1
|
Zambuzzi WF, Ferreira MR. Dynamic ion-releasing biomaterials actively shape the microenvironment to enhance healing. J Trace Elem Med Biol 2025; 89:127657. [PMID: 40250222 DOI: 10.1016/j.jtemb.2025.127657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Dynamic ion-releasing biomaterials have redefined the role of implantable bone devices, transitioning them from passive mechanical support to active players in tissue regeneration. These materials actively modulate the surrounding biological microenvironment by releasing bioactive ions (e.g.: calcium, phosphate, and cobalt) which dynamically interact with cells and tissues surrounding them. This interaction becomes the microenvironment highly active and accelerates bone healing, promoting osteogenesis, and enhancing osseointegration. The ions modulate key biological processes in this regard, including osteoblast adhesion, proliferation, differentiation, angiogenesis, and immune responses, as well as coupled physiological mechanisms, ensuring that the implanted biomaterials foster an optimal environment for bone regeneration. More advanced surface modifications onto materials (e.g.: nanostructuring hydroxyapatites coatings) have been shown to further boost ion release, amplifying the ability of the material to influence surrounding tissues. As a result, ion-releasing biomaterials not only improve implant integration but also accelerate the overall healing process. Looking forward, the development of smart biomaterials capable of adjusting ion release in response to environmental changes offers exciting possibilities for personalized regenerative therapies and this review provides a comprehensive understanding of how dynamic ion-releasing biomaterials actively shape the microenvironment to enhance healing, focusing on their ability to modulate biological processes such as osteogenesis and angiogenesis. By examining the latest advances in surface modifications and ion-release mechanisms, this review also aims to revise the potential of these materials to revolutionize regenerative medicine, offering knowledge to guide the development of next-generation biomaterials for improved clinical outcomes.
Collapse
Affiliation(s)
- Willian Fernando Zambuzzi
- UNESP: São Paulo State University - Laboratory of Bioassays and Cellular Dynamics, Department of Chemical and Biological Science, Institute of Biosciences, Botucatu, São Paulo 18618-970, Brazil.
| | - Marcel Rodrigues Ferreira
- UNESP: São Paulo State University - Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit - Unipex, School of Medicine, Botucatu, São Paulo, Brazil
| |
Collapse
|
2
|
Homa K, Zakrzewski W, Dobrzyński W, Piszko PJ, Piszko A, Matys J, Wiglusz RJ, Dobrzyński M. Surface Functionalization of Titanium-Based Implants with a Nanohydroxyapatite Layer and Its Impact on Osteoblasts: A Systematic Review. J Funct Biomater 2024; 15:45. [PMID: 38391898 PMCID: PMC10889183 DOI: 10.3390/jfb15020045] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024] Open
Abstract
This study aims to evaluate the influence of a nanohydroxyapatite layer applied to the surface of titanium or titanium alloy implants on the intricate process of osseointegration and its effect on osteoblast cell lines, compared to uncoated implants. Additionally, the investigation scrutinizes various modifications of the coating and their consequential effects on bone and cell line biocompatibility. On the specific date of November 2023, an exhaustive electronic search was conducted in esteemed databases such as PubMed, Web of Science, and Scopus, utilizing the meticulously chosen keywords ((titanium) AND ((osteoblasts) and hydroxyapatite)). Methodologically, the systematic review meticulously adhered to the PRISMA protocol. Initially, a total of 1739 studies underwent scrutiny, with the elimination of 741 duplicate records. A further 972 articles were excluded on account of their incongruence with the predefined subjects. The ultimate compilation embraced 26 studies, with a predominant focus on the effects of nanohydroxyapatite coating in isolation. However, a subset of nine papers delved into the nuanced realm of its modifiers, encompassing materials such as chitosan, collagen, silver particles, or gelatine. Across many of the selected studies, the application of nanohydroxyapatite coating exhibited a proclivity to enhance the osseointegration process. The modifications thereof showcased a positive influence on cell lines, manifesting in increased cellular spread or the attenuation of bacterial activity. In clinical applications, this augmentation potentially translates into heightened implant stability, thereby amplifying the overall procedural success rate. This, in turn, renders nanohydroxyapatite-coated implants a viable and potentially advantageous option in clinical scenarios where non-modified implants may not suffice.
