1
|
Shelishiyah R, Thiyam DB, Margaret MJ, Banu NMM. A hybrid CNN model for classification of motor tasks obtained from hybrid BCI system. Sci Rep 2025; 15:1360. [PMID: 39779796 PMCID: PMC11711759 DOI: 10.1038/s41598-024-84883-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
The Hybrid-Brain Computer Interface (BCI) has shown improved performance, especially in classifying multi-class data. Two non-invasive BCI modules are combined to achieve an improved classification which are Electroencephalogram (EEG) and functional Near Infra-red Spectroscopy (fNIRS). Classifying contralateral and ipsilateral motor movements is found challenging among the other mental activity signals. The current work focuses on the performance of deep learning methods like - Convolutional Neural Networks (CNN) and Bidirectional Long-Short term memory (Bi-LSTM) in classifying a four-class motor execution of Right Hand, Left Hand, Right Arm and Left Arm taken from the CORE dataset. The model performance was evaluated using metrics such as Accuracy, F1 - score, Precision, Recall, AUC and ROC curve. The CNN and Hybrid CNN models have resulted in 98.3% and 99% accuracy respectively.
Collapse
Affiliation(s)
- R Shelishiyah
- Vel Tech Rangarajan Dr Sagunthala R & D Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Deepa Beeta Thiyam
- Vel Tech Rangarajan Dr Sagunthala R & D Institute of Science and Technology, Chennai, Tamil Nadu, India.
| | - M Jehosheba Margaret
- Vel Tech Rangarajan Dr Sagunthala R & D Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - N M Masoodhu Banu
- Vel Tech Rangarajan Dr Sagunthala R & D Institute of Science and Technology, Chennai, Tamil Nadu, India
| |
Collapse
|
2
|
Wu C, Wang Y, Qiu S, He H. A bimodal deep learning network based on CNN for fine motor imagery. Cogn Neurodyn 2024; 18:3791-3804. [PMID: 39712133 PMCID: PMC11655732 DOI: 10.1007/s11571-024-10159-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/20/2024] [Accepted: 08/03/2024] [Indexed: 12/24/2024] Open
Abstract
Motor imagery (MI) is an important brain-computer interface (BCI) paradigm. The traditional MI paradigm (imagining different limbs) limits the intuitive control of the outer devices, while fine MI paradigm (imagining different joint movements from the same limb) can control the mechanical arm without cognitive disconnection. However, the decoding performance of fine MI limits its application. Electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) are widely used in BCI systems because of their portability and easy operation. In this study, a fine MI paradigm including four classes (hand, wrist, shoulder and rest) was designed, and the data of EEG-fNIRS bimodal brain activity was collected from 12 subjects. Event-related desynchronization (ERD) from EEG signals shows a contralateral dominant phenomenon, and there is difference between the ERD of the four classes. For fNIRS signal in the time dimension, the time periods with significant difference can be observed in the activation patterns of four MI tasks. Spatially, the signal peak based brain topographic map also shows difference of these four MI tasks. The EEG signal and fNIRS signal of these four classes are distinguishable. In this study, a bimodal fusion network is proposed to improve the fine MI tasks decoding performance. The features of these two modalities are extracted separately by two feature extractors based on convolutional neural networks (CNN). The recognition performance was significantly improved by the bimodal method proposed in this study, compared with the performance of the single-modal network. The proposed method outperformed all comparison methods, and achieved a four-class accuracy of 58.96%. This paper demonstrates the feasibility of EEG and fNIRS bimodal BCI systems for fine MI, and shows the effectiveness of the proposed bimodal fusion method. This research is supposed to support fine MI-based BCI systems with theories and techniques.
Collapse
Affiliation(s)
- Chenyao Wu
- Laboratory of Brain Atlas and Brain-Inspired Intelligence, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yu Wang
- University of Chinese Academy of Sciences, Beijing, 100049 China
- National Engineering & Technology Research Center for ASIC Design, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 China
| | - Shuang Qiu
- Laboratory of Brain Atlas and Brain-Inspired Intelligence, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Huiguang He
- Laboratory of Brain Atlas and Brain-Inspired Intelligence, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
3
|
AlQahtani NJ, Al-Naib I, Althobaiti M. Recent progress on smart lower prosthetic limbs: a comprehensive review on using EEG and fNIRS devices in rehabilitation. Front Bioeng Biotechnol 2024; 12:1454262. [PMID: 39253705 PMCID: PMC11381415 DOI: 10.3389/fbioe.2024.1454262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024] Open
Abstract
The global rise in lower limb amputation cases necessitates advancements in prosthetic limb technology to enhance the quality of life for affected patients. This review paper explores recent advancements in the integration of EEG and fNIRS modalities for smart lower prosthetic limbs for rehabilitation applications. The paper synthesizes current research progress, focusing on the synergy between brain-computer interfaces and neuroimaging technologies to enhance the functionality and user experience of lower limb prosthetics. The review discusses the potential of EEG and fNIRS in decoding neural signals, enabling more intuitive and responsive control of prosthetic devices. Additionally, the paper highlights the challenges, innovations, and prospects associated with the incorporation of these neurotechnologies in the field of rehabilitation. The insights provided in this review contribute to a deeper understanding of the evolving landscape of smart lower prosthetic limbs and pave the way for more effective and user-friendly solutions in the realm of neurorehabilitation.
