.), Neurology (A.C., M.C.Z.Z., K.A.J., J.S.S., S.M.G., A.V.), and Radiology (K.A.J., J.S.S.), Massachusetts General Hospital, Harvard Medical School, Boston; and Department of Neurology (N.R.), Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse (University Hospital Centre), France. M.C.Z.Z. is currently at the Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil; N.R. is at Toulouse Neuroimaging Center, Université de Toulouse, INSERM, UPS, France; and K.A.J. is at the Department of Neurology, Brigham and Women's Hospital, Boston.
| | - Andreas Charidimou
- From the Departments of Psychiatry (D.S.), Neurology (A.C., M.C.Z.Z., K.A.J., J.S.S., S.M.G., A.V.), and Radiology (K.A.J., J.S.S.), Massachusetts General Hospital, Harvard Medical School, Boston; and Department of Neurology (N.R.), Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse (University Hospital Centre), France. M.C.Z.Z. is currently at the Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil; N.R. is at Toulouse Neuroimaging Center, Université de Toulouse, INSERM, UPS, France; and K.A.J. is at the Department of Neurology, Brigham and Women's Hospital, Boston
| | - Maria Clara Zanon Zotin
- From the Departments of Psychiatry (D.S.), Neurology (A.C., M.C.Z.Z., K.A.J., J.S.S., S.M.G., A.V.), and Radiology (K.A.J., J.S.S.), Massachusetts General Hospital, Harvard Medical School, Boston; and Department of Neurology (N.R.), Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse (University Hospital Centre), France. M.C.Z.Z. is currently at the Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil; N.R. is at Toulouse Neuroimaging Center, Université de Toulouse, INSERM, UPS, France; and K.A.J. is at the Department of Neurology, Brigham and Women's Hospital, Boston
| | - Nicolas Raposo
- From the Departments of Psychiatry (D.S.), Neurology (A.C., M.C.Z.Z., K.A.J., J.S.S., S.M.G., A.V.), and Radiology (K.A.J., J.S.S.), Massachusetts General Hospital, Harvard Medical School, Boston; and Department of Neurology (N.R.), Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse (University Hospital Centre), France. M.C.Z.Z. is currently at the Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil; N.R. is at Toulouse Neuroimaging Center, Université de Toulouse, INSERM, UPS, France; and K.A.J. is at the Department of Neurology, Brigham and Women's Hospital, Boston
| | - Keith A Johnson
- From the Departments of Psychiatry (D.S.), Neurology (A.C., M.C.Z.Z., K.A.J., J.S.S., S.M.G., A.V.), and Radiology (K.A.J., J.S.S.), Massachusetts General Hospital, Harvard Medical School, Boston; and Department of Neurology (N.R.), Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse (University Hospital Centre), France. M.C.Z.Z. is currently at the Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil; N.R. is at Toulouse Neuroimaging Center, Université de Toulouse, INSERM, UPS, France; and K.A.J. is at the Department of Neurology, Brigham and Women's Hospital, Boston
| | - Justin S Sanchez
- From the Departments of Psychiatry (D.S.), Neurology (A.C., M.C.Z.Z., K.A.J., J.S.S., S.M.G., A.V.), and Radiology (K.A.J., J.S.S.), Massachusetts General Hospital, Harvard Medical School, Boston; and Department of Neurology (N.R.), Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse (University Hospital Centre), France. M.C.Z.Z. is currently at the Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil; N.R. is at Toulouse Neuroimaging Center, Université de Toulouse, INSERM, UPS, France; and K.A.J. is at the Department of Neurology, Brigham and Women's Hospital, Boston
| | - Steven M Greenberg
- From the Departments of Psychiatry (D.S.), Neurology (A.C., M.C.Z.Z., K.A.J., J.S.S., S.M.G., A.V.), and Radiology (K.A.J., J.S.S.), Massachusetts General Hospital, Harvard Medical School, Boston; and Department of Neurology (N.R.), Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse (University Hospital Centre), France. M.C.Z.Z. is currently at the Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil; N.R. is at Toulouse Neuroimaging Center, Université de Toulouse, INSERM, UPS, France; and K.A.J. is at the Department of Neurology, Brigham and Women's Hospital, Boston
| | - Anand Viswanathan
- From the Departments of Psychiatry (D.S.), Neurology (A.C., M.C.Z.Z., K.A.J., J.S.S., S.M.G., A.V.), and Radiology (K.A.J., J.S.S.), Massachusetts General Hospital, Harvard Medical School, Boston; and Department of Neurology (N.R.), Hôpital Pierre-Paul Riquet, Centre Hospitalier Universitaire de Toulouse (University Hospital Centre), France. M.C.Z.Z. is currently at the Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil; N.R. is at Toulouse Neuroimaging Center, Université de Toulouse, INSERM, UPS, France; and K.A.J. is at the Department of Neurology, Brigham and Women's Hospital, Boston
| |
Collapse
|
7
|
Post-Mortem 7.0-Tesla Magnetic Resonance Imaging of the Hippocampus in Progressive Supranuclear Palsy with and without Cerebral Amyloid Angiopathy. NEUROSCI 2020. [DOI: 10.3390/neurosci1020011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction and Purpose: Cerebral amyloid angiopathy (CAA) can be observed in patients with progressive supranuclear palsy (PSP), though to a lesser degree than in Alzheimer’s disease. The present post-mortem 7.0-tesla magnetic resonance imaging (MRI) evaluates whether CAA has an influence on the degree of hippocampal atrophy (HA) and on the incidence of associated micro-infarcts (HMIs) and cortical micro-bleeds (HMBs). Material and Methods: Eight brains with PSP-CAA were compared to 20 PSP brains without CAA. In addition to the neuropathological examination, the hippocampus was evaluated on the most representative coronal section with T2 and T2*-weighted MRI sequences. The average degree of HA was determined in both groups. The incidence of HMIs and HMBs was also compared as well as the frequency of cortical micro-infarcts (CoMIs) and cortical micro-bleeds (CoMBs) in the hemispheric neocortex. Results: The neuropathological examination showed a higher incidence of lacunar infarcts in the PSP-CAA brains compared to the PSP ones. With magnetic resonance imaging (MRI), the severity of HA and the incidence of HMIs and HMBs was similar between both groups. Additionally, the frequency of CoMIs and CoMBs in the neocortex was comparable. Conclusions: The association of CAA in PSP brains has no influence on the degree of HA and on the incidence of the small cerebrovascular lesions in the hippocampus as well as in the neocortex.
