1
|
Arora K, Sherilraj PM, Abutwaibe KA, Dhruw B, Mudavath SL. Exploring glycans as vital biological macromolecules: A comprehensive review of advancements in biomedical frontiers. Int J Biol Macromol 2024; 268:131511. [PMID: 38615867 DOI: 10.1016/j.ijbiomac.2024.131511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
This comprehensive review delves into the intricate landscape of glycans and glycoconjugates, unraveling their multifaceted roles across diverse biological dimensions. From influencing fundamental cellular processes such as signaling, recognition, and adhesion to exerting profound effects at the molecular and genetic levels, these complex carbohydrate structures emerge as linchpins in cellular functions and interactions. The structural diversity of glycoconjugates, which can be specifically classified into glycoproteins, glycolipids, and proteoglycans, underscores their importance in shaping the architecture of cells. Beyond their structural roles, these molecules also play key functions in facilitating cellular communication and modulating recognition mechanisms. Further, glycans and glycoconjugates prove invaluable as biomarkers in disease diagnostics, particularly in cancer, where aberrant glycosylation patterns offer critical diagnostic cues. Furthermore, the review explores their promising therapeutic applications, ranging from the development of glycan-based nanomaterials for precise drug delivery to innovative interventions in cancer treatment. This review endeavors to comprehensively explore the intricate functions of glycans and glycoconjugates, with the primary goal of offering valuable insights into their extensive implications in both health and disease. Encompassing a broad spectrum of biological processes, the focus of the review aims to provide a comprehensive understanding of the significant roles played by glycans and glycoconjugates.
Collapse
Affiliation(s)
- Kanika Arora
- Infectious Disease Biology Laboratory, Institute of Nano Science & Technology (INST), Sector 81, Mohali, Punjab 140306, India
| | - P M Sherilraj
- Infectious Disease Biology Laboratory, Institute of Nano Science & Technology (INST), Sector 81, Mohali, Punjab 140306, India
| | - K A Abutwaibe
- Infectious Disease Biology Laboratory, Institute of Nano Science & Technology (INST), Sector 81, Mohali, Punjab 140306, India
| | - Bharti Dhruw
- Infectious Disease Biology Laboratory, Institute of Nano Science & Technology (INST), Sector 81, Mohali, Punjab 140306, India
| | - Shyam Lal Mudavath
- Infectious Disease Biology Laboratory, Institute of Nano Science & Technology (INST), Sector 81, Mohali, Punjab 140306, India; Department of Animal Biology, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli Hyderabad 500046, Telangana, India.
| |
Collapse
|
2
|
AbouAitah K, Sabbagh F, Kim BS. Graphene Oxide Nanostructures as Nanoplatforms for Delivering Natural Therapeutic Agents: Applications in Cancer Treatment, Bacterial Infections, and Bone Regeneration Medicine. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2666. [PMID: 37836307 PMCID: PMC10574074 DOI: 10.3390/nano13192666] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Graphene, fullerenes, diamond, carbon nanotubes, and carbon dots are just a few of the carbon-based nanomaterials that have gained enormous popularity in a variety of scientific disciplines and industrial uses. As a two-dimensional material in the creation of therapeutic delivery systems for many illnesses, nanosized graphene oxide (NGO) is now garnering a large amount of attention among these materials. In addition to other benefits, NGO functions as a drug nanocarrier with remarkable biocompatibility, high pharmaceutical loading capacity, controlled drug release capability, biological imaging efficiency, multifunctional nanoplatform properties, and the power to increase the therapeutic efficacy of loaded agents. Thus, NGO is a perfect nanoplatform for the development of drug delivery systems (DDSs) to both detect and treat a variety of ailments. This review article's main focus is on investigating surface functionality, drug-loading methods, and drug release patterns designed particularly for smart delivery systems. The paper also examines the relevance of using NGOs to build DDSs and considers prospective uses in the treatment of diseases including cancer, infection by bacteria, and bone regeneration medicine. These factors cover the use of naturally occurring medicinal substances produced from plant-based sources.
Collapse
Affiliation(s)
- Khaled AbouAitah
- Department of Chemical Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea; (K.A.); (F.S.)
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Behouth Street, Dokki, Giza 12622, Egypt
| | - Farzaneh Sabbagh
- Department of Chemical Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea; (K.A.); (F.S.)