Collapse
Affiliation(s)
- Nouf Jubran AlQahtani
- Biomedical Engineering Department, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ibraheem Al-Naib
- Bioengineering Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
- Interdisciplinary Research Center for Communication Systems and Sensing, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Murad Althobaiti
- Biomedical Engineering Department, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
4
|
Ali MU, Zafar A, Kallu KD, Masood H, Mannan MMN, Ibrahim MM, Kim S, Khan MA. Correlation-Filter-Based Channel and Feature Selection Framework for Hybrid EEG-fNIRS BCI Applications. IEEE J Biomed Health Inform 2024; 28:3361-3370. [PMID: 37436864 DOI: 10.1109/jbhi.2023.3294586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The proposed study is based on a feature and channel selection strategy that uses correlation filters for brain-computer interface (BCI) applications using electroencephalography (EEG)-functional near-infrared spectroscopy (fNIRS) brain imaging modalities. The proposed approach fuses the complementary information of the two modalities to train the classifier. The channels most closely correlated with brain activity are extracted using a correlation-based connectivity matrix for fNIRS and EEG separately. Furthermore, the training vector is formed through the identification and fusion of the statistical features of both modalities (i.e., slope, skewness, maximum, skewness, mean, and kurtosis). The constructed fused feature vector is passed through various filters (including ReliefF, minimum redundancy maximum relevance, chi-square test, analysis of variance, and Kruskal-Wallis filters) to remove redundant information before training. Traditional classifiers such as neural networks, support-vector machines, linear discriminant analysis, and ensembles were used for the purpose of training and testing. A publicly available dataset with motor imagery information was used for validation of the proposed approach. Our findings indicate that the proposed correlation-filter-based channel and feature selection framework significantly enhances the classification accuracy of hybrid EEG-fNIRS. The ReliefF-based filter outperformed other filters with the ensemble classifier with a high accuracy of 94.77 ± 4.26%. The statistical analysis also validated the significance (p < 0.01) of the results. A comparison of the proposed framework with the prior findings was also presented. Our results show that the proposed approach can be used in future EEG-fNIRS-based hybrid BCI applications.
Collapse
|
5
|
Chen J, Yu K, Zhuang S, Zhang D. Exploratory insights into prefrontal cortex activity in continuous glucose monitoring: findings from a portable wearable functional near-infrared spectroscopy system. Front Neurosci 2024; 18:1342744. [PMID: 38779512 PMCID: PMC11110533 DOI: 10.3389/fnins.2024.1342744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
The escalating global prevalence of diabetes highlights an urgent need for advancements in continuous glucose monitoring (CGM) technologies that are non-invasive, accurate, and user-friendly. Here, we introduce a groundbreaking portable wearable functional near-infrared spectroscopy (fNIRS) system designed to monitor glucose levels by assessing prefrontal cortex (PFC) activity. Our study delineates the development and application of this novel fNIRS system, emphasizing its potential to revolutionize diabetes management by providing a non-invasive, real-time monitoring solution. Fifteen healthy university students participated in a controlled study, where we monitored their PFC activity and blood glucose levels under fasting and glucose-loaded conditions. Our findings reveal a significant correlation between PFC activity, as measured by our fNIRS system, and blood glucose levels, suggesting the feasibility of fNIRS technology for CGM. The portable nature of our system overcomes the mobility limitations of traditional setups, enabling continuous, real-time monitoring in everyday settings. We identified 10 critical features related to blood glucose levels from extensive fNIRS data and successfully correlated PFC function with blood glucose levels by constructing predictive models. Results show a positive association between fNIRS data and blood glucose levels, with the PFC exhibiting a clear response to blood glucose. Furthermore, the improved regressive rule principal component analysis (PCA) method outperforms traditional PCA in model prediction. We propose a model validation approach based on leave-one-out cross-validation, demonstrating the unique advantages of K-nearest neighbor (KNN) models. Comparative analysis with existing CGM methods reveals that our paper's KNN model exhibits lower RMSE and MARD at 0.11 and 8.96%, respectively, and the fNIRS data were highly significant positive correlation with actual blood glucose levels (r = 0.995, p < 0.000). This study provides valuable insights into the relationship between metabolic states and brain activity, laying the foundation for innovative CGM solutions. Our portable wearable fNIRS system represents a significant advancement in effective diabetes management, offering a promising alternative to current technologies and paving the way for future advancements in health monitoring and personalized medicine.
