1
|
Choi EA, Park HJ, Choi SM, Lee JI, Jung KC. Prevention of severe lung immunopathology associated with influenza infection through adeno-associated virus vector administration. Lab Anim Res 2023; 39:26. [PMID: 37904257 PMCID: PMC10614381 DOI: 10.1186/s42826-023-00177-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Influenza A viruses (IAVs) have long posed a threat to humans, occasionally causing significant morbidity and mortality. The initial immune response is triggered by infected epithelial cells, alveolar macrophages and dendritic cells. However, an exaggerated innate immune response can result in severe lung injury and even host mortality. One notable pathology observed in hosts succumbing to severe influenza is the excessive influx of neutrophils and monocytes into the lung. In this study, we investigated a strategy for controlling lung immunopathology following severe influenza infection. RESULTS To evaluate the impact of innate immunity on influenza-associated lung injury, we employed CB17.SCID and NOD.SCID mice. NOD.SCID mice exhibited slower weight loss and longer survival than CB17.SCID mice following influenza infection. Lung inflammation was reduced in NOD.SCID mice compared to CB17.SCID mice. Bulk RNA sequencing analysis of lung tissue showed significant downregulation of 827 genes, and differentially expressed gene analysis indicated that the cytokine-cytokine receptor interaction pathway was predominantly downregulated in NOD.SCID mice. Interestingly, the expression of the Cxcl14 gene was higher in the lungs of influenza-infected NOD.SCID mice than in CB17.SCID mice. Therefore, we induced overexpression of the Cxcl14 gene in the lung using the adeno-associated virus 9 (AAV9)-vector system for target gene delivery. However, when we administered the AAV9 vector carrying the Cxcl14 gene or a control AAV9 vector to BALB/c mice from both groups, the morbidity and mortality rates remained similar. Both groups exhibited lower morbidity and mortality than the naive group that did not receive the AAV9 vector prior to IAV infection, suggesting that the pre-administration of the AAV9 vector conferred protection against lethal influenza infection, irrespective of Cxcl14 overexpression. Furthermore, we found that pre-inoculation of BALB/c mice with AAV9 attenuated the infiltration of trans-macrophages, neutrophils and monocytes in the lungs following IAV infection. Although there was no difference in lung viral titers between the naive group and the AAV9 pre-inoculated group, pre-inoculation with AAV9 conferred lung injury protection against lethal influenza infection in mice. CONCLUSIONS Our study demonstrated that pre-inoculation with AAV9 prior to IAV infection protected mouse lungs from immunopathology by reducing the recruitment of inflammatory cells.
Collapse
Affiliation(s)
- Eun Ah Choi
- Graduate Course of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hi Jung Park
- Graduate Course of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Sung Min Choi
- Graduate Course of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jae Il Lee
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Department of Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| | - Kyeong Cheon Jung
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Department of Pathology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, 03080, Republic of Korea.
