1
|
Thoma J, Grabherr R, Staudacher E. Expression and Characterization of a β-Galactosidase from the Pacific Oyster, Crassostrea gigas, and Evaluation of Strategies for Testing Substrate Specificity. Int J Mol Sci 2023; 24:15287. [PMID: 37894966 PMCID: PMC10607238 DOI: 10.3390/ijms242015287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
β-Galactosidases (EC 3.2.1.23) are exoglycosidases that catalyze the cleavage of glycoconjugates with terminal β-D-galactose residues in β1,3-, β1,4- or β1,6-linkage. Although this family of exoglycosidases has been extensively studied in vertebrates, plants, yeast, and bacteria, little information is available for mollusks. Mollusks are a diverse and highly successful group of animals that play many different roles in their ecosystems, including filter feeders and detritivores. Here, the first β-galactosidase from the Pacific oyster, Crassostrea gigas was discovered, biochemically characterized, and compared to our previously characterized slug enzyme from Arion vulgaris (UniProt Ref. Nr.: A0A0B7AQJ9). Overall, the mussel enzyme showed similar biochemical parameters to the snail enzyme. The enzyme from C. gigas was most active in an acidic environment (pH 3.5) and at a reaction temperature of 50 °C. Optimal storage conditions were up to 37 °C. In contrast to the enzyme from A. vulgaris, the supplementation of cations (Ni2+, Co2+, Mn2+, Mg2+, Ca2+, Cu2+, Ba2+) increased the activity of the enzyme from C. gigas. Substrate specificity studies of the β-galactosidases from the mussel, C. gigas, and the slug, A. vulgaris, revealed activity towards terminal β1,3- and β1,4-linked galactose residues for both enzymes. Using the same substrates in labeled and unlabeled form, we were able to detect the effect of labeling on the β-galactosidase activity using MALDI-TOF MS, HPTLC, and HPLC. While lactose was cleaved by the enzymes in an unlabeled or labeled state, galacto-N-biose was not cleaved as soon as a 2-amino benzoic acid label was added. In this study we present the biochemical characterization of the first recombinantly expressed β-galactosidase from the Pacific oyster, C. gigas, and we compare different analytical methods for the determination of β-galactosidase activity using the enzyme from C. gigas and A. vulgaris.
Collapse
Affiliation(s)
- Julia Thoma
- Department of Chemistry (DCH), University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| | - Reingard Grabherr
- Department of Biotechnology (DBT), University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| | - Erika Staudacher
- Department of Chemistry (DCH), University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| |
Collapse
|
2
|
Jiang L, Zhang D, Li Y, Chen W, Shi W, Wu H, Ma Z. Eukaryotic Expression of the Cytochrome c Oxidase Subunit I of Sitophilus zeamais and Its Interaction with Allyl Isothiocyanate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3497-3507. [PMID: 36757172 DOI: 10.1021/acs.jafc.2c08363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae) is a destructive pest of stored grains around the world. Allyl isothiocyanate (AITC) was shown to have good bioactivity in the control of S. zeamais. In this study, the interaction of AITC on cytochrome c oxidase core subunits I (COX I) and their binding mechanism were determined using spectroscopic, isothermal titration calorimetry and molecular docking techniques. The results indicate the binding constant (Ka) of AITC and COX I was 6.742 × 103 L/mol. Analysis of spectroscopic revealed that the binding of COX I to reduced Cyt c induced conformational changes of reduced Cyt c, while AITC could competitively bind and inhibit the activity of the COX I protein. Moreover, molecular docking results suggested a sulfur atom in the AITC structure could form a hydrogen bond having a length of 3.3 Å with the Gly- 27 of COX I.