Collapse
Affiliation(s)
| | | | | | - Dawei Zhang
- Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
6
|
Du X, Wang X, Zhu L, Ding X, Lv Y, Qiu S, Liu Q. Electroencephalographic Signal Data Augmentation Based on Improved Generative Adversarial Network. Brain Sci 2024; 14:367. [PMID: 38672017 PMCID: PMC11047879 DOI: 10.3390/brainsci14040367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
EEG signals combined with deep learning play an important role in the study of human-computer interaction. However, the limited dataset makes it challenging to study EEG signals using deep learning methods. Inspired by the GAN network in image generation, this paper presents an improved generative adversarial network model L-C-WGAN-GP to generate artificial EEG data to augment training sets and improve the application of BCI in various fields. The generator consists of a long short-term memory (LSTM) network and the discriminator consists of a convolutional neural network (CNN) which uses the gradient penalty-based Wasserstein distance as the loss function in model training. The model can learn the statistical features of EEG signals and generate EEG data that approximate real samples. In addition, the performance of the compressed sensing reconstruction model can be improved by using augmented datasets. Experiments show that, compared with the existing advanced data amplification techniques, the proposed model produces EEG signals closer to the real EEG signals as measured by RMSE, FD and WTD indicators. In addition, in the compressed reconstruction of EEG signals, adding the new data reduces the loss by about 15% compared with the original data, which greatly improves the reconstruction accuracy of the EEG signals' compressed sensing.
Collapse
Affiliation(s)
- Xiuli Du
- School of Information Engineering, Dalian University, Dalian 116622, China; (X.D.); (X.W.); (L.Z.); (Y.L.); (S.Q.); (Q.L.)
- Communication and Network Laboratory, Dalian University, Dalian 116622, China
| | - Xinyue Wang
- School of Information Engineering, Dalian University, Dalian 116622, China; (X.D.); (X.W.); (L.Z.); (Y.L.); (S.Q.); (Q.L.)
- Communication and Network Laboratory, Dalian University, Dalian 116622, China
| | - Luyao Zhu
- School of Information Engineering, Dalian University, Dalian 116622, China; (X.D.); (X.W.); (L.Z.); (Y.L.); (S.Q.); (Q.L.)
- Communication and Network Laboratory, Dalian University, Dalian 116622, China
| | - Xiaohui Ding
- School of Information Engineering, Dalian University, Dalian 116622, China; (X.D.); (X.W.); (L.Z.); (Y.L.); (S.Q.); (Q.L.)
- Communication and Network Laboratory, Dalian University, Dalian 116622, China
| | - Yana Lv
- School of Information Engineering, Dalian University, Dalian 116622, China; (X.D.); (X.W.); (L.Z.); (Y.L.); (S.Q.); (Q.L.)
- Communication and Network Laboratory, Dalian University, Dalian 116622, China
| | - Shaoming Qiu
- School of Information Engineering, Dalian University, Dalian 116622, China; (X.D.); (X.W.); (L.Z.); (Y.L.); (S.Q.); (Q.L.)
- Communication and Network Laboratory, Dalian University, Dalian 116622, China
| | - Qingli Liu
- School of Information Engineering, Dalian University, Dalian 116622, China; (X.D.); (X.W.); (L.Z.); (Y.L.); (S.Q.); (Q.L.)
- Communication and Network Laboratory, Dalian University, Dalian 116622, China
| |
Collapse
|
7
|
Liu W, Jia K, Wang Z. Graph-based EEG approach for depression prediction: integrating time-frequency complexity and spatial topology. Front Neurosci 2024; 18:1367212. [PMID: 38633266 PMCID: PMC11022962 DOI: 10.3389/fnins.2024.1367212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/11/2024] [Indexed: 04/19/2024] Open
Abstract
Depression has become the prevailing global mental health concern. The accuracy of traditional depression diagnosis methods faces challenges due to diverse factors, making primary identification a complex task. Thus, the imperative lies in developing a method that fulfills objectivity and effectiveness criteria for depression identification. Current research underscores notable disparities in brain activity between individuals with depression and those without. The Electroencephalogram (EEG), as a biologically reflective and easily accessible signal, is widely used to diagnose depression. This article introduces an innovative depression prediction strategy that merges time-frequency complexity and electrode spatial topology to aid in depression diagnosis. Initially, time-frequency complexity and temporal features of the EEG signal are extracted to generate node features for a graph convolutional network. Subsequently, leveraging channel correlation, the brain network adjacency matrix is employed and calculated. The final depression classification is achieved by training and validating a graph convolutional network with graph node features and a brain network adjacency matrix based on channel correlation. The proposed strategy has been validated using two publicly available EEG datasets, MODMA and PRED+CT, achieving notable accuracy rates of 98.30 and 96.51%, respectively. These outcomes affirm the reliability and utility of our proposed strategy in predicting depression using EEG signals. Additionally, the findings substantiate the effectiveness of EEG time-frequency complexity characteristics as valuable biomarkers for depression prediction.