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea; (K.A.); (F.S.)
| |
Collapse
|
3
|
Patil TV, Patel DK, Dutta SD, Ganguly K, Lim KT. Graphene Oxide-Based Stimuli-Responsive Platforms for Biomedical Applications. Molecules 2021; 26:2797. [PMID: 34068529 PMCID: PMC8126026 DOI: 10.3390/molecules26092797] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 01/13/2023] Open
Abstract
Graphene is a two-dimensional sp2 hybridized carbon material that has attracted tremendous attention for its stimuli-responsive applications, owing to its high surface area and excellent electrical, optical, thermal, and mechanical properties. The physicochemical properties of graphene can be tuned by surface functionalization. The biomedical field pays special attention to stimuli-responsive materials due to their responsive abilities under different conditions. Stimuli-responsive materials exhibit great potential in changing their behavior upon exposure to external or internal factors, such as pH, light, electric field, magnetic field, and temperature. Graphene-based materials, particularly graphene oxide (GO), have been widely used in stimuli-responsive applications due to their superior biocompatibility compared to other forms of graphene. GO has been commonly utilized in tissue engineering, bioimaging, biosensing, cancer therapy, and drug delivery. GO-based stimuli-responsive platforms for wound healing applications have not yet been fully explored. This review describes the effects of different stimuli-responsive factors, such as pH, light, temperature, and magnetic and electric fields on GO-based materials and their applications. The wound healing applications of GO-based materials is extensively discussed with cancer therapy and drug delivery.
Collapse
Affiliation(s)
- Tejal V. Patil
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (T.V.P.); (D.K.P.); (S.D.D.); (K.G.)
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Korea
| | - Dinesh K. Patel
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (T.V.P.); (D.K.P.); (S.D.D.); (K.G.)
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (T.V.P.); (D.K.P.); (S.D.D.); (K.G.)
| | - Keya Ganguly
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (T.V.P.); (D.K.P.); (S.D.D.); (K.G.)
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (T.V.P.); (D.K.P.); (S.D.D.); (K.G.)
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
4
|
Srivastava J, Gaur A. Tight-binding investigation of the structural and vibrational properties of graphene-single wall carbon nanotube junctions. NANOSCALE ADVANCES 2021; 3:2030-2038. [PMID: 36133080 PMCID: PMC9418026 DOI: 10.1039/d0na00881h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/05/2021] [Indexed: 06/16/2023]
Abstract
Hybrid carbon nanostructures based on single walled carbon nanotubes (SWNTs) and single layer graphene (SLG) have drawn much attention lately for their applications in a range of efficient hybrid devices. A few recent studies, addressing the interaction behavior at the heterojunction, considered charge transfer between the constituents (SWNTs and SLG) to be responsible for changes in the electronic and vibrational properties of their hybrid system. We report the effect of various factors, arising due to the interactions between the atoms of SWNTs and SLG, on the structural and vibrational properties of hybrid nanostructures investigated computationally within the framework of tight-binding DFT. These factors, such as the van der Waals (vdW) forces, structural deformation and charge transfer, are seen to affect the Raman active phonon frequencies of SWNTs and SLG in the hybrid nanostructure. These factors are already known to affect the vibrational properties of SWNTs and SLG separately and in this work, we have explored their role and interplay between these factors in hybrid systems. The contribution of different factors to the total shift observed in phonon frequencies is estimated and it is perceived from our findings that not only the charge transfer but the structural deformations and the vdW forces also affect the vibrational properties of components within the hybrid, with structural deformation being the leading factor. With decreasing separation between SWNTs and SLG, the charge transfer and the vdW forces both increase. However, the increase in vdW forces is relatively much higher and likely to be the main cause for larger Raman shifts observed at smaller separations.
Collapse
Affiliation(s)
- Juhi Srivastava
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur Kanpur 208016 Uttar Pradesh India
- Samtel Centre for Display Technologies, Indian Institute of Technology Kanpur Kanpur 208016 Uttar Pradesh India
| | - Anshu Gaur
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur Kanpur 208016 Uttar Pradesh India
- Samtel Centre for Display Technologies, Indian Institute of Technology Kanpur Kanpur 208016 Uttar Pradesh India
| |
Collapse
|
5
|
Plachá D, Jampilek J. Graphenic Materials for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1758. [PMID: 31835693 PMCID: PMC6956396 DOI: 10.3390/nano9121758] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 02/07/2023]
Abstract
Graphene-based nanomaterials have been intensively studied for their properties, modifications, and application potential. Biomedical applications are one of the main directions of research in this field. This review summarizes the research results which were obtained in the last two years (2017-2019), especially those related to drug/gene/protein delivery systems and materials with antimicrobial properties. Due to the large number of studies in the area of carbon nanomaterials, attention here is focused only on 2D structures, i.e. graphene, graphene oxide, and reduced graphene oxide.
Collapse
Affiliation(s)
- Daniela Plachá
- Nanotechnology Centre, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
- ENET Centre, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia;
| |
Collapse
|