1
|
Hochma E, Ishai PB, Firer MA, Minnes R. Phyto-Photodynamic Therapy of Prostate Cancer Cells Mediated by Yemenite 'Etrog' Leave Extracts. Nutrients 2024; 16:1820. [PMID: 38931175 PMCID: PMC11206993 DOI: 10.3390/nu16121820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Cancer therapy, from malignant tumor inhibition to cellular eradication treatment, remains a challenge, especially regarding reduced side effects and low energy consumption during treatment. Hence, phytochemicals as cytotoxic sensitizers or photosensitizers deserve special attention. The dark and photo-response of Yemenite 'Etrog' leaf extracts applied to prostate PC3 cancer cells is reported here. An XTT cell viability assay along with light microscope observations revealed pronounced cytotoxic activity of the extract for long exposure times of 72 h upon concentrations of 175 μg/mL and 87.5 μg/mL, while phototoxic effect was obtained even at low concentration of 10.93 μg/mL and a short introduction period of 1.5 h. For the longest time incubation of 72 h and for the highest extract concentration of 175 μg/mL, relative cell survival decreased by up to 60% (below the IC50). In combined phyto-photodynamic therapy, a reduction of 63% compared to unirradiated controls was obtained. The concentration of extract in cells versus the accumulation time was inversely related to fluorescence emission intensity readings. Extracellular ROS production was also shown. Based on an ATR-FTIR analysis of the powdered leaves and their liquid ethanolic extract, biochemical fingerprints of both polar and non-polar phyto-constituents were identified, thereby suggesting their implementation as phyto-medicine and phyto-photomedicine.
Collapse
Affiliation(s)
- Efrat Hochma
- Department of Physics, Ariel University, Ariel 4070000, Israel; (E.H.); (P.B.I.)
- Department of Chemical Engineering, Ariel University, Ariel 4070000, Israel
| | - Paul Ben Ishai
- Department of Physics, Ariel University, Ariel 4070000, Israel; (E.H.); (P.B.I.)
| | - Michael A. Firer
- Department of Chemical Engineering, Ariel University, Ariel 4070000, Israel
- Adelson School of Medicine, Ariel University, Ariel 4070000, Israel
| | - Refael Minnes
- Department of Physics, Ariel University, Ariel 4070000, Israel; (E.H.); (P.B.I.)
| |
Collapse
|
2
|
İpek P, Atalar MN, Baran A, Baran MF, Ommati MM, Karadag M, Zor M, Eftekhari A, Alma MH, Benis KZ, Nuriyeva F, Khalilov R. Determination of chemical components of the endemic species Allium turcicum L. plant extract by LC-MS/MS and evaluation of medicinal potentials. Heliyon 2024; 10:e27386. [PMID: 38560691 PMCID: PMC10979146 DOI: 10.1016/j.heliyon.2024.e27386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
The Allium turcicum L. (Zuzubak) plant as a cultivated vegetable have various health benefits and consumed as a food. Due to the shortcoming evidence in literature and the importance of this plant in folk medicine, in the present study, for the first time, we evaluated the bioactive profile of components (using LC-MS/MS), cytotoxicity, anticancer, antioxidant, and antibacterial prospectives of Zuzubak methanol extract. Reported results show that the extract is rich in bioactive compounds and has anticancer activity with breast cancer cells (MCF-7), human prostate cancer cells (DU-145), and Human osteosarcoma cancer Cell lines of (IC50) in dose dependent manner in the concentration range of 31.25 μg/mL and 2000 μg/mL for 24 and 48 h. Western blotting results determined that the extract significantly suppressed the growth of U2OS, MCF-7, and DU-145 cancer cells by down expression of Ang-1 (angiogenic protein) and Beclin-1 (autophagy protein) and overexpression of Bax (a proapoptotic protein). The oxidative stress indices showed a reduction in RPE-1 and MCF-7 cells and an upsurge in U2OS and DU-145 cells. Additionally, the antimicrobial assay showed suppression of the growth of various pathogenic microorganisms in 4.00-8.00 μg/concentrations of Zuzubak extract using the microdilution method. The phytochemicals identified showed promising anticancer, antioxidant effects, and antimicrobial properties, representing a valuable herbal source for drug development studies.