Collapse
Affiliation(s)
- Wei Liu
- Faculty of Information Technology, Beijing University of Technology, Beijing, China
- Beijing Laboratory of Advanced Information Networks, Beijing, China
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing, China
| | - Kebin Jia
- Faculty of Information Technology, Beijing University of Technology, Beijing, China
- Beijing Laboratory of Advanced Information Networks, Beijing, China
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing, China
| | - Zhuozheng Wang
- Faculty of Information Technology, Beijing University of Technology, Beijing, China
| |
Collapse
|
8
|
Hag A, Al-Shargie F, Handayani D, Asadi H. Mental Stress Classification Based on Selected Electroencephalography Channels Using Correlation Coefficient of Hjorth Parameters. Brain Sci 2023; 13:1340. [PMID: 37759941 PMCID: PMC10527440 DOI: 10.3390/brainsci13091340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Electroencephalography (EEG) signals offer invaluable insights into diverse activities of the human brain, including the intricate physiological and psychological responses associated with mental stress. A major challenge, however, is accurately identifying mental stress while mitigating the limitations associated with a large number of EEG channels. Such limitations encompass computational complexity, potential overfitting, and the prolonged setup time for electrode placement, all of which can hinder practical applications. To address these challenges, this study presents the novel CCHP method, aimed at identifying and ranking commonly optimal EEG channels based on their sensitivity to the mental stress state. This method's uniqueness lies in its ability not only to find common channels, but also to prioritize them according to their responsiveness to stress, ensuring consistency across subjects and making it potentially transformative for real-world applications. From our rigorous examinations, eight channels emerged as universally optimal in detecting stress variances across participants. Leveraging features from the time, frequency, and time-frequency domains of these channels, and employing machine learning algorithms, notably RLDA, SVM, and KNN, our approach achieved a remarkable accuracy of 81.56% with the SVM algorithm outperforming existing methodologies. The implications of this research are profound, offering a stepping stone toward the development of real-time stress detection devices, and consequently, enabling clinicians to make more informed therapeutic decisions based on comprehensive brain activity monitoring.
Collapse
Affiliation(s)
- Ala Hag
- School of Computer Science & Engineering, Taylor’s University, Jalan Taylors, Subang Jaya 47500, Selangor, Malaysia;
| | - Fares Al-Shargie
- Institute for Intelligent Systems Research and Innovation, Deakin University, Geelong, VIC 3216, Australia
| | - Dini Handayani
- Department of Electrical Engineering, Abu Dhabi University, Abu Dhabi P.O. Box 59911, United Arab Emirates;
| | - Houshyar Asadi
- Computer Science Department, KICT, International Islamic University Malaysia, Kuala Lumpur 53100, Selangor, Malaysia
| |
Collapse
|
9
|
Ali MU, Kim KS, Kallu KD, Zafar A, Lee SW. OptEF-BCI: An Optimization-Based Hybrid EEG and fNIRS-Brain Computer Interface. Bioengineering (Basel) 2023; 10:608. [PMID: 37237678 PMCID: PMC10215946 DOI: 10.3390/bioengineering10050608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Multimodal data fusion (electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS)) has been developed as an important neuroimaging research field in order to circumvent the inherent limitations of individual modalities by combining complementary information from other modalities. This study employed an optimization-based feature selection algorithm to systematically investigate the complementary nature of multimodal fused features. After preprocessing the acquired data of both modalities (i.e., EEG and fNIRS), the temporal statistical features were computed separately with a 10 s interval for each modality. The computed features were fused to create a training vector. A wrapper-based binary enhanced whale optimization algorithm (E-WOA) was used to select the optimal/efficient fused feature subset using the support-vector-machine-based cost function. An online dataset of 29 healthy individuals was used to evaluate the performance of the proposed methodology. The findings suggest that the proposed approach enhances the classification performance by evaluating the degree of complementarity between characteristics and selecting the most efficient fused subset. The binary E-WOA feature selection approach showed a high classification rate (94.22 ± 5.39%). The classification performance exhibited a 3.85% increase compared with the conventional whale optimization algorithm. The proposed hybrid classification framework outperformed both the individual modalities and traditional feature selection classification (p < 0.01). These findings indicate the potential efficacy of the proposed framework for several neuroclinical applications.