| |
Collapse
|
2
|
Zhang L, Zhang X, Liu Y, Zhang W, Wu CT, Wang L. CD146+ Umbilical Cord Mesenchymal Stem Cells Exhibit High Immunomodulatory Activity and Therapeutic Efficacy in Septic Mice. J Inflamm Res 2023; 16:579-594. [PMID: 36818194 PMCID: PMC9930589 DOI: 10.2147/jir.s396088] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/18/2023] [Indexed: 02/12/2023] Open
Abstract
Background Several studies have shown that MSCs can significantly improve the survival of sepsis animals. CD146+ mesenchymal stem cells (MSCs) correlate with high therapeutic potency. However, their therapeutic effect on sepsis and detail mechanisms have not been explored. Methods The effect of CD146±MSCs on differentiation of Treg, Th1, Th17 subsets was evaluated by flow cytometry. The effects of CD146±MSCs on RAW264.7 phagocytosis and LPS-stimulated polarization were studied using a co-culture protocol. Luminex bead array and RNA sequencing were employed to determine the mechanisms of MSCs on LPS-stimulated RAW264.7. The Arg1 protein was detected by Western blot. CD146±MSCs were injected into LPS-induced sepsis mice by tail vein. The therapeutic effect was assessed by organ HE staining, T-cell subsets, cytokine in plasma, peritoneal macrophages, infiltrating monocytes subpopulations. Results In vitro, CD146+MSCs could significantly increase the proportion of Treg cells. Co-culture with CD146+MSCs increase the phagocytic rate of RAW264.7. CD146+MSCs regulate M2-type macrophages production more rapidly. The transcript profile differences between the CD146+MSCs and CD146-MSCs groups were clustered in arginine metabolism pathways. CD146+MSCs decreased NO production and increased ARG1 expression. CD146+MSCs secreted higher level of IL15,IFNγ, VEGF and lower level of IL1β, IL8 under LPS stimuli. In vivo, The level of IL10 at 24h and CXCL1, IFNγ at 12h in CD146+MSCs group was the highest. CD146+MSCs treatment enhances the phagocytic capacity of peritoneal macrophages. CD146+MSCs also increases the ratios of CD11b+Ly6Clo reparative monocytes and CD11b+Ly6Chi inflammatory monocytes until 24h. Conclusion Compared with CD146-MSCs, CD146+MSCs can accelerate the end of the inflammatory response and have robust anti-inflammatory effects, by increasing the Treg cells, promoting macrophage phagocytosis, enhancing the reparative macrophage, secreting more VEGF, etc.
Collapse
Affiliation(s)
- Lin Zhang
- Laboratory of Molecular Diagnosis and Regenerative Medicine, the Affiliate Hospital of Qingdao University, Qingdao, People’s Republic of China,Beijing Institute of Radiation Medicine, Beijing, People’s Republic of China
| | - Xiaoxu Zhang
- Laboratory of Molecular Diagnosis and Regenerative Medicine, the Affiliate Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Yubin Liu
- Beijing Institute of Radiation Medicine, Beijing, People’s Republic of China
| | - Weiyuan Zhang
- Laboratory of Molecular Diagnosis and Regenerative Medicine, the Affiliate Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Chu-Tse Wu
- Beijing Institute of Radiation Medicine, Beijing, People’s Republic of China
| | - Lisheng Wang
- Laboratory of Molecular Diagnosis and Regenerative Medicine, the Affiliate Hospital of Qingdao University, Qingdao, People’s Republic of China,Department of Rehabilitation Sciences, School of Nursing, Jilin University, Changchun, People’s Republic of China,Correspondence: Lisheng Wang, Laboratory of Molecular Diagnosis and Regenerative Medicine, the Affiliate Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China, Email
| |
Collapse
|
3
|
Pemmari T, Hämäläinen M, Ryyti R, Peltola R, Moilanen E. Dried Bilberry (Vaccinium myrtillus L.) Alleviates the Inflammation and Adverse Metabolic Effects Caused by a High-Fat Diet in a Mouse Model of Obesity. Int J Mol Sci 2022; 23:ijms231911021. [PMID: 36232316 PMCID: PMC9569776 DOI: 10.3390/ijms231911021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 12/01/2022] Open
Abstract
Obesity is an increasing problem worldwide. It is often associated with co-morbidities such as type II diabetes, atherosclerotic diseases, and non-alcoholic fatty liver disease. The risk of these diseases can be lowered by relieving the systemic low-grade inflammation associated with obesity, even without noticeable weight loss. Bilberry is an anthocyanin-rich wild berry with known antioxidant and anti-inflammatory properties. In the present study, a high-fat-diet-induced mouse model of obesity was used to investigate the effects of air-dried bilberry powder on weight gain, systemic inflammation, lipid and glucose metabolism, and changes in the gene expression in adipose and hepatic tissues. The bilberry supplementation was unable to modify the weight gain, but it prevented the increase in the hepatic injury marker ALT and many inflammatory factors like SAA, MCP1, and CXCL14 induced by the high-fat diet. The bilberry supplementation also partially prevented the increase in serum cholesterol, glucose, and insulin levels. In conclusion, the bilberry supplementation alleviated the systemic and hepatic inflammation and retarded the development of unwanted changes in the lipid and glucose metabolism induced by the high-fat diet. Thus, the bilberry supplementation seemed to support to retain a healthier metabolic phenotype during developing obesity, and that effect might have been contributed to by bilberry anthocyanins.