Collapse
Affiliation(s)
- Linlin Jiang
- College of Plant Protection, Northwest A & F University, Yangling 712100, China
| | - Dan Zhang
- College of Plant Protection, Northwest A & F University, Yangling 712100, China
| | - Yue Li
- College of Plant Protection, Northwest A & F University, Yangling 712100, China
| | - Wei Chen
- College of Plant Protection, Northwest A & F University, Yangling 712100, China
| | - Weilin Shi
- College of Plant Protection, Northwest A & F University, Yangling 712100, China
| | - Hua Wu
- College of Plant Protection, Northwest A & F University, Yangling 712100, China
- Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China
| | - Zhiqing Ma
- College of Plant Protection, Northwest A & F University, Yangling 712100, China
- Provincial Center for Bio-Pesticide Engineering, Yangling, Shaanxi Province 712100, China
| |
Collapse
|
3
|
Kong L, Huang Y, Zeng X, Ye C, Wu Z, Guo Y, Pan D. Effects of galactosyltransferase on EPS biosynthesis and freeze-drying resistance of Lactobacillus acidophilus NCFM. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 5:100145. [PMID: 36573108 PMCID: PMC9789326 DOI: 10.1016/j.fochms.2022.100145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/01/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022]
Abstract
Galactosyltransferase (GalT) is an important enzyme in synthesizing exopolysaccharide (EPS), the major polymer of biofilms protecting cells from severe conditions. However, the contribution to, and regulatory mechanism of GalT, in stressor resistance are still unclear. Herein, we successfully overexpressed GalT in Lactobacillus acidophilus NCFM by genetic engineering. The GalT activity and freeze-drying survival rate of the recombinant strain were significantly enhanced. The EPS yield also increased by 17.8%, indicating a positive relationship between freeze-drying resistance and EPS. RNA-Seq revealed that GalT could regulate the flux of the membrane transport system, pivotal sugar-related metabolic pathways, and promote quorum sensing to facilitate EPS biosynthesis, which enhanced freeze-drying resistance. The findings concretely prove that the mechanism of GalT regulating EPS biosynthesis plays an important role in protecting lactic acid bacteria from freeze-drying stress.
Collapse
Key Words
- BP, biological process
- CC, cellular component
- DEG, differentially expressed gene
- ELISA, enzyme linked immunosorbent assay
- EPS, exopolysaccharideS
- Exopolysaccharide
- FT-IR, Fourier transform infrared spectroscopy
- Freeze-drying
- GO, gene ontology
- GalT, galactosyltransferase
- Galactosyltransferase
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- LAB, lactic acid bacteria
- LB, Luria-Bertani
- MF, molecular function
- MRS, de Man, Rogosa and Sharpe
- NCBI, National Center for Biotechnology Information GenBank
- Overexpression
- PCR, polymerase chain reaction
- PEP, phosphoenolpyruvate
- PTS, phosphotransferase system
- QS, quorum sensing
- RT-qPCR, real-time quantitative polymerase chain reaction
Collapse
Affiliation(s)
- Lingyu Kong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Yuze Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China,Corresponding author at: State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China.
| | - Congyan Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Yuxing Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China,School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210097, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| |
Collapse
|
4
|
Morales-Contreras JA, Rodríguez-Pérez JE, Álvarez-González CA, Martínez-López MC, Juárez-Rojop IE, Ávila-Fernández Á. Potential applications of recombinant bifidobacterial proteins in the food industry, biomedicine, process innovation and glycobiology. Food Sci Biotechnol 2021; 30:1277-1291. [PMID: 34721924 DOI: 10.1007/s10068-021-00957-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 07/13/2021] [Accepted: 07/26/2021] [Indexed: 12/27/2022] Open
Abstract
Bifidobacterial proteins have been widely studied to elucidate the metabolic mechanisms of diet adaptation and survival of Bifidobacteria, among others. The use of heterologous expression systems to obtain proteins in sufficient quantities to be characterized has been essential in these studies. L. lactis and the same Bifidobacterium as expression systems highlight ways to corroborate some of the functions attributed to these proteins. The most studied proteins are enzymes related to carbohydrate metabolism, particularly glycosidases, due to their potential application in the synthesis of neoglycoconjugates, prebiotic neooligosaccharides, and active metabolites as well as their high specificity and efficiency in processing glycoconjugates. In this review, we classified the recombinant bifidobacterial proteins reported to date whose characterization has demonstrated their usefulness or their ability to produce a product of commercial interest for the food industry, biomedicine, process innovation and glycobiology. Future directions for their study are also discussed. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-021-00957-1.