Collapse
Affiliation(s)
- Muhammad Umair Ali
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Republic of Korea;
| | - Kwang Su Kim
- Department of Scientific Computing, Pukyong National University, Busan 48513, Republic of Korea;
- Interdisciplinary Biology Laboratory (iBLab), Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Karam Dad Kallu
- Department of Robotics & Artificial Intelligence (R&AI), School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST) H-12, Islamabad 44000, Pakistan;
| | - Amad Zafar
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Republic of Korea;
| | - Seung Won Lee
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
10
|
Zafar A, Hussain SJ, Ali MU, Lee SW. Metaheuristic Optimization-Based Feature Selection for Imagery and Arithmetic Tasks: An fNIRS Study. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23073714. [PMID: 37050774 PMCID: PMC10098559 DOI: 10.3390/s23073714] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 06/01/2023]
Abstract
In recent decades, the brain-computer interface (BCI) has emerged as a leading area of research. The feature selection is vital to reduce the dataset's dimensionality, increase the computing effectiveness, and enhance the BCI's performance. Using activity-related features leads to a high classification rate among the desired tasks. This study presents a wrapper-based metaheuristic feature selection framework for BCI applications using functional near-infrared spectroscopy (fNIRS). Here, the temporal statistical features (i.e., the mean, slope, maximum, skewness, and kurtosis) were computed from all the available channels to form a training vector. Seven metaheuristic optimization algorithms were tested for their classification performance using a k-nearest neighbor-based cost function: particle swarm optimization, cuckoo search optimization, the firefly algorithm, the bat algorithm, flower pollination optimization, whale optimization, and grey wolf optimization (GWO). The presented approach was validated based on an available online dataset of motor imagery (MI) and mental arithmetic (MA) tasks from 29 healthy subjects. The results showed that the classification accuracy was significantly improved by utilizing the features selected from the metaheuristic optimization algorithms relative to those obtained from the full set of features. All of the abovementioned metaheuristic algorithms improved the classification accuracy and reduced the feature vector size. The GWO yielded the highest average classification rates (p < 0.01) of 94.83 ± 5.5%, 92.57 ± 6.9%, and 85.66 ± 7.3% for the MA, MI, and four-class (left- and right-hand MI, MA, and baseline) tasks, respectively. The presented framework may be helpful in the training phase for selecting the appropriate features for robust fNIRS-based BCI applications.
Collapse
Affiliation(s)
- Amad Zafar
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Shaik Javeed Hussain
- Department of Electrical and Electronics, Global College of Engineering and Technology, Muscat 112, Oman
| | - Muhammad Umair Ali
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Seung Won Lee
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
11
|
Zafar A, Dad Kallu K, Atif Yaqub M, Ali MU, Hyuk Byun J, Yoon M, Su Kim K. A Hybrid GCN and Filter-Based Framework for Channel and Feature Selection: An fNIRS-BCI Study. INT J INTELL SYST 2023. [DOI: 10.1155/2023/8812844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
In this study, a channel and feature selection methodology is devised for brain-computer interface (BCI) applications using functional near-infrared spectroscopy (fNIRS). A graph convolutional network (GCN) is employed to select the appropriate and correlated fNIRS channels. Furthermore, in the feature extraction phase, the performance of two filter-based feature selection algorithms, (i) the minimum redundancy maximum relevance (mRMR) and (ii) ReliefF, is investigated. The five most commonly used temporal statistical features (i.e., mean, slope, maximum, skewness, and kurtosis) are used, whereas the conventional support vector machine (SVM) is utilized as a classifier for training and testing. The proposed methodology is validated using an available online dataset of motor imagery (left- and right-hand), mental arithmetic, and baseline tasks. First, the efficacy of the proposed methodology is shown for two-class BCI applications (i.e., left- vs. right-hand motor imagery and mental arithmetic vs. baseline). Second, the proposed framework is applied to four-class BCI applications (i.e., left- vs. right-hand motor imagery vs. mental arithmetic vs. baseline). The results show that the number of appropriate channels and features was significantly reduced, resulting in a significant increase in classification accuracy for both two-class and four-class BCI applications, respectively. Furthermore, both mRMR (i.e., 87.8% for motor imagery, 87.1% for mental arithmetic, and 78.7% for four-class) and ReliefF (i.e., 90.7% for motor imagery, 93.7% for mental arithmetic, and 81.6% for four-class) yielded high average classification accuracy
. However, the results of the ReliefF algorithm are more stable and significant.
Collapse
|
12
|
Zhang Y, Qiu S, He H. Multimodal motor imagery decoding method based on temporal spatial feature alignment and fusion. J Neural Eng 2023; 20. [PMID: 36854181 DOI: 10.1088/1741-2552/acbfdf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/28/2023] [Indexed: 03/02/2023]
Abstract
Objective. A motor imagery-based brain-computer interface (MI-BCI) translates spontaneous movement intention from the brain to outside devices. Multimodal MI-BCI that uses multiple neural signals contains rich common and complementary information and is promising for enhancing the decoding accuracy of MI-BCI. However, the heterogeneity of different modalities makes the multimodal decoding task difficult. How to effectively utilize multimodal information remains to be further studied.Approach. In this study, a multimodal MI decoding neural network was proposed. Spatial feature alignment losses were designed to enhance the feature representations extracted from the heterogeneous data and guide the fusion of features from different modalities. An attention-based modality fusion module was built to align and fuse the features in the temporal dimension. To evaluate the proposed decoding method, a five-class MI electroencephalography (EEG) and functional near infrared spectroscopy (fNIRS) dataset were constructed.Main results and significance. The comparison experimental results showed that the proposed decoding method achieved higher decoding accuracy than the compared methods on both the self-collected dataset and a public dataset. The ablation results verified the effectiveness of each part of the proposed method. Feature distribution visualization results showed that the proposed losses enhance the feature representation of EEG and fNIRS modalities. The proposed method based on EEG and fNIRS modalities has significant potential for improving decoding performance of MI tasks.