Collapse
Affiliation(s)
- Polat İpek
- Department of Physiology, Dicle University, Diyarbakir, Türkiye
| | - Mehmet Nuri Atalar
- Department of Nutrition and Dietetic, Faculty of Health Sciences, Iğdır University, Iğdır, Türkiye
| | - Ayşe Baran
- Department of Biology, Graduate Education Institute, Mardin Artuklu University, Mardin, Türkiye
- Malatya Turgut Özal University, Malatya, Türkiye
| | - Mehmet Fırat Baran
- Department of Food Technology, Vocational School of Technical Sciences, Batman University, Batman, Türkiye
| | - Mohammad Mehdi Ommati
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, 471000, China
| | - Musa Karadag
- Research Application Laboratory and Research Center (ALUM), Iğdır University, Iğdır, Turkiye
| | - Murat Zor
- Department of Pharmacognosy, Fenerbahçe University, Ataşehir, İstanbul, Türkiye
| | - Aziz Eftekhari
- Department of Biochemistry, Faculty of Science, Ege University, Izmir 35040, Türkiye
- Nanotechnology and Biochemical Toxicology (NBT) center, Azerbaijan State University of Economics (UNEC), Baku AZ1001, Azerbaijan
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz 51665118, Iran
| | - Mehmet Hakkı Alma
- Research Application Laboratory and Research Center (ALUM), Iğdır University, Iğdır, Turkiye
| | - Khaled Zoroufchi Benis
- Department of Process Engineering and Applied Science, Dalhousie University, Halifax, NS, Canada
| | - Fidan Nuriyeva
- Department of Computer Science, Faculty of Science, Dokuz Eylul University, Izmir, Türkiye
- Laboratory of Recognition, Identification and Methods of Optimal Solutions, Institute of Control Systems, Baku, Azerbaijan
| | - Rovshan Khalilov
- Department of Biophysics and Biochemistry, Baku State University, Baku, Azerbaijan
- Nanotechnology and Biochemical Toxicology (NBT) center, Azerbaijan State University of Economics (UNEC), Baku AZ1001, Azerbaijan
| |
Collapse
|
3
|
Abdulkarim Alharbi S, Eldin Ahmed Abdelsalam K, Asad M, Alrouji M, Ahmed Ibrahim M, Almuhanna Y. Assessment of the anti-cancer potential of Ephedra foeminea leaf extract on MDA-MB-231, MCF-7, 4 T1, and MCF-10 breast cancer cell lines: Cytotoxic, apoptotic and oxidative assays. Saudi Pharm J 2024; 32:101960. [PMID: 38328794 PMCID: PMC10847678 DOI: 10.1016/j.jsps.2024.101960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024] Open
Abstract
Ephedra foeminea is traditionally used to treat breast cancer in several Arab countries. Scientific studies have reported different effects of this plant on some cancer cell lines. The current study determined the anti-cancer potential of the methanolic extract of Ephedra foeminea against four different types of breast cancer cell lines in-vitro. The extract was prepared by maceration and phytoconstituents were identified by LC-MS analysis. The IC50 value was determined against MDA-MB-231, MCF-7, 4 T1, and MCF-10 cell lines using the MTT assay. Further investigations were carried out using IC50 concentration of the extract (40.09 µg/ml) to determine live/dead cells by acridine orange/ethidium bromide staining. The effect on the expression of reactive oxygen species (ROS) was evaluated by flow cytometry. The results were analyzed using one-way ANOVA followed by Tukey's test. The LC-MS analysis revealed the presence of 34 and 30 phytoconstituents in positive and negative modes respectively. The Ephedra foeminea extract was most effective against 4 T1 cells in a dose-dependent manner (P < 0.001) with an IC50 value of 40.09 µg/ml and showed negligible effect against MCF-10 cells. It increased apoptosis in 77.84 % of 4 T1 cells, as determined by acridine orange/ethidium bromide staining. The extract also increased the ROS expression in the 39.57 % of 4 T1 cells. The study results showed that Ephedra foeminea extract possesses an anti-cancer effect against 4 T1 cells by increasing the expression of ROS and inducing apoptosis in the 4 T1 cells. The result suggests Ephedra foemenia methanolic extract possesses a reasonable anti-cancer effect due to its effect on apoptosis and oxidative pathways. The results confirm the traditional belief that Ephedra is effective against breast cancerز.
Collapse
Affiliation(s)
- Samir Abdulkarim Alharbi
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Kamal Eldin Ahmed Abdelsalam
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Mohammed Asad
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Mohammed Alrouji
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Monjid Ahmed Ibrahim
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Yasir Almuhanna
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| |
Collapse
|
4
|
Slow release curcumin-containing soy protein nanoparticles as anticancer agents for osteosarcoma: synthesis and characterization. Prog Biomater 2022; 11:311-320. [PMID: 35877026 DOI: 10.1007/s40204-022-00197-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/11/2022] [Indexed: 10/16/2022] Open
Abstract
Curcumin-containing soy protein nanoparticles (curcumin-SPNs) were synthesized by desolvation (coacervation) method and characterized by SEM, DLS, FTIR, and XRD. For anticancer evaluation, osteogenic sarcoma (SAOS2) cell lines were incubated with different concentrations of nanostructures. The dialysis method was used for assessment of drug release. Intracellular reactive oxygen species (ROS) were evaluated in IC50 dose after 24 h of exposure to free curcumin and curcumin-SPNs. Characterization data showed that the size of drug-free SPNs and curcumin-SPNs were 278.2 and 294.7 nm, respectively. The zeta potential of drug-free SPNs and curcumin-SPNs were - 37.1 and - 36.51 mv, respectively. There was no significant difference between the control and drug-free SPNs groups in terms of cell viability (p > 0.05). The viability of cells in different concentrations of the designed curcumin-SPNs in Saos2 cell line was significantly higher than free drug (p < 0.05). The release of curcumin showed that more than 50% of the drug was released in the first 2 h of incubation. After this time, the slow release of drug was continued to 62-83% of drug. IC50 values of free curcumin and curcumin-SPNs (1/10) were 156.8 and 65.9 µg/mL, respectively (a free curcumin IC50 was 2.4 times more than curcumin-SPNs). Slow-release of the curcumin causes the cell to be exposed to the anticancer drug for a longer period of time. The intracellular ROS levels significantly increased in an IC50 dose after 24 h of exposure to both free curcumin and curcumin-SPNs compared with controls (p < 0.05).
