1
|
Du M, Liu X, Ji X, Wang Y, Liu X, Zhao C, Jin E, Gu Y, Wang H, Zhang F. Berberine alleviates enterotoxigenic Escherichia coli-induced intestinal mucosal barrier function damage in a piglet model by modulation of the intestinal microbiome. Front Nutr 2025; 11:1494348. [PMID: 39877539 PMCID: PMC11772193 DOI: 10.3389/fnut.2024.1494348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/13/2024] [Indexed: 01/31/2025] Open
Abstract
Introduction Enterotoxic Escherichia coli (ETEC) is the main pathogen that causes diarrhea, especially in young children. This disease can lead to substantial morbidity and mortality and is a major global health concern. Managing ETEC infections is challenging owing to the increasing prevalence of antibiotic resistance. Berberine, categorized as a substance with similarities in "medicine and food," has been used in China for hundreds of years to treat gastrointestinal disorders and bacteria-induced diarrhea. This study investigated the preventive effect of dietary berberine on the intestinal mucosal barrier induced by ETEC and the microbial community within the intestines of weaned piglets. Methods Twenty-four piglets were randomly divided into four groups. Piglets were administered either a standard diet or a standard diet supplemented with berberine at concentrations of 0.05 and 0.1%. and orally administered ETEC or saline. Results Dietary supplementation with berberine reduced diamine oxidase, d-lactate, and endotoxin levels in piglets infected with ETEC (P < 0.05). Berberine increased jejunal villus height, villus/crypt ratio, mucosal thickness (P < 0.05), and goblet cell numbers in the villi and crypts (P < 0.05). Furthermore, berberine increased the optical density of mucin 2 and the mucin 2, P-glycoprotein, and CYP3A4 mRNA expression levels (P < 0.05). Berberine increased the expressions of zonula occludins-1 (ZO-1), zonula occludins-2 (ZO-2), Claudin-1, Occludin, and E-cadherin in the ileum (P < 0.05). Moreover, berberine increased the expression of BCL2, reduced intestinal epithelial cell apoptosis (P < 0.05) and decreased the expression of BAX and BAK in the duodenum and jejunum, as well as that of CASP3 and CASP9 in the duodenum and ileum (P < 0.05). Berberine decreased the expression of IL-1β, IL-6, IL-8, TNF-α, and IFN-γ (P < 0.05) and elevated total volatile fatty acids, acetic acid, propionic acid, valeric acid, and isovaleric acid concentrations (P < 0.05). Notably, berberine enhanced the abundance of beneficial bacteria including Enterococcus, Holdemanella, Weissella, Pediococcus, Muribaculum, Colidextribacter, Agathobacter, Roseburia, Clostridium, Fusicatenibacter, and Bifidobacterium. Simultaneously, the relative abundance of harmful and pathogenic bacteria, such as Prevotella, Paraprevotella, Corynebacterium, Catenisphaera, Streptococcus, Enterobacter, and Collinsella, decreased (P < 0.05). Discussion Berberine alleviated ETEC-induced intestinal mucosal barrier damage in weaned piglets models. This is associated with enhancement of the physical, chemical, and immune barrier functions of piglets by enhancing intestinal microbiota homeostasis.
Collapse
Affiliation(s)
- Min Du
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Xinran Liu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Xu Ji
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yue Wang
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Xiaodan Liu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Chunfang Zhao
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou, China
| | - Erhui Jin
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou, China
| | - Youfang Gu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou, China
| | - Hongyu Wang
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Feng Zhang
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou, China
| |
Collapse
|
2
|
Zhou Y, Zhang D, Cheng H, Wu J, Liu J, Feng W, Peng C. Repairing gut barrier by traditional Chinese medicine: roles of gut microbiota. Front Cell Infect Microbiol 2024; 14:1389925. [PMID: 39027133 PMCID: PMC11254640 DOI: 10.3389/fcimb.2024.1389925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Gut barrier is not only part of the digestive organ but also an important immunological organ for the hosts. The disruption of gut barrier can lead to various diseases such as obesity and colitis. In recent years, traditional Chinese medicine (TCM) has gained much attention for its rich clinical experiences enriched in thousands of years. After orally taken, TCM can interplay with gut microbiota. On one hand, TCM can modulate the composition and function of gut microbiota. On the other hand, gut microbiota can transform TCM compounds. The gut microbiota metabolites produced during the actions of these interplays exert noticeable pharmacological effects on the host especially gut barrier. Recently, a large number of studies have investigated the repairing and fortifying effects of TCM on gut barriers from the perspective of gut microbiota and its metabolites. However, no review has summarized the mechanism behand this beneficiary effects of TCM. In this review, we first briefly introduce the unique structure and specific function of gut barrier. Then, we summarize the interactions and relationship amidst gut microbiota, gut microbiota metabolites and TCM. Further, we summarize the regulative effects and mechanisms of TCM on gut barrier including physical barrier, chemical barrier, immunological barrier, and microbial barrier. At last, we discuss the effects of TCM on diseases that are associated gut barrier destruction such as ulcerative colitis and type 2 diabetes. Our review can provide insights into TCM, gut barrier and gut microbiota.