Collapse
Affiliation(s)
- Yukun Zhang
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, People's Republic of China.,Laboratory of Brain Atlas and Brain-Inspired Intelligence, State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Shuang Qiu
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, People's Republic of China.,Laboratory of Brain Atlas and Brain-Inspired Intelligence, State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Huiguang He
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, People's Republic of China.,Laboratory of Brain Atlas and Brain-Inspired Intelligence, State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
13
|
Mughal NE, Khan MJ, Khalil K, Javed K, Sajid H, Naseer N, Ghafoor U, Hong KS. EEG-fNIRS-based hybrid image construction and classification using CNN-LSTM. Front Neurorobot 2022; 16:873239. [PMID: 36119719 PMCID: PMC9472125 DOI: 10.3389/fnbot.2022.873239] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
The constantly evolving human–machine interaction and advancement in sociotechnical systems have made it essential to analyze vital human factors such as mental workload, vigilance, fatigue, and stress by monitoring brain states for optimum performance and human safety. Similarly, brain signals have become paramount for rehabilitation and assistive purposes in fields such as brain–computer interface (BCI) and closed-loop neuromodulation for neurological disorders and motor disabilities. The complexity, non-stationary nature, and low signal-to-noise ratio of brain signals pose significant challenges for researchers to design robust and reliable BCI systems to accurately detect meaningful changes in brain states outside the laboratory environment. Different neuroimaging modalities are used in hybrid settings to enhance accuracy, increase control commands, and decrease the time required for brain activity detection. Functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG) measure the hemodynamic and electrical activity of the brain with a good spatial and temporal resolution, respectively. However, in hybrid settings, where both modalities enhance the output performance of BCI, their data compatibility due to the huge discrepancy between their sampling rate and the number of channels remains a challenge for real-time BCI applications. Traditional methods, such as downsampling and channel selection, result in important information loss while making both modalities compatible. In this study, we present a novel recurrence plot (RP)-based time-distributed convolutional neural network and long short-term memory (CNN-LSTM) algorithm for the integrated classification of fNIRS EEG for hybrid BCI applications. The acquired brain signals are first projected into a non-linear dimension with RPs and fed into the CNN to extract essential features without performing any downsampling. Then, LSTM is used to learn the chronological features and time-dependence relation to detect brain activity. The average accuracies achieved with the proposed model were 78.44% for fNIRS, 86.24% for EEG, and 88.41% for hybrid EEG-fNIRS BCI. Moreover, the maximum accuracies achieved were 85.9, 88.1, and 92.4%, respectively. The results confirm the viability of the RP-based deep-learning algorithm for successful BCI systems.
Collapse
Affiliation(s)
- Nabeeha Ehsan Mughal
- School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Muhammad Jawad Khan
- School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan
- National Center of Artificial Intelligence (NCAI) – NUST, Islamabad, Pakistan
| | - Khurram Khalil
- School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Kashif Javed
- School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Hasan Sajid
- School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan
- National Center of Artificial Intelligence (NCAI) – NUST, Islamabad, Pakistan
| | - Noman Naseer
- Department of Mechatronics and Biomedical Engineering, Air University, Islamabad, Pakistan
| | - Usman Ghafoor
- School of Mechanical Engineering, Pusan National University, Busan, South Korea
| | - Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, Busan, South Korea
- *Correspondence: Keum-Shik Hong
| |
Collapse
|
14
|
Bourguignon NJ, Bue SL, Guerrero-Mosquera C, Borragán G. Bimodal EEG-fNIRS in Neuroergonomics. Current Evidence and Prospects for Future Research. FRONTIERS IN NEUROERGONOMICS 2022; 3:934234. [PMID: 38235461 PMCID: PMC10790898 DOI: 10.3389/fnrgo.2022.934234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/20/2022] [Indexed: 01/19/2024]
Abstract
Neuroergonomics focuses on the brain signatures and associated mental states underlying behavior to design human-machine interfaces enhancing performance in the cognitive and physical domains. Brain imaging techniques such as functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG) have been considered key methods for achieving this goal. Recent research stresses the value of combining EEG and fNIRS in improving these interface systems' mental state decoding abilities, but little is known about whether these improvements generalize over different paradigms and methodologies, nor about the potentialities for using these systems in the real world. We review 33 studies comparing mental state decoding accuracy between bimodal EEG-fNIRS and unimodal EEG and fNIRS in several subdomains of neuroergonomics. In light of these studies, we also consider the challenges of exploiting wearable versions of these systems in real-world contexts. Overall the studies reviewed suggest that bimodal EEG-fNIRS outperforms unimodal EEG or fNIRS despite major differences in their conceptual and methodological aspects. Much work however remains to be done to reach practical applications of bimodal EEG-fNIRS in naturalistic conditions. We consider these points to identify aspects of bimodal EEG-fNIRS research in which progress is expected or desired.