Collapse
Affiliation(s)
- Karolina Homa
- Niepubliczny Zakład Opieki Zdrowotnej Medident, Żeromskiego 2A, 43-230 Goczalkowice-Zdroj, Poland
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
| | - Wojciech Zakrzewski
- Pre-clinical Research Centre, Wroclaw Medical University, Bujwida 44, 50-368 Wroclaw, Poland
| | - Wojciech Dobrzyński
- Department of Dentofacial Orthopedics and Orthodontics, Division of Facial Abnormalities, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
| | - Paweł J Piszko
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
- Department of Polymer Engineering and Technology, Faculty of Chemistry, Wroclaw University of Science and Technology (WUST), Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Aleksandra Piszko
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
| | - Jacek Matys
- Oral Surgery Department, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
| | - Rafal J Wiglusz
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
- Institute of Low Temperature and Structure Research, PAS, Okolna 2, 50-422 Wroclaw, Poland
| | - Maciej Dobrzyński
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
| |
Collapse
|
3
|
de Almeida GS, Ferreira MR, da Costa Fernandes CJ, Suter LC, Carra MGJ, Correa DRN, Rangel EC, Saeki MJ, Zambuzzi WF. Development of cobalt (Co)-doped monetites for bone regeneration. J Biomed Mater Res B Appl Biomater 2024; 112:e35319. [PMID: 37610175 DOI: 10.1002/jbm.b.35319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/04/2023] [Indexed: 08/24/2023]
Abstract
Cobalt-doped monetite powders were synthesized by coprecipitation method under a cobalt nominal content between 2 and 20 mol % of total cation. Structural characterization of samples was performed by using X-ray diffraction (XRD), Fourier transform infrared spectroscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. XRD results indicated that the Co-doped samples exhibited a monetite single-phase with the cell parameters and crystallite size dependent on the amount of substitutional element incorporated into the triclinic crystalline structure. Cell viability and adhesion assays using pre-osteoblastic cells showed there is no toxicity and the RTqPCR analysis showed significant differences in the expression for osteoblastic phenotype genes, showing a potential material for the bone regeneration.
Collapse
Affiliation(s)
- Gerson Santos de Almeida
- Laboratory of Bioassays and Cellular Dynamics, Department of Chemical & Biological Sciences, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Marcel Rodrigues Ferreira
- Laboratory of Bioassays and Cellular Dynamics, Department of Chemical & Biological Sciences, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Célio Junior da Costa Fernandes
- Laboratory of Bioassays and Cellular Dynamics, Department of Chemical & Biological Sciences, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Luísa Camilo Suter
- Laboratory of Bioassays and Cellular Dynamics, Department of Chemical & Biological Sciences, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Maria Gabriela Jacheto Carra
- Laboratory of Bioassays and Cellular Dynamics, Department of Chemical & Biological Sciences, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Diego Rafael Nespeque Correa
- Laboratory of Anelasticity and Biomaterials, Department of Physics and Meteorology, School of Sciences, São Paulo State University-UNESP, Bauru, São Paulo, Brazil
| | - Elidiane Cipriano Rangel
- Laboratory of Technological Plasmas (LaPTec), Institute of Science and Technology, Sao Paulo State University (UNESP), Sorocaba, São Paulo, Brazil
| | - Margarida Juri Saeki
- Laboratory of Bioassays and Cellular Dynamics, Department of Chemical & Biological Sciences, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Willian Fernando Zambuzzi
- Laboratory of Bioassays and Cellular Dynamics, Department of Chemical & Biological Sciences, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| |
Collapse
|
4
|