Collapse
Affiliation(s)
- Toini Pemmari
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland
| | - Riitta Ryyti
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland
| | - Rainer Peltola
- Bioeconomy and Environment, Natural Resources Institute Finland, 96100 Rovaniemi, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland
- Correspondence:
| |
Collapse
|
4
|
CXCL14 Attenuates Triple-Negative Breast Cancer Progression by Regulating Immune Profiles of the Tumor Microenvironment in a T Cell-Dependent Manner. Int J Mol Sci 2022; 23:ijms23169314. [PMID: 36012586 PMCID: PMC9409254 DOI: 10.3390/ijms23169314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 12/03/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is aggressive and has a poor overall survival due to a lack of therapeutic targets compared to other subtypes. Chemokine signature revealed that TNBC had low levels of CXCL14, an orphan homeostatic chemokine to regulate the immune network. Here, we investigated if CXCL14 plays a critical role in TNBC progression, focusing on survival rates, tumor growth and metastasis, and immune profiles in the tumor microenvironment. Analysis of human breast-cancer datasets showed that low CXCL14 expression levels were associated with poor survival rates in patients with breast cancer, particularly for TNBC subtypes. Overexpression of CXCL14 in TNBC 4T1 orthotopic mouse model significantly reduced tumor weights and inhibited lung metastasis. Furthermore, the CXCL14 overexpression altered immune profiles in the tumor microenvironment as follows: decreased F4/80+ macrophages and CD4+CD25+ Treg cells, and increased CD8+T cells in primary tumors; decreased Ly6C+ myeloid cells and CD4+CD25+ Treg cells and increased CD4+ and CD8+T cells in lung metastatic tumors. CXCL14-induced reduction of tumor growth and metastasis was diminished in T cell-deficient nude mice. Taken together, our data demonstrate that CXCL14 inhibits TNBC progression through altering immune profiles in the tumor microenvironment and it is mediated in a T cell-dependent manner. Thus, CXCL14 could be used as a biomarker for prognosis.
Collapse
|
5
|
Magkrioti C, Antonopoulou G, Fanidis D, Pliaka V, Sakellaropoulos T, Alexopoulos LG, Ullmer C, Aidinis V. Lysophosphatidic Acid Is a Proinflammatory Stimulus of Renal Tubular Epithelial Cells. Int J Mol Sci 2022; 23:ijms23137452. [PMID: 35806457 PMCID: PMC9267536 DOI: 10.3390/ijms23137452] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic kidney disease (CKD) refers to a spectrum of diseases defined by renal fibrosis, permanent alterations in kidney structure, and low glomerular-filtration rate. Prolonged epithelial-tubular damage involves a series of changes that eventually lead to CKD, highlighting the importance of tubular epithelial cells in this process. Lysophosphatidic acid (LPA) is a bioactive lipid that signals mainly through its six cognate LPA receptors and is implicated in several chronic inflammatory pathological conditions. In this report, we have stimulated human proximal tubular epithelial cells (HKC-8) with LPA and 175 other possibly pathological stimuli, and simultaneously detected the levels of 27 intracellular phosphoproteins and 32 extracellular secreted molecules with multiplex ELISA. This quantification revealed a large amount of information concerning the signaling and the physiology of HKC-8 cells that can be extrapolated to other proximal tubular epithelial cells. LPA responses clustered with pro-inflammatory stimuli such as TNF and IL-1, promoting the phosphorylation of important inflammatory signaling hubs, including CREB1, ERK1, JUN, IκΒα, and MEK1, as well as the secretion of inflammatory factors of clinical relevance, including CCL2, CCL3, CXCL10, ICAM1, IL-6, and IL-8, most of them shown for the first time in proximal tubular epithelial cells. The identified LPA-induced signal-transduction pathways, which were pharmacologically validated, and the secretion of the inflammatory factors offer novel insights into the possible role of LPA in CKD pathogenesis.
