1
|
Fu Z, Zhang S, Gu X, Guan T, Wang C, Zhang J, Wang Y, Guo H, Wang L, Zhang T. LDP alleviates TKI-induced proteinuria through reversing the expression of RelA in renal tissues. Front Med (Lausanne) 2023; 10:1095344. [PMID: 36744132 PMCID: PMC9892181 DOI: 10.3389/fmed.2023.1095344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs), as an important tumor therapy, can induce severe proteinuria that significantly affects anti-tumor therapy. Existing therapies against proteinuria induced by other etiologies are currently ineffective for TKI-induced proteinuria. It has been shown that various types of proteinuria are related to podocyte damage caused by changes in the RelA signaling pathway. Our experiments confirmed that TKIs activate the renal RelA signaling pathway, and induce death of podocytes and destruction of the glomerular filtration barrier. Here we found that Liuwei Dihuang Pill (LDP) attenuated the inflammatory injury of podocytes through inhibiting activation of RelA, and subsequently relieved TKI-related proteinuria and prevented the progression of TMA and FSGS. Our finding indicated that LDP may be effective for the treatment of TKI-induced proteinuria, which is clinically significant.
Collapse
Affiliation(s)
- Zhou Fu
- Key Laboratory of Cancer Prevention and Therapy, Department of Hepatobiliary Surgery, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Su Zhang
- Key Laboratory of Cancer Prevention and Therapy, Department of Hepatobiliary Surgery, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China,Key Laboratory of Cancer Prevention and Therapy, Department of Gynecologic Oncology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiaoying Gu
- Key Laboratory of Cancer Prevention and Therapy, Department of Hepatobiliary Surgery, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Tao Guan
- Key Laboratory of Cancer Prevention and Therapy, Department of Hepatobiliary Surgery, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Chengmeng Wang
- Key Laboratory of Cancer Prevention and Therapy, Department of Hepatobiliary Surgery, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jiaqi Zhang
- Department of Cell Biology and Medical Genetics, School of Basic Medical Science, Shanxi Medical University, Jinzhong, China
| | - Yun Wang
- Key Laboratory of Cancer Prevention and Therapy, Department of Hepatobiliary Surgery, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hua Guo
- Key Laboratory of Cancer Prevention and Therapy, Department of Tumor Cell Biology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China,Hua Guo,
| | - Lu Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,Lu Wang,
| | - Ti Zhang
- Key Laboratory of Cancer Prevention and Therapy, Department of Hepatobiliary Surgery, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China,Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,*Correspondence: Ti Zhang,
| |
Collapse
|
2
|
Zhu F, Li W, Wang L, Dai B, Liu Z, Wu H, Deng T. Study on the treatment of postmenopausal osteoporosis with quercetin in Liuwei Dihuang Pill based on network pharmacology. J Orthop Surg Res 2023; 18:21. [PMID: 36624462 PMCID: PMC9827666 DOI: 10.1186/s13018-022-03470-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Liuwei Dihuang Pill (LP) was verified to alleviate postmenopausal osteoporosis (PMOP) development. Nevertheless, the major constituent of LP and the related network pharmacology study remain unexplored. METHODS Protein-protein interaction was established to identify the downstream target of LP in PMOP, and the related signaling pathway was investigated by bioinformatics analysis. MC3T3-E1 cells were added to ferric ammonium citrate (FAC) to mimic osteoporosis in vitro. The osteoblasts were identified by Alizarin red staining. Western blot was applied to evaluate protein levels. In addition, Cell Counting Kit-8 (CCK8) assay was applied to assess cell viability, and cell apoptosis was assessed by flow cytometry. RESULTS Quercetin was the major constituent of LP. In addition, quercetin significantly reversed FAC-induced inhibition of osteogenic differentiation in MC3T3-E1 cells. In addition, quercetin notably abolished the FAC-induced upregulation of Bax, Caspase-3, FOS, JUN, TGFB1 and PPARD. In contrast, Bcl-2, p-mTOR/mTOR, p-AKT/AKT and p-PI3K/PI3K levels in MC3T3-E1 cells were reduced by FAC, which was restored by quercetin. Meanwhile, FAC notably inhibited the viability of MC3T3-E1 cells via inducing apoptosis, but this impact was abolished by quercetin. Furthermore, quercetin could reverse pcDNA3.1-FOS-mediated growth of FAC-treated osteoblasts by mediating PI3K/AKT/mTOR signaling. CONCLUSION Quercetin alleviated the progression of PMOP via activation of PI3K/AKT/mTOR signaling. Hence, this study would shed novel insights into discovering new methods against PMOP.