Fernandes CJDC, Cassiano AFB, Henrique-Silva F, Cirelli JA, de Souza EP, Coaguila-Llerena H, Zambuzzi WF, Faria G. Recombinant sugarcane cystatin CaneCPI-5 promotes osteogenic differentiation. Tissue Cell 2023; 83:102157. [PMID: 37451011 DOI: 10.1016/j.tice.2023.102157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Cysteine proteases orchestrate bone remodeling, and are inhibited by cystatins. In reinforcing our hypothesis that exogenous and naturally obtained inhibitors of cysteine proteases (cystatins) act on bone remodeling, we decided to challenge osteoblasts with sugarcane-derived cystatin (CaneCPI-5) for up to 7 days. To this end, we investigated molecular issues related to the decisive, preliminary stages of osteoblast biology, such as adhesion, migration, proliferation, and differentiation. Our data showed that CaneCPI-5 negatively modulates both cofilin phosphorylation at Ser03, and the increase in cytoskeleton remodeling during the adhesion mechanism, possibly as a prerequisite to controlling cell proliferation and migration. This is mainly because CaneCPI-5 also caused the overexpression of the CDK2 gene, and greater migration of osteoblasts. Extracellular matrix remodeling was also evaluated in this study by investigating matrix metalloproteinase (MMP) activities. Our data showed that CaneCPI-5 overstimulates both MMP-2 and MMP-9 activities, and suggested that this cellular event could be related to osteoblast differentiation. Additionally, differentiation mechanisms were better evaluated by investigating Osterix and alkaline phosphatase (ALP) genes, and bone morphogenetic protein (BMP) signaling members. Altogether, our data showed that CaneCPI-5 can trigger biological mechanisms related to osteoblast differentiation, and broaden the perspectives for better exploring biotechnological approaches for bone disorders.
Collapse
Affiliation(s)
- Célio Junior da Costa Fernandes
- Bioassays and Cell Dynamics Lab, Department of Chemical and Biological Sciences, Institute of Biosciences, Sao Paulo State University - UNESP, Botucatu, São Paulo, Brazil; Exercise Cell Biology Lab, School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil; Department of Biophysics and Pharmacology, Institute of Biosciences, Sao Paulo State University - UNESP, Botucatu, São Paulo, Brazil
| | - Ana Flávia Balestrero Cassiano
- Department of Restorative Dentistry, School of Dentistry at Araraquara, Sao Paulo State University - UNESP, Araraquara, São Paulo, Brazil
| | - Flavio Henrique-Silva
- Department of Genetics and Evolution, Federal University of Sao Carlos, São Carlos, São Paulo, Brazil
| | - Joni Augusto Cirelli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University -UNESP, Araraquara, São Paulo, Brazil
| | - Eduardo Pereira de Souza
- Department of Genetics and Evolution, Federal University of Sao Carlos, São Carlos, São Paulo, Brazil
| | - Hernán Coaguila-Llerena
- Department of Restorative Dentistry, School of Dentistry at Araraquara, Sao Paulo State University - UNESP, Araraquara, São Paulo, Brazil
| | - Willian Fernando Zambuzzi
- Bioassays and Cell Dynamics Lab, Department of Chemical and Biological Sciences, Institute of Biosciences, Sao Paulo State University - UNESP, Botucatu, São Paulo, Brazil.
| | - Gisele Faria
- Department of Restorative Dentistry, School of Dentistry at Araraquara, Sao Paulo State University - UNESP, Araraquara, São Paulo, Brazil.
| |
Collapse
|
5
|
Shirazi S, Ravindran S, Cooper LF. Topography-mediated immunomodulation in osseointegration; Ally or Enemy. Biomaterials 2022; 291:121903. [PMID: 36410109 PMCID: PMC10148651 DOI: 10.1016/j.biomaterials.2022.121903] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Osteoimmunology is at full display during endosseous implant osseointegration. Bone formation, maintenance and resorption at the implant surface is a result of bidirectional and dynamic reciprocal communication between the bone and immune cells that extends beyond the well-defined osteoblast-osteoclast signaling. Implant surface topography informs adherent progenitor and immune cell function and their cross-talk to modulate the process of bone accrual. Integrating titanium surface engineering with the principles of immunology is utilized to harness the power of immune system to improve osseointegration in healthy and diseased microenvironments. This review summarizes current information regarding immune cell-titanium implant surface interactions and places these events in the context of surface-mediated immunomodulation and bone regeneration. A mechanistic approach is directed in demonstrating the central role of osteoimmunology in the process of osseointegration and exploring how regulation of immune cell function at the implant-bone interface may be used in future control of clinical therapies. The process of peri-implant bone loss is also informed by immunomodulation at the implant surface. How surface topography is exploited to prevent osteoclastogenesis is considered herein with respect to peri-implant inflammation, osteoclastic precursor-surface interactions, and the upstream/downstream effects of surface topography on immune and progenitor cell function.