Collapse
Affiliation(s)
- Christiana Magkrioti
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece; (C.M.); (G.A.); (D.F.)
| | - Georgia Antonopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece; (C.M.); (G.A.); (D.F.)
| | - Dionysios Fanidis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece; (C.M.); (G.A.); (D.F.)
| | - Vaia Pliaka
- ProtATonce Ltd., 15343 Athens, Greece; (V.P.); (T.S.); (L.G.A.)
| | | | - Leonidas G. Alexopoulos
- ProtATonce Ltd., 15343 Athens, Greece; (V.P.); (T.S.); (L.G.A.)
- School of Mechanical Engineering, National Technical University of Athens, 15780 Zografou, Greece
| | - Christoph Ullmer
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland;
| | - Vassilis Aidinis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece; (C.M.); (G.A.); (D.F.)
- Correspondence:
| |
Collapse
|
6
|
Ghadge SK, Messner M, Seiringer H, Maurer T, Staggl S, Zeller T, Müller C, Börnigen D, Weninger WJ, Geyer SH, Sopper S, Krogsdam A, Pölzl G, Bauer A, Zaruba MM. Smooth Muscle Specific Ablation of CXCL12 in Mice Downregulates CXCR7 Associated with Defective Coronary Arteries and Cardiac Hypertrophy. Int J Mol Sci 2021; 22:ijms22115908. [PMID: 34072818 PMCID: PMC8198701 DOI: 10.3390/ijms22115908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/27/2022] Open
Abstract
The chemokine CXCL12 plays a fundamental role in cardiovascular development, cell trafficking, and myocardial repair. Human genome-wide association studies even have identified novel loci downstream of the CXCL12 gene locus associated with coronary artery disease and myocardial infarction. Nevertheless, cell and tissue specific effects of CXCL12 are barely understood. Since we detected high expression of CXCL12 in smooth muscle (SM) cells, we generated a SM22-alpha-Cre driven mouse model to ablate CXCL12 (SM-CXCL12−/−). SM-CXCL12−/− mice revealed high embryonic lethality (50%) with developmental defects, including aberrant topology of coronary arteries. Postnatally, SM-CXCL12−/− mice developed severe cardiac hypertrophy associated with fibrosis, apoptotic cell death, impaired heart function, and severe coronary vascular defects characterized by thinned and dilated arteries. Transcriptome analyses showed specific upregulation of pathways associated with hypertrophic cardiomyopathy, collagen protein network, heart-related proteoglycans, and downregulation of the M2 macrophage modulators. CXCL12 mutants showed endothelial downregulation of the CXCL12 co-receptor CXCR7. Treatment of SM-CXCL12−/− mice with the CXCR7 agonist TC14012 attenuated cardiac hypertrophy associated with increased pERK signaling. Our data suggest a critical role of smooth muscle-specific CXCL12 in arterial development, vessel maturation, and cardiac hypertrophy. Pharmacological stimulation of CXCR7 might be a promising target to attenuate adverse hypertrophic remodeling.
Collapse
Affiliation(s)
- Santhosh Kumar Ghadge
- Department of Internal Medicine III, Cardiology and Angiology, Medical University Innsbruck, 6020 Innsbruck, Austria; (S.K.G.); (M.M.); (H.S.); (T.M.); (S.S.); (G.P.); (A.B.)
- Department of Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, 1090 Vienna, Austria
| | - Moritz Messner
- Department of Internal Medicine III, Cardiology and Angiology, Medical University Innsbruck, 6020 Innsbruck, Austria; (S.K.G.); (M.M.); (H.S.); (T.M.); (S.S.); (G.P.); (A.B.)
| | - Herbert Seiringer
- Department of Internal Medicine III, Cardiology and Angiology, Medical University Innsbruck, 6020 Innsbruck, Austria; (S.K.G.); (M.M.); (H.S.); (T.M.); (S.S.); (G.P.); (A.B.)
| | - Thomas Maurer
- Department of Internal Medicine III, Cardiology and Angiology, Medical University Innsbruck, 6020 Innsbruck, Austria; (S.K.G.); (M.M.); (H.S.); (T.M.); (S.S.); (G.P.); (A.B.)
| | - Simon Staggl
- Department of Internal Medicine III, Cardiology and Angiology, Medical University Innsbruck, 6020 Innsbruck, Austria; (S.K.G.); (M.M.); (H.S.); (T.M.); (S.S.); (G.P.); (A.B.)
| | - Tanja Zeller
- Clinic for Cardiology, Medical University Center Hamburg-Eppendorf, University Heart and Vascular Center Hamburg, 20251 Hamburg, Germany; (T.Z.); (C.M.); (D.B.)
| | - Christian Müller
- Clinic for Cardiology, Medical University Center Hamburg-Eppendorf, University Heart and Vascular Center Hamburg, 20251 Hamburg, Germany; (T.Z.); (C.M.); (D.B.)
| | - Daniela Börnigen
- Clinic for Cardiology, Medical University Center Hamburg-Eppendorf, University Heart and Vascular Center Hamburg, 20251 Hamburg, Germany; (T.Z.); (C.M.); (D.B.)
| | - Wolfgang J. Weninger
- Division of Anatomy & MIC, Medical University of Vienna, 1090 Vienna, Austria; (W.J.W.); (S.H.G.)
| | - Stefan H. Geyer
- Division of Anatomy & MIC, Medical University of Vienna, 1090 Vienna, Austria; (W.J.W.); (S.H.G.)
| | - Sieghart Sopper
- Department of Internal Medicine V, Hematology and Oncology, Medical University Innsbruck, 6020 Innsbruck, Austria;
| | - Anne Krogsdam
- Division of Bioinformatics, Medical University Innsbruck, Biocenter, 6020 Innsbruck, Austria;
| | - Gerhard Pölzl
- Department of Internal Medicine III, Cardiology and Angiology, Medical University Innsbruck, 6020 Innsbruck, Austria; (S.K.G.); (M.M.); (H.S.); (T.M.); (S.S.); (G.P.); (A.B.)
| | - Axel Bauer
- Department of Internal Medicine III, Cardiology and Angiology, Medical University Innsbruck, 6020 Innsbruck, Austria; (S.K.G.); (M.M.); (H.S.); (T.M.); (S.S.); (G.P.); (A.B.)
| | - Marc-Michael Zaruba
- Department of Internal Medicine III, Cardiology and Angiology, Medical University Innsbruck, 6020 Innsbruck, Austria; (S.K.G.); (M.M.); (H.S.); (T.M.); (S.S.); (G.P.); (A.B.)
- Correspondence:
| |
Collapse
|
7
|
Li N, Chen J, Wang P, Fan H, Hou S, Gong Y. Major signaling pathways and key mediators of macrophages in acute kidney injury (Review). Mol Med Rep 2021; 23:455. [PMID: 33880578 PMCID: PMC8072315 DOI: 10.3892/mmr.2021.12094] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/17/2021] [Indexed: 12/16/2022] Open
Abstract
Acute kidney injury (AKI) has become a global public health problem with high morbidity and mortality rates, as well as high healthcare costs. Immune cells, particularly macrophages, which regulate tissue development, destroy pathogens, control homeostasis and repair wounds, play crucial and complex roles in AKI. In various types of AKI, numerous rapidly recruited monocytes and tissue-resident macrophages act in a coordinated manner. Thus, elucidating the phenotypic and functional characteristics of macrophages in AKI is essential for identifying potential therapeutic targets. Macrophage-sensing mediators and macrophage-derived mediators participate in the major macrophage-related signaling pathways in AKI, which regulate macrophage polarization and determine disease progression. In conclusion, macrophages change their roles and regulatory mechanisms during the occurrence and development of AKI. The aim of the present review was to contribute to an improved understanding of AKI and to the identification of novel therapeutic targets for this condition.
Collapse
Affiliation(s)
- Ning Li
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, P.R. China
| | - Jiale Chen
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, P.R. China
| | - Pengtao Wang
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, P.R. China
| | - Haojun Fan
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, P.R. China
| | - Shike Hou
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, P.R. China
| | - Yanhua Gong
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, P.R. China
| |
Collapse
|
8
|
Abd-Elrazek A, Mahmoud S, Abd ElMoneim A. The comparison between curcumin and propolis against sepsis-induced oxidative stress, inflammation, and apoptosis in kidney of adult male rat. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00104-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
Propolis is a honeybee product displaying an anti-inflammatory, antimicrobial, and antioxidant effect on several tested animal models. Curcumin a polyphenol extracted from turmeric that gained interest as a potentially safe and inexpensive treatment for kidney diseases.
The present study aimed to compare the protective effects of curcumin and propolis on endotoxemia-induced renal dysfunction.
Results
Sepsis induction caused a marked decline in renal GSH, GPx, and GR, as well as antioxidant enzyme activities; CAT and SOD. Elevation in LPO, NO, IL-1β, and PGE2 contents were observed as well. A marked induction in Bax contents, Bax\Bcl2 ratio, accompanied by activation of NF-kB in the kidney of sepsis-induced rats was reported. However, Prop pretreatment of endotoxemic rats was effective in controlling the depletion of renal GSH content and its correlated enzymes; Cur was more potent in maintaining the renal CAT and SOD contents, as well as, dimensioning LPO content. Despite the renal inflammatory marker IL-1β, PGE2, NO contents, Bax\Bcl2 ratio, and NF-kB activation were greatly reduced by both curcumin and propolis, only Cur pretreatment attenuated NF-kB activation in kidney tissue of septic rat.
Conclusion
Though pretreatment of either Cur or Prop to septic rats protected their kidneys against oxidation, inflammation, and apoptosis status, Cur pretreatment was superior in protecting rats’ kidney after sepsis induction.
Collapse
|
9
|
Kang K, Kim HH, Choi Y. Tiotropium is Predicted to be a Promising Drug for COVID-19 Through Transcriptome-Based Comprehensive Molecular Pathway Analysis. Viruses 2020; 12:E776. [PMID: 32698440 PMCID: PMC7412475 DOI: 10.3390/v12070776] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/10/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) outbreak caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) affects almost everyone in the world in many ways. We previously predicted antivirals (atazanavir, remdesivir and lopinavir/ritonavir) and non-antiviral drugs (tiotropium and rapamycin) that may inhibit the replication complex of SARS-CoV-2 using our molecular transformer-drug target interaction (MT-DTI) deep-learning-based drug-target affinity prediction model. In this study, we dissected molecular pathways upregulated in SARS-CoV-2-infected normal human bronchial epithelial (NHBE) cells by analyzing an RNA-seq data set with various bioinformatics approaches, such as gene ontology, protein-protein interaction-based network and gene set enrichment analyses. The results indicated that the SARS-CoV-2 infection strongly activates TNF and NFκB-signaling pathways through significant upregulation of the TNF, IL1B, IL6, IL8, NFKB1, NFKB2 and RELB genes. In addition to these pathways, lung fibrosis, keratinization/cornification, rheumatoid arthritis, and negative regulation of interferon-gamma production pathways were also significantly upregulated. We observed that these pathologic features of SARS-CoV-2 are similar to those observed in patients with chronic obstructive pulmonary disease (COPD). Intriguingly, tiotropium, as predicted by MT-DTI, is currently used as a therapeutic intervention in COPD patients. Treatment with tiotropium has been shown to improve pulmonary function by alleviating airway inflammation. Accordingly, a literature search summarized that tiotropium reduced expressions of IL1B, IL6, IL8, RELA, NFKB1 and TNF in vitro or in vivo, and many of them have been known to be deregulated in COPD patients. These results suggest that COVID-19 is similar to an acute mode of COPD caused by the SARS-CoV-2 infection, and therefore tiotropium may be effective for COVID-19 patients.
Collapse
Affiliation(s)
- Keunsoo Kang
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Korea;
| | - Hoo Hyun Kim
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Korea;
| | - Yoonjung Choi
- Deargen Inc., Daejeon, Yuseong-gu, Munji-dong 103-6, Korea
| |
Collapse
|