Collapse
Affiliation(s)
- Yaochuan Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinlu Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Zhang B, Zhou L, Chen K, Fang X, Li Q, Gao Z, Lian F, Li M, Tian J, Zhao L, Tong X. Investigation on Phenomics of Traditional Chinese Medicine from the Diabetes. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:257-268. [PMID: 39398423 PMCID: PMC11467137 DOI: 10.1007/s43657-023-00146-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 10/15/2024]
Abstract
With thousands of years of application history, traditional Chinese medicine (TCM) has unique advantages in the prevention of various chronic diseases, and in recent years, the development of TCM has presented a situation where opportunities and challenges coexist. Phenomics is an emerging area of life science research, which has numerous similarities to the cognitive perspective of TCM. Thus, how to carry out the interdisciplinary research between TCM and phenomics deserves in-depth discussion. Diabetes is one of the most common chronic non-communicable diseases around the world, and TCM plays an important role in all stages of diabetes treatment, but the molecular mechanisms are difficult to elucidate. Phenomics research can not only reveal the hidden scientific connotations of TCM, but also provide a bridge for the confluence and complementary between TCM and Western medicine. Facing the challenges of the TCM phenomics research, we suggest applying the State-target theory (STT) to overall plan relevant researches, namely, focusing on the disease development, change trends, and core targets of each stage, and to deepen the understanding of TCM disease phenotypes and the therapeutic mechanisms of herbal medicine. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-023-00146-6.
Collapse
Affiliation(s)
- Boxun Zhang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Lijuan Zhou
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Keyu Chen
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
- Graduate College, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Xinyi Fang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
- Graduate College, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Qingwei Li
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Zezheng Gao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Fengmei Lian
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Min Li
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Jiaxing Tian
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Xiaolin Tong
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117 China
| |
Collapse
|
4
|
Konechnyi Y, Rumynska T, Yushyn I, Holota S, Turkina V, Ryviuk Rydel M, Sękowska A, Salyha Y, Korniychuk O, Lesyk R. A New 4-Thiazolidinone Derivative (Les-6490) as a Gut Microbiota Modulator: Antimicrobial and Prebiotic Perspectives. Antibiotics (Basel) 2024; 13:291. [PMID: 38666967 PMCID: PMC11047727 DOI: 10.3390/antibiotics13040291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/29/2024] Open
Abstract
A novel 4-thiazolidinone derivative Les-6490 (pyrazol-4-thiazolidinone hybrid) was designed, synthesized, and characterized by spectral data. The compound was screened for its antimicrobial activity against some pathogenic bacteria and fungi and showed activity against Staphylococcus and Saccharomyces cerevisiae (the Minimum Inhibitory Concentration (MIC) 820 μM). The compound was studied in the rat adjuvant arthritis model (Freund's Adjuvant) in vivo. Parietal and fecal microbial composition using 16S rRNA metagenome sequences was checked. We employed a range of analytical techniques, including Taxonomic Profiling (Taxa Analysis), Diversity Metrics (Alpha and Beta Diversity Analysis), Multivariate Statistical Methods (Principal Coordinates Analysis, Principal Component Analysis, Non-Metric Multidimensional Scaling), Clustering Analysis (Unweighted Pair-group Method with Arithmetic Mean), and Comparative Statistical Approaches (Community Differences Analysis, Between Group Variation Analysis, Metastat Analysis). The compound significantly impacted an increasing level of anti-inflammatory microorganisms (Blautia, Faecalibacterium prausnitzii, Succivibrionaceae, and Coriobacteriales) relative recovery of fecal microbiota composition. Anti-Treponemal activity in vivo was also noted. The tested compound Les-6490 has potential prebiotic activity with an indirect anti-inflammatory effect.
Collapse
Affiliation(s)
- Yulian Konechnyi
- Department of Microbiology, Danylo Halytsky Lviv National Medical University, 69 Pekarska St., 79010 Lviv, Ukraine; (T.R.); (O.K.)
| | - Tetyana Rumynska
- Department of Microbiology, Danylo Halytsky Lviv National Medical University, 69 Pekarska St., 79010 Lviv, Ukraine; (T.R.); (O.K.)
- Institute of Animal Biology NAAS, Vasylya Stusa St., 38, 79034 Lviv, Ukraine;
| | - Ihor Yushyn
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, 69 Pekarska St., 79010 Lviv, Ukraine; (I.Y.); (S.H.)
| | - Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, 69 Pekarska St., 79010 Lviv, Ukraine; (I.Y.); (S.H.)