Collapse
Affiliation(s)
| | - Salvatore Lo Bue
- Department of Life Sciences, Royal Military Academy of Belgium, Brussels, Belgium
| | | | - Guillermo Borragán
- Center for Research in Cognition and Neuroscience, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
15
|
Li R, Yang D, Fang F, Hong KS, Reiss AL, Zhang Y. Concurrent fNIRS and EEG for Brain Function Investigation: A Systematic, Methodology-Focused Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22155865. [PMID: 35957421 PMCID: PMC9371171 DOI: 10.3390/s22155865] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 05/29/2023]
Abstract
Electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) stand as state-of-the-art techniques for non-invasive functional neuroimaging. On a unimodal basis, EEG has poor spatial resolution while presenting high temporal resolution. In contrast, fNIRS offers better spatial resolution, though it is constrained by its poor temporal resolution. One important merit shared by the EEG and fNIRS is that both modalities have favorable portability and could be integrated into a compatible experimental setup, providing a compelling ground for the development of a multimodal fNIRS-EEG integration analysis approach. Despite a growing number of studies using concurrent fNIRS-EEG designs reported in recent years, the methodological reference of past studies remains unclear. To fill this knowledge gap, this review critically summarizes the status of analysis methods currently used in concurrent fNIRS-EEG studies, providing an up-to-date overview and guideline for future projects to conduct concurrent fNIRS-EEG studies. A literature search was conducted using PubMed and Web of Science through 31 August 2021. After screening and qualification assessment, 92 studies involving concurrent fNIRS-EEG data recordings and analyses were included in the final methodological review. Specifically, three methodological categories of concurrent fNIRS-EEG data analyses, including EEG-informed fNIRS analyses, fNIRS-informed EEG analyses, and parallel fNIRS-EEG analyses, were identified and explained with detailed description. Finally, we highlighted current challenges and potential directions in concurrent fNIRS-EEG data analyses in future research.
Collapse
Affiliation(s)
- Rihui Li
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biomedical Engineering, University of Houston, Houston, TX 77004, USA
| | - Dalin Yang
- School of Mechanical Engineering, Pusan National University, Pusan 43241, Korea
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, 4515 McKinley Avenue, St. Louis, MO 63110, USA
| | - Feng Fang
- Department of Biomedical Engineering, University of Houston, Houston, TX 77004, USA
| | - Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, Pusan 43241, Korea
| | - Allan L. Reiss
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX 77004, USA
| |
Collapse
|
16
|
Electroacupuncture Alters BCI-Based Brain Network in Stroke Patients. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:8112375. [PMID: 35310583 PMCID: PMC8930214 DOI: 10.1155/2022/8112375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/24/2022] [Accepted: 01/30/2022] [Indexed: 11/24/2022]
Abstract
Goal. Stroke patients are usually accompanied by motor dysfunction, which greatly affects daily life. Electroacupuncture is a kind of nondrug therapy that can effectively improve motor function. However, the effect of electroacupuncture is hard to be measured immediately in clinic. This paper is aimed to reveal the instant changes in brain activity of three groups of stroke patients before, during, and after the electroacupuncture treatment by the EEG analysis in the alpha band and beta band. Methods. Seven different functional connectivity indicators including Pearson correlation coefficient, spectral coherence, mutual information, phase locking value, phase lag index, partial directed coherence, and directed transfer function were used to build the BCI-based brain network in stroke patients. Results and Conclusion. The results showed that the brain activity based on the alpha band of EEG decreased after the electroacupuncture treatment, while in the beta band of EEG, the brain activity decreased only in the first two groups. Significance. This method could be used to evaluate the effect of electroacupuncture instantly and quantitatively. The study will hopefully provide some neurophysiological evidence of the relationship between changes in brain activity and the effects of electroacupuncture. The study of BCI-based brain network changes in the alpha and beta bands before, during, and after electroacupuncture in stroke patients of different periods is helpful in adjusting and selecting the electroacupuncture regimens for different patients. The trial was registered on the Chinese clinical trial registry (ChiCTR2000036959).