Collapse
Affiliation(s)
- Fuping Zhu
- grid.477978.2Department of Foot and Ankle Orthopedics, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Wuping Li
- grid.477978.2Department of Foot and Ankle Orthopedics, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Linhua Wang
- grid.477978.2Department of Extremities and Arthrosis, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Bing Dai
- grid.477978.2Department of Pharmacy, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Zongyi Liu
- grid.477978.2Department of Foot and Ankle Orthopedics, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Hang Wu
- grid.477978.2Department of Foot and Ankle Orthopedics, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Ting Deng
- grid.452708.c0000 0004 1803 0208Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital of Central South University, No. 139, Renmin Road, Furong District, Changsha, Hunan China
| |
Collapse
|
3
|
Chen Z, Zhu Y, Lu M, Yu L, Tan S, Ren T. Effects of Rosa roxburghii Tratt glycosides and quercetin on D-galactose-induced aging mice model. J Food Biochem 2022; 46:e14425. [PMID: 36125966 DOI: 10.1111/jfbc.14425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 01/13/2023]
Abstract
To investigate the effects of RRT (Rosa roxburghii Tratt) glucosides and quercetin on oxidative stress and chronic inflammation in D-galactose-induced aging mice, 90 mice (8 weeks old) were randomly divided into the normal group (NC), aging model group (D-gal), isoquercitrin group (D-gal+isoquercitrin), quercitrin group (D-gal+quercitrin), quercetin group (D-gal+quercetin) and positive control group (D-gal+Metformin). The aging model was established by subcutaneous injection of D-galactose (100 mg/kg). After 42 days of the administration, antioxidant and inflammatory indexes were measured, HE staining was used to investigate pathological changes in liver and brain tissue, and Western blot was used to determine the protein abundance of nuclear factor E2-related factor (Nrf2) and heme oxygenase (HO-1) in the brain. The results showed that, when compared to the NC group, the D-gal group had a significantly lower brain, liver, kidney, and spleen indexes; the contents of MDA, L-1β, IL-6, and TNF-α in serum, liver, and brain were significantly higher, but the levels of CAT, SOD, and GSH-Px were significantly lower. Isoquercitrin, quercitrin, and quercetin significantly increased organ indexes and activities of CAT, SOD, and GSH-Px while decreasing MDA, IL-1β, IL-6, and TNF-α levels in serum, liver, and brain tissues compared to the D-gal group. The morphological changes in the brain and liver tissue were significantly restored by glycosides and quercetin, as observed in HE staining. Furthermore, Western blot results revealed that glycosides and quercetin increased the protein levels of Nrf2, HO-1, and NQO1. Finally, the antioxidant and anti-inflammatory effects of RRT glycoside and quercetin in aging may be attributed to an activated Nrf2/HO-1 signaling pathway. PRACTICAL APPLICATIONS: Aging is characterized by physical changes and dysfunction of numerous biological systems caused by a variety of factors. The oxidative stress and inflammatory effects of RRT glycosides and quercetin on D-galactose-induced aging mice were investigated in this study. RRT glycosides and quercetin were found to protect organ atrophy, liver, and brain tissue in aging mice by regulating oxidative stress and chronic inflammation. It served as the theoretical foundation for the investigation of Rosa roxburghii Tratt as a health product and pharmaceutical raw material.
Collapse
Affiliation(s)
- Zhen Chen
- College of Brewing and Food Engineering, Guizhou University, Guiyang, P. R. China
| | - Yuping Zhu
- College of Basic Medicine, Guizhou Medical University, Guiyang, P. R. China
| | - Mintao Lu
- College of Brewing and Food Engineering, Guizhou University, Guiyang, P. R. China
| | - Lu Yu
- College of Brewing and Food Engineering, Guizhou University, Guiyang, P. R. China
| | - Shuming Tan
- College of Brewing and Food Engineering, Guizhou University, Guiyang, P. R. China
| | - Tingyuan Ren
- College of Brewing and Food Engineering, Guizhou University, Guiyang, P. R. China
- Institute of Guizhou Distinctive Plant Resources Conservation, Guizhou Academy of Agricultural Science, Guiyang, P. R. China
| |
Collapse
|
4
|
Sesamol Attenuates Neuroinflammation by Regulating the AMPK/SIRT1/NF- κB Signaling Pathway after Spinal Cord Injury in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8010670. [PMID: 35035666 PMCID: PMC8758308 DOI: 10.1155/2022/8010670] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022]
Abstract
Inflammation is one of the crucial mechanisms mediating spinal cord injury (SCI) progress. Sesamol, a component of sesame oil, has anti-inflammatory activity, but its mechanism in SCI remains unclear. We investigated if the AMPK/SIRT1/NF-κB pathway participated in anti-inflammation of sesamol in SCI. Sesamol could inhibit neuronal apoptosis, reduce neuroinflammation, enhance M2 phenotype microglial polarization, and improved motor function recovery in mice after SCI. Furthermore, sesamol increased SIRT1 protein expression and p-AMPK/AMPK ratio, while it downregulated the p-p65/p65 ratio, indicating that sesamol treatment upregulated the AMPK/SIRT1 pathway and inhibited NF-κB activation. However, these effects were blocked by compound C which is a specific AMPK inhibitor. Together, the study suggests that sesamol is a potential drug for antineuroinflammation and improving locomotor functional recovery through regulation of the AMPK/SIRT1/NF-κB pathway in SCI.