Collapse
Affiliation(s)
- Sajjad Shirazi
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA.
| | - Sriram Ravindran
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA
| | - Lyndon F Cooper
- School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
6
|
Shao H, Ma M, Wang Q, Yan T, Zhao B, Guo S, Tong S. Advances in the superhydrophilicity-modified titanium surfaces with antibacterial and pro-osteogenesis properties: A review. Front Bioeng Biotechnol 2022; 10:1000401. [PMID: 36147527 PMCID: PMC9485881 DOI: 10.3389/fbioe.2022.1000401] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/17/2022] [Indexed: 12/12/2022] Open
Abstract
In recent years, the rate of implant failure has been increasing. Microbial infection was the primary cause, and the main stages included bacterial adhesion, biofilm formation, and severe inhibition of implant osseointegration. Various biomaterials and their preparation methods have emerged to produce specific implants with antimicrobial or bactericidal properties to reduce implant infection caused by bacterial adhesion and effectively promote bone and implant integration. In this study, we reviewed the research progress of bone integration promotion and antibacterial action of superhydrophilic surfaces based on titanium alloys. First, the adverse reactions caused by bacterial adhesion to the implant surface, including infection and bone integration deficiency, are briefly introduced. Several commonly used antibacterial methods of titanium alloys are introduced. Secondly, we discuss the antibacterial properties of superhydrophilic surfaces based on ultraviolet photo-functionalization and plasma treatment, in contrast to the antibacterial principle of superhydrophobic surface morphology. Thirdly, the osteogenic effects of superhydrophilic surfaces are described, according to the processes of osseointegration: osteogenic immunity, angiogenesis, and osteogenic related cells. Finally, we discuss the challenges and prospects for the development of this superhydrophilic surface in clinical applications, as well as the prominent strategies and directions for future research.
Collapse
Affiliation(s)
- Hanyu Shao
- Department of Plastic Surgery, First Hospital of China Medical University, Shenyang, China
| | - Mingchen Ma
- School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Qiang Wang
- School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Tingting Yan
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Baohong Zhao
- School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Shu Guo
- Department of Plastic Surgery, First Hospital of China Medical University, Shenyang, China
| | - Shuang Tong
- Department of Plastic Surgery, First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Zhou F, Zhang G, Wu Y, Xiong Y. Inflammasome Complexes: Crucial mediators in osteoimmunology and bone diseases. Int Immunopharmacol 2022; 110:109072. [DOI: 10.1016/j.intimp.2022.109072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/15/2022] [Accepted: 07/14/2022] [Indexed: 11/05/2022]
|
8
|
Silva RCS, Agrelli A, Andrade AN, Mendes-Marques CL, Arruda IRS, Santos LRL, Vasconcelos NF, Machado G. Titanium Dental Implants: An Overview of Applied Nanobiotechnology to Improve Biocompatibility and Prevent Infections. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3150. [PMID: 35591484 PMCID: PMC9104688 DOI: 10.3390/ma15093150] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023]
Abstract
This review addresses the different aspects of the use of titanium and its alloys in the production of dental implants, the most common causes of implant failures and the development of improved surfaces capable of stimulating osseointegration and guaranteeing the long-term success of dental implants. Titanium is the main material for the development of dental implants; despite this, different surface modifications are studied aiming to improve the osseointegration process. Nanoscale modifications and the bioactivation of surfaces with biological molecules can promote faster healing when compared to smooth surfaces. Recent studies have also pointed out that gradual changes in the implant, based on the microenvironment of insertion, are factors that may improve the integration of the implant with soft and bone tissues, preventing infections and osseointegration failures. In this context, the understanding that nanobiotechnological surface modifications in titanium dental implants improve the osseointegration process arouses interest in the development of new strategies, which is a highly relevant factor in the production of improved dental materials.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Giovanna Machado
- Centro de Tecnologias Estratégicas do Nordeste-Cetene, Av. Prof. Luiz Freire, 01, Cidade Universitária, Recife CEP 50740-545, PE, Brazil; (R.C.S.S.); (A.A.); (A.N.A.); (C.L.M.-M.); (I.R.S.A.); (L.R.L.S.); (N.F.V.)