Collapse
|
5
|
Potential Molecular Mechanisms of Ephedra Herb in the Treatment of Nephrotic Syndrome Based on Network Pharmacology and Molecular Docking. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9214589. [PMID: 35837376 PMCID: PMC9276517 DOI: 10.1155/2022/9214589] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 04/30/2022] [Accepted: 06/11/2022] [Indexed: 01/17/2023]
Abstract
Objective To explore the possible mechanisms of Ephedra herb (EH) in the treatment of nephrotic syndrome (NS) by using network pharmacology and molecular docking in this study. Methods Active ingredients and related targets of EH were obtained from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, and the gene names corresponding to the proteins were found through the UniProt database. Then, target genes related to NS were screened out from GeneCards, PharmGKB, and OMIM databases. Next, the intersection targets were obtained successfully through Venn diagram, which were also seen as key target genes of EH and NS. Cytoscape 3.9.0 software was used to construct the effective “active ingredient-target” network diagram, and “drug-ingredient-target-disease (D-I-T-D)” network diagram. After that, the STRING database was used to construct a protein-protein interaction (PPI) network. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment involved in the targets were performed by the DAVID database and ClueGO plugin in Cytoscape. Finally, AutoDockTools software was used for molecular docking to verify the binding strength between main active ingredients and key target proteins. Results A total of 22 main active ingredients such as quercetin, kaempferol, luteolin, and naringenin were obtained, which could act on 105 targets related to NS. Through PPI network, 53 core targets such as AKT1, TNF, IL6, VEGFA, and IL1B were found, which might play a crucial role in the treatment of NS. Meanwhile, these targets were significantly involved in PI3K-Akt signaling pathway, TNF signaling pathway, AGE-RAGE signaling pathway, hepatitis B, and pathways in cancer through GO and KEGG enrichment analysis. The docking results indicated that active ingredients such as kaempferol, luteolin, quercetin, and naringenin all had good binding to the target protein AKT1 or TNF. Among them, luteolin and naringenin binding with AKT1 showed the best binding energy (-6.2 kcal/mol). Conclusion This study indicated that the potential mechanism of EH in treating NS may be related to PI3K-Akt signaling pathway, TNF signaling pathway, and AGE-RAGE signaling pathway, which provided better approaches for exploring the mechanism in treating NS and new ideas for further in vivo and in vitro experimental verifications.
Collapse
|
6
|
Joshi BC, Juyal V, Sah AN, Verma P, Mukhija M. Review On Documented Medicinal Plants Used For The Treatment Of Cancer. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083807666211011125110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background:
Cancer is a frightful disease and it is the second leading cause of death worldwide. Naturally derived compounds are gaining interest of research workers as they have less toxic side effects as compared to currently used treatments such as chemotherapy. Plants are the pool of chemical compounds which provides a promising future for research on cancer.
Objective:
This review paper provides updated information gathered on medicinal plants and isolated phytoconstituents used as anticancer agents and summarises the plant extracts and their isolated chemical constituents exhibiting anticancer potential on clinical trials.
Methods:
An extensive bibliographic investigation was carried out by analysing worldwide established scientific databases like SCOPUS, PUBMED, SCIELO, ScienceDirect, Springerlink, Web of Science, Wiley, SciFinder and Google Scholar etc. In next few decades, herbal medicine may become a new epoch of medical system.
Results:
Many researches are going on medicinal plants for the treatment of cancer but it is a time to increase further experimental studies on plant extracts and their chemical constituents to find out their mechanism of action at molecular level.
Conclusion:
The article may help many researchers to start off further experimentation that might lead to the drugs for the cancer treatment.
Collapse
Affiliation(s)
- Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Vijay Juyal
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Archana N. Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Piyush Verma
- Department of Pharmacology, School of Pharmaceutical science and Technology, Sardar Bhagwan Singh University, Dehradun-248001, India
| | - Minky Mukhija
- Department of Pharmaceutical Sciences, Ch. Devi Lal College of Pharmacy, Buria Road, Bhagwangarh, Jagadhri-135003, India
| |
Collapse
|