Collapse
|
17
|
Arif A, Jawad Khan M, Javed K, Sajid H, Rubab S, Naseer N, Irfan Khan T. Hemodynamic Response Detection Using Integrated EEG-fNIRS-VPA for BCI. COMPUTERS, MATERIALS & CONTINUA 2022; 70:535-555. [DOI: 10.32604/cmc.2022.018318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/21/2021] [Indexed: 09/01/2023]
|
18
|
Kawala-Sterniuk A, Browarska N, Al-Bakri A, Pelc M, Zygarlicki J, Sidikova M, Martinek R, Gorzelanczyk EJ. Summary of over Fifty Years with Brain-Computer Interfaces-A Review. Brain Sci 2021; 11:43. [PMID: 33401571 PMCID: PMC7824107 DOI: 10.3390/brainsci11010043] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/25/2020] [Accepted: 12/27/2020] [Indexed: 11/16/2022] Open
Abstract
Over the last few decades, the Brain-Computer Interfaces have been gradually making their way to the epicenter of scientific interest. Many scientists from all around the world have contributed to the state of the art in this scientific domain by developing numerous tools and methods for brain signal acquisition and processing. Such a spectacular progress would not be achievable without accompanying technological development to equip the researchers with the proper devices providing what is absolutely necessary for any kind of discovery as the core of every analysis: the data reflecting the brain activity. The common effort has resulted in pushing the whole domain to the point where the communication between a human being and the external world through BCI interfaces is no longer science fiction but nowadays reality. In this work we present the most relevant aspects of the BCIs and all the milestones that have been made over nearly 50-year history of this research domain. We mention people who were pioneers in this area as well as we highlight all the technological and methodological advances that have transformed something available and understandable by a very few into something that has a potential to be a breathtaking change for so many. Aiming to fully understand how the human brain works is a very ambitious goal and it will surely take time to succeed. However, even that fraction of what has already been determined is sufficient e.g., to allow impaired people to regain control on their lives and significantly improve its quality. The more is discovered in this domain, the more benefit for all of us this can potentially bring.
Collapse
Affiliation(s)
- Aleksandra Kawala-Sterniuk
- Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, 45-758 Opole, Poland; (N.B.); (M.P.); (J.Z.)
| | - Natalia Browarska
- Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, 45-758 Opole, Poland; (N.B.); (M.P.); (J.Z.)
| | - Amir Al-Bakri
- Department of Biomedical Engineering, College of Engineering, University of Babylon, 51001 Babylon, Iraq;
| | - Mariusz Pelc
- Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, 45-758 Opole, Poland; (N.B.); (M.P.); (J.Z.)
- Department of Computing and Information Systems, University of Greenwich, London SE10 9LS, UK
| | - Jaroslaw Zygarlicki
- Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, 45-758 Opole, Poland; (N.B.); (M.P.); (J.Z.)
| | - Michaela Sidikova
- Department of Cybernetics and Biomedical Engineering, VSB-Technical University Ostrava—FEECS, 708 00 Ostrava-Poruba, Czech Republic; (M.S.); (R.M.)
| | - Radek Martinek
- Department of Cybernetics and Biomedical Engineering, VSB-Technical University Ostrava—FEECS, 708 00 Ostrava-Poruba, Czech Republic; (M.S.); (R.M.)
| | - Edward Jacek Gorzelanczyk
- Department of Theoretical Basis of BioMedical Sciences and Medical Informatics, Nicolaus Copernicus University, Collegium Medicum, 85-067 Bydgoszcz, Poland;
- Institute of Philosophy, Kazimierz Wielki University, 85-092 Bydgoszcz, Poland
- Babinski Specialist Psychiatric Healthcare Center, Outpatient Addiction Treatment, 91-229 Lodz, Poland
- The Society for the Substitution Treatment of Addiction “Medically Assisted Recovery”, 85-791 Bydgoszcz, Poland
| |
Collapse
|
19
|
Khan MU, Hasan MAH. Hybrid EEG-fNIRS BCI Fusion Using Multi-Resolution Singular Value Decomposition (MSVD). Front Hum Neurosci 2020; 14:599802. [PMID: 33363459 PMCID: PMC7753369 DOI: 10.3389/fnhum.2020.599802] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/12/2020] [Indexed: 12/16/2022] Open
Abstract
Brain-computer interface (BCI) multi-modal fusion has the potential to generate multiple commands in a highly reliable manner by alleviating the drawbacks associated with single modality. In the present work, a hybrid EEG-fNIRS BCI system—achieved through a fusion of concurrently recorded electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) signals—is used to overcome the limitations of uni-modality and to achieve higher tasks classification. Although the hybrid approach enhances the performance of the system, the improvements are still modest due to the lack of availability of computational approaches to fuse the two modalities. To overcome this, a novel approach is proposed using Multi-resolution singular value decomposition (MSVD) to achieve system- and feature-based fusion. The two approaches based up different features set are compared using the KNN and Tree classifiers. The results obtained through multiple datasets show that the proposed approach can effectively fuse both modalities with improvement in the classification accuracy.
Collapse
Affiliation(s)
- Muhammad Umer Khan
- Department of Mechatronics Engineering, Atilim University, Ankara, Turkey
| | - Mustafa A H Hasan
- Department of Mechatronics Engineering, Atilim University, Ankara, Turkey
| |
Collapse
|