Collapse
|
5
|
Kopalli SR, Cha KM, Cho JY, Kim SK, Koppula S. Cordycepin from Medicinal Fungi Cordyceps militaris Mitigates Inflammaging-Associated Testicular Damage via Regulating NF-κB/MAPKs Signaling in Naturally Aged Rats. MYCOBIOLOGY 2022; 50:89-98. [PMID: 35291597 PMCID: PMC8890559 DOI: 10.1080/12298093.2022.2035515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Inflammaging in male reproductive organs covers a wide variety of problems, including sexual dysfunction and infertility. In this study, the beneficial effects of cordycepin (COR), isolated from potential medicinal fungi Cordyceps militaris, in aging-associated testicular inflammation and serum biochemical changes in naturally aged rats were investigated. Male Sprague Dawley rats were divided into young control (YC), aged control (AC), and COR (5, 10, and 20 mg/kg) treated aged rat groups. Aging-associated serum biochemical changes and inflammatory parameters were analyzed by biochemical assay kits, Western blotting, and real-time RT-PCR. Results showed a significant (p < 0.05) alteration in the total blood cell count, lipid metabolism, and liver functional parameters in AC group when compared with YC group. However, COR-treated aged rats ameliorated the altered biochemical parameters significantly (p < 0.05 and p < 0.01 at 5, 10, and 20 mg/kg, respectively). Furthermore, the increase in the expression of inflammatory mediators (COX-2, interleukin (IL)-6, IL-1β, and tissue necrosis factor-alpha) in aged rat testis was significant (p < 0.05) when compared with YC group. Treatment with COR at 20 mg/kg to aged rats attenuated the increased expression of inflammatory mediators significantly (p < 0.05). Mechanistic studies revealed that the potential attenuating effects exhibited by COR in aged rats was mediated by regulation of NF-κB activation and MAPKs (c-Jun N-terminal kinase, extracellular signal-regulated kinase 1/2, and p38) signaling. In conclusion, COR restored the altered serum biochemical parameters in aged rats and ameliorated the aging-associated testicular inflammation proving the therapeutic benefits of COR targeting inflammaging-associated male sexual dysfunctions.
Collapse
Affiliation(s)
| | - Kyu-Min Cha
- D&L Biochem, Business Incubator Center 406, Chungju-Si, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Si-Kwan Kim
- Department of Integrated Biosciences, College of Biomedical & Health Science, Konkuk University, Chungju-si, Republic of Korea
| | - Sushruta Koppula
- Department of Integrated Biosciences, College of Biomedical & Health Science, Konkuk University, Chungju-si, Republic of Korea
| |
Collapse
|
6
|
Guo H, Ding D, Wang L, Yan J, Ma L, Jin Q. Metformin attenuates osteoclast-mediated abnormal subchondral bone remodeling and alleviates osteoarthritis via AMPK/NF-κB/ERK signaling pathway. PLoS One 2021; 16:e0261127. [PMID: 34914744 PMCID: PMC8675877 DOI: 10.1371/journal.pone.0261127] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/28/2021] [Indexed: 11/18/2022] Open
Abstract
This study explored the mechanism by which metformin (Met) inhibits osteoclast activation and determined its effects on osteoarthritis (OA) mice. Bone marrow-derived macrophages were isolated. Osteoclastogenesis was detected using tartrate-resistant acid phosphatase (TRAP) staining. Cell proliferation was evaluated using CCK-8, F-actin rings were detected by immunofluorescence staining, and bone resorption was detected using bone slices. Nuclear factor kappa-B (NF-κB) and nuclear factor of activated T-cell cytoplasmic 1 (NFATc1) were detected using luciferase assays, and the adenosine monophosphate-activated protein kinase (AMPK), NF-κB, and mitogen-activated protein kinase (MAPK) signaling pathways were detected using western blotting. Finally, expression of genes involved in osteoclastogenesis was measured using quantitative polymerase chain reaction. A knee OA mouse model was established by destabilization of the medial meniscus (DMM). Male C57BL/6J mice were assigned to sham-operated, DMM+vehicle, and DMM+Met groups. Met (100 mg/kg/d) or vehicle was administered from the first day postoperative until sacrifice. At 4- and 8-week post OA induction, micro-computed tomography was performed to analyze microstructural changes in the subchondral bone, hematoxylin and eosin staining and Safranin-O/Fast Green staining were performed to evaluate the degenerated cartilage, TRAP-stained osteoclasts were enumerated, and receptor activator of nuclear factor κB ligand (RANKL), AMPK, and NF-κB were detected using immunohistochemistry. BMM proliferation was not affected by Met treatment below 2 mM. Met inhibited osteoclast formation and bone resorption in a dose-dependent manner in vitro. Met suppressed RANKL-induced activation of p-AMPK, NF-κB, phosphorylated extracellular regulated protein kinases (p-ERK) and up-regulation of genes involved in osteoclastogenesis. Met reversed decreases in BV/TV, Tb.Th, Tb.N, and CD, and an increase in Tb.Sp at 4 weeks postoperatively. The number of osteoclasts and OARSI score were decreased by Met without effect on body weight or blood glucose levels. Met inhibited RANKL, p-AMPK, and NF-κB expression in early OA. The mechanism by which Met inhibits osteoclast activation may be associated with AMPK/NF-κB/ERK signaling pathway, indicating a novel strategy for OA treatment.