| |
Collapse
|
9
|
Nanohydroxyapatite-Blasted Bioactive Surface Drives Shear-Stressed Endothelial Cell Growth and Angiogenesis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1433221. [PMID: 35252440 PMCID: PMC8890866 DOI: 10.1155/2022/1433221] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/23/2021] [Accepted: 01/19/2022] [Indexed: 12/22/2022]
Abstract
Nanosized crystalline hydroxyapatite coating (HAnano®) accelerates the osteointegration of dental implants which is hypothesized to drive angiogenesis. In order to test this hypothesis, we have subjected shear-stressed human umbilical vein endothelial cells (HUVECs) to a HAnano®-enriched medium, as well as to surface presenting dual acid etching (DAE) as a control. To note, the titanium implants were coated with 10 nm in diameter HA particles using the Promimic HAnano method. Our data reveals that HAnano® modulates higher expression of genes related with endothelial cell performance and viability, such as VEGF, eNOS, and AKT, and further angiogenesis in vitro by promoting endothelial cell migration. Additionally, the data shows a significant extracellular matrix (ECM) remodeling, and this finding seems developing a dual role in promoting the expression of VEGF and control endothelial cell growth during angiogenesis. Altogether, these data prompted us to further validate this phenomenon by exploring genes related with the control of cell cycle and in fact our data shows that HAnano® promotes higher expression of CDK4 gene, while p21 and p15 genes (suppressor genes) were significantly lower. In conjunction, our data shows for the first time that HAnano®-coated surfaces drive angiogenesis by stimulating a proliferative and migration phenotype of endothelial cells, and this finding opens novel comprehension about osseointegration mechanism considering nanosized hydroxyapatite coating dental implants.
Collapse
|
10
|
Sun Y, Zhang X, Luo M, Hu W, Zheng L, Huang R, Greven J, Hildebrand F, Yuan F. Plasma Spray vs. Electrochemical Deposition: Toward a Better Osteogenic Effect of Hydroxyapatite Coatings on 3D-Printed Titanium Scaffolds. Front Bioeng Biotechnol 2021; 9:705774. [PMID: 34381765 PMCID: PMC8350575 DOI: 10.3389/fbioe.2021.705774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/13/2021] [Indexed: 01/08/2023] Open
Abstract
Surface modification of three-dimensional (3D)-printed titanium (Ti) scaffolds with hydroxyapatite (HA) has been a research hotspot in biomedical engineering. However, unlike HA coatings on a plain surface, 3D-printed Ti scaffolds have inherent porous structures that influence the characteristics of HA coatings and osteointegration. In the present study, HA coatings were successfully fabricated on 3D-printed Ti scaffolds using plasma spray and electrochemical deposition, named plasma sprayed HA (PSHA) and electrochemically deposited HA (EDHA), respectively. Compared to EDHA scaffolds, HA coatings on PSHA scaffolds were smooth and continuous. In vitro cell studies confirmed that PSHA scaffolds have better potential to promote bone mesenchymal stem cell adhesion, proliferation, and osteogenic differentiation than EDHA scaffolds in the early and late stages. Moreover, in vivo studies showed that PSHA scaffolds were endowed with superior bone repair capacity. Although the EDHA technology is simpler and more controllable, its limitation due to the crystalline and HA structures needs to be improved in the future. Thus, we believe that plasma spray is a better choice for fabricating HA coatings on implanted scaffolds, which may become a promising method for treating bone defects.
Collapse
Affiliation(s)
- Yang Sun
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xing Zhang
- Department of Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Mingran Luo
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Weifan Hu
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Li Zheng
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ruqi Huang
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Johannes Greven
- Department of Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Frank Hildebrand
- Department of Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Feng Yuan
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|