Collapse
Affiliation(s)
- José A Morales-Contreras
- Centro de Investigación, DACS-Universidad Juárez Autónoma de Tabasco, Av. Gregorio Méndez no. 2838-A. Col. Tamulté, 86150 Villahermosa, Centro, Tabasco Mexico
| | - Jessica E Rodríguez-Pérez
- Centro de Investigación, DACS-Universidad Juárez Autónoma de Tabasco, Av. Gregorio Méndez no. 2838-A. Col. Tamulté, 86150 Villahermosa, Centro, Tabasco Mexico
| | - Carlos A Álvarez-González
- Laboratorio de Acuacultura, DACBiol-UJAT, Carr. Villahermosa-Cárdenas Km 0.5, 86139 Villahermosa, Tabasco Mexico
| | - Mirian C Martínez-López
- Centro de Investigación, DACS-Universidad Juárez Autónoma de Tabasco, Av. Gregorio Méndez no. 2838-A. Col. Tamulté, 86150 Villahermosa, Centro, Tabasco Mexico
| | - Isela E Juárez-Rojop
- Centro de Investigación, DACS-Universidad Juárez Autónoma de Tabasco, Av. Gregorio Méndez no. 2838-A. Col. Tamulté, 86150 Villahermosa, Centro, Tabasco Mexico.,Laboratorio de Acuacultura, DACBiol-UJAT, Carr. Villahermosa-Cárdenas Km 0.5, 86139 Villahermosa, Tabasco Mexico
| | - Ángela Ávila-Fernández
- Centro de Investigación, DACS-Universidad Juárez Autónoma de Tabasco, Av. Gregorio Méndez no. 2838-A. Col. Tamulté, 86150 Villahermosa, Centro, Tabasco Mexico
| |
Collapse
|
5
|
Production and immobilization of β-galactosidase isolated from Enterobacter aerogenes KCTC2190 by entrapment method using agar-agar organic matrix. Appl Biochem Biotechnol 2021; 193:2198-2224. [PMID: 33686627 DOI: 10.1007/s12010-021-03534-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/26/2021] [Indexed: 10/22/2022]
Abstract
In the present study, Enterobacter aerogenes KCTC2190 was isolated from soil around a cattle shed area, which was capable of producing intracellular β-galactosidase. Partially purified β-galactosidase was immobilized by entrapment method in agar-agar gel matrix. Agar-agar entrapped beads were prepared by dropping the enzyme-agar solution to ice-cooled toluene-chloroform ((3:1 (v/v)). 45.88±0.11% activity of partially purified β-galactosidase was retained after immobilization (bead shape). Maximum immobilization yield was observed in the presence of 2.5% agar-agar concentration. After immobilization, optimum temperature required for the enzyme-substrate reaction was shifted from 50 to 60 °C and the optimum reaction time was shifted from 15 to 25 min. The optimum pH for both free and immobilized β-galactosidase was pH 7. Free enzyme showed lower activation energy in comparison with the immobilized one. For free as well as immobilized β-galactosidase thermal deactivation, rate constant (kd) increased with increasing temperature while the values of decimal reduction time (D-values) and half-lives (t1/2) decreased. Immobilization process increased the t1/2 and D-values of β-galactosidase while it decreased the kd. Thermostability of immobilized β-galactosidase was higher as they showed higher enthalpy (ΔΗ0) and Gibb's free energy (ΔG0)value than those of the free β-galactosidase. The negative entropy (ΔS0) of free and immobilized β-galactosidase established that both were in a more ordered state within the temperature range (50 to 70 °C) studied. Immobilized β-galactosidase was able to retain 51.65±1.61% of its initial activity after 7 batches of enzyme-substrate reaction. Immobilized β-galactosidase showed 78.09±3.69% of its initial activity even after 40 days of storage at 4 °C.
Collapse
|
6
|
Kalathinathan P, Kodiveri Muthukaliannan G. A statistical approach for enhanced production of β-galactosidase from Paracoccus sp. and synthesis of galacto-oligosaccharides. Folia Microbiol (Praha) 2020; 65:811-822. [DOI: 10.1007/s12223-020-00791-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 04/13/2020] [Indexed: 12/11/2022]
|