- Department of Organic and Pharmaceutical Chemistry, Lesya Ukrainka Volyn National University, 13 Volya Ave., 43025 Lutsk, Ukraine
| | - Vira Turkina
- Research Institute of Epidemiology and Hygiene, Danylo Halytsky Lviv National Medical University, 69 Pekarska St., 79010 Lviv, Ukraine;
- Department of Biological Chemistry, Danylo Halytsky Lviv National Medical University, 69 Pekarska St., 79010 Lviv, Ukraine
| | - Mariana Ryviuk Rydel
- Department of Intellectual Property, Information and Corporate Law, Ivan Franko National University of Lviv, 1 Universytetska St., 79000 Lviv, Ukraine;
- Department of Scientific and Medical Information and Intellectual Property, Danylo Halytsky Lviv National Medical University, 69 Pekarska St., 79010 Lviv, Ukraine
| | - Alicja Sękowska
- Microbiology Department, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 9 Maria Skłodowska-Curie St., 85-094 Bydgoszcz, Poland;
| | - Yuriy Salyha
- Institute of Animal Biology NAAS, Vasylya Stusa St., 38, 79034 Lviv, Ukraine;
| | - Olena Korniychuk
- Department of Microbiology, Danylo Halytsky Lviv National Medical University, 69 Pekarska St., 79010 Lviv, Ukraine; (T.R.); (O.K.)
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, 69 Pekarska St., 79010 Lviv, Ukraine; (I.Y.); (S.H.)
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
| |
Collapse
|
5
|
Zhang DW, Lu JL, Dong BY, Fang MY, Xiong X, Qin XJ, Fan XM. Gut microbiota and its metabolic products in acute respiratory distress syndrome. Front Immunol 2024; 15:1330021. [PMID: 38433840 PMCID: PMC10904571 DOI: 10.3389/fimmu.2024.1330021] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
The prevalence rate of acute respiratory distress syndrome (ARDS) is estimated at approximately 10% in critically ill patients worldwide, with the mortality rate ranging from 17% to 39%. Currently, ARDS mortality is usually higher in patients with COVID-19, giving another challenge for ARDS treatment. However, the treatment efficacy for ARDS is far from satisfactory. The relationship between the gut microbiota and ARDS has been substantiated by relevant scientific studies. ARDS not only changes the distribution of gut microbiota, but also influences intestinal mucosal barrier through the alteration of gut microbiota. The modulation of gut microbiota can impact the onset and progression of ARDS by triggering dysfunctions in inflammatory response and immune cells, oxidative stress, cell apoptosis, autophagy, pyroptosis, and ferroptosis mechanisms. Meanwhile, ARDS may also influence the distribution of metabolic products of gut microbiota. In this review, we focus on the impact of ARDS on gut microbiota and how the alteration of gut microbiota further influences the immune function, cellular functions and related signaling pathways during ARDS. The roles of gut microbiota-derived metabolites in the development and occurrence of ARDS are also discussed.
Collapse
Affiliation(s)
- Dong-Wei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Respiratory and Critical Care Medicine, Liuzhou People’s Hospital, Guangxi Medical University, Liuzhou, Guangxi, China
- Key Laboratory of Diagnosis, Treatment and Research of Asthma and Chronic Obstructive Pulmonary Disease, Liuzhou, Guangxi, China
| | - Jia-Li Lu
- Department of Respiratory and Critical Care Medicine, Liuzhou People’s Hospital, Guangxi Medical University, Liuzhou, Guangxi, China
- Key Laboratory of Diagnosis, Treatment and Research of Asthma and Chronic Obstructive Pulmonary Disease, Liuzhou, Guangxi, China
| | - Bi-Ying Dong
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Respiratory and Critical Care Medicine, Liuzhou People’s Hospital, Guangxi Medical University, Liuzhou, Guangxi, China
- Key Laboratory of Diagnosis, Treatment and Research of Asthma and Chronic Obstructive Pulmonary Disease, Liuzhou, Guangxi, China
| | - Meng-Ying Fang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Xue-Jun Qin
- Department of Respiratory and Critical Care Medicine, Liuzhou People’s Hospital, Guangxi Medical University, Liuzhou, Guangxi, China
- Key Laboratory of Diagnosis, Treatment and Research of Asthma and Chronic Obstructive Pulmonary Disease, Liuzhou, Guangxi, China
| | - Xian-Ming Fan
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
6
|
Duan J, Sun J, Jiang T, Ma X, Li X, Wang Y, Zhang F, Liu C. Podophyllotoxin-mediated neurotoxicity via the microbiota-gut-brain axis in SD rats based on the toxicological evidence chain (TEC) concept. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168106. [PMID: 37884145 DOI: 10.1016/j.scitotenv.2023.168106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/28/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Podophyllotoxin (PPT) is a