Collapse
|
8
|
Arberry J, Singh S, Mizoguchi RA. Cerebral amyloid angiopathy vs Alzheimer’s dementia: Diagnostic conundrum. Artif Intell Med Imaging 2020; 1:65-69. [DOI: 10.35711/aimi.v1.i1.65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Diagnosis of a dementia subtype can be complex and often requires comprehensive cognitive assessment and dedicated neuroimaging. Clinicians are prone to cognitive biases when reviewing such images. We present a case of cognitive impairment and demonstrate that initial imaging may have resulted in misleading the diagnosis due to such cognitive biases.
CASE SUMMARY A 76-year-old man with no cognitive impairment presented with acute onset word finding difficulty with unremarkable blood tests and neurological examination. Magnetic resonance imaging (MRI) demonstrated multiple foci of periventricular and subcortical microhaemorrhage, consistent with cerebral amyloid angiopathy (CAA). Cognitive assessment of this patient demonstrated marked impairment mainly in verbal fluency and memory. However, processing speed and executive function are most affected in CAA, whereas episodic memory is relatively preserved, unlike in other causes of cognitive impairment, such as Alzheimer’s dementia (AD). This raised the question of an underlying diagnosis of dementia. Repeat MRI with dedicated coronal views demonstrated mesial temporal lobe atrophy which is consistent with AD.
CONCLUSION MRI brain can occasionally result in diagnostic overshadowing, and the application of artificial intelligence to medical imaging may overcome such cognitive biases.
Collapse
Affiliation(s)
- Jamie Arberry
- Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Sarneet Singh
- Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | | |
Collapse
|
9
|
Abstract
PURPOSE Cerebral amyloid angiopathy is a vasculopathy caused by β-amyloid deposition in cerebral arterioles and capillaries. It is closely linked to Alzheimer's disease and predisposes elderly patients to intracerebral hemorrhage, transient focal neurological episodes, and cognitive impairment. Because of a predilection for symptomatic hemorrhage, particularly in the frontal lobes, cerebral amyloid angiopathy may also cause a dysexecutive syndrome. RECENT FINDINGS In this case series, we describe presentations of classic clinical dementia syndromes which are not are widely thought to be associated with cerebral amyloid angiopathy, namely logopenic variant primary progressive aphasia (n = 3), normal pressure hydrocephalus (n = 3), and Lewy body dementia (n = 2). In every case, after a clinical diagnosis was established, neuroimaging, brain biopsy, and/or autopsy confirmed the presence of cerebral amyloid angiopathy. Cerebral amyloid angiopathy has significant clinical implications, and its ability to mimic and/or contribute to other clinical dementia syndromes can complicate its diagnosis. This series of cases broadens the range of clinical scenarios associated with cerebral amyloid angiopathy.
Collapse
|
10
|
Mixed Small Vessel Disease in a Patient with Dementia with Lewy Bodies. Brain Sci 2019; 9:brainsci9070159. [PMID: 31277472 PMCID: PMC6680661 DOI: 10.3390/brainsci9070159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/25/2019] [Accepted: 07/02/2019] [Indexed: 01/14/2023] Open
Abstract
Background: Cerebral amyloid angiopathy (CAA) is characterized by deposition of amyloid in small/medium size brain vessels, and may coexist with Alzheimer’s disease or dementia with Lewy bodies (DLB). We describe a patient with a clinical diagnosis of DLB and imaging/biochemical characteristics suggestive of mixed small vessel disease (both CAA and non-amyloid microangiopathy). Methods: Clinical evaluation according to recent diagnostic criteria, magnetic resonance imaging, dopamine-transporter scan (DAT-scan) and cerebrospinal fluid (CSF) analysis for dementia biomarkers were all performed. Results: The patient is a 71-year-old male, fulfilling criteria for probable DLB, with a positive DAT-scan, but with multiple microbleeds in a cortical-subcortical location suggestive of CAA, some microbleeds in deep brain nuclei suggestive of non-amyloid microangiopathy and abnormal levels of only amyloid-beta (Aβ42) in CSF. Conclusion: Coexistent mixed vascular and neurodegenerative disorders are frequent in older subjects with dementia and each one of the underlying pathologies may contribute to, or modify the clinical presentation.
Collapse
|