Collapse
Affiliation(s)
- Haohui Guo
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
| | - Dong Ding
- Clinical College, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
| | - Limei Wang
- Clinical College, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
- Medical College, Qingdao Binhai University, West Coast New District, Qingdao, Shandong, P.R. China
| | - Jiangbo Yan
- Clinical College, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
| | - Long Ma
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
- * E-mail: (QJ); (LM)
| | - Qunhua Jin
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
- Clinical College, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
- * E-mail: (QJ); (LM)
| |
Collapse
|
7
|
He LL, Wang YC, Ai YT, Wang L, Gu SM, Wang P, Long QH, Hu H. Qiangji Decoction Alleviates Neurodegenerative Changes and Hippocampal Neuron Apoptosis Induced by D-Galactose via Regulating AMPK/SIRT1/NF-κB Signaling Pathway. Front Pharmacol 2021; 12:735812. [PMID: 34630111 PMCID: PMC8495211 DOI: 10.3389/fphar.2021.735812] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/03/2021] [Indexed: 01/20/2023] Open
Abstract
Qiangji Decoction (QJD), a classic formula, has been widely used to treat brain aging-related neurodegenerative diseases. However, the mechanisms underlying QJD's improvement in cognitive impairment of neurodegenerative diseases remain unclear. In this study, we employed D-galactose to establish the model of brain aging by long-term D-galactose subcutaneous injection. Next, we investigated QJD's effect on cognitive function of the model of brain aging and the mechanisms that QJD suppressing neuroinflammation as well as improving neurodegenerative changes and hippocampal neuron apoptosis. The mice of brain aging were treated with three different dosages of QJD (12.48, 24.96, and 49.92 g/kg/d, respectively) for 4 weeks. Morris water maze was used to determine the learning and memory ability of the mice. HE staining and FJB staining were used to detect the neurodegenerative changes. Nissl staining and TUNEL staining were employed to detect the hippocampal neuron apoptosis. The contents of TNF-α, IL-1β, and IL-6 in the hippocampus were detected by using ELISA. Meanwhile, we employed immunofluorescence staining to examine the levels of GFAP and IBA1 in the hippocampus. Besides, the protein expression levels of Bcl-2, Bax, caspase-3, cleaved caspase-3, AMPKα, p-AMPKα-Thr172, SIRT1, IκBα, NF-κB p65, p-IκBα-Ser32, and p-NF-κB p65-Ser536 in the hippocampus of different groups were detected by Western blot (WB). Our findings showed that the QJD-treated groups, especially the M-QJD group, mitigated learning and memory impairments of the model of brain aging as well as the improvement of neurodegenerative changes and hippocampal neuron apoptosis. Moreover, the M-QJD markedly attenuated the neuroinflammation by regulating the AMPK/SIRT1/NF-κB signaling pathway. Taken together, QJD alleviated neurodegenerative changes and hippocampal neuron apoptosis in the model of brain aging via regulating the AMPK/SIRT1/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Li-Ling He
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yun-Cui Wang
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, China
| | - Ya-Ting Ai
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, China
| | - Ling Wang
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, China
| | - Si-Meng Gu
- Department of Psychology, Jiangsu University Medical School, Zhenjiang, China
| | - Ping Wang
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Qing-Hua Long
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Hui Hu
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China.,School of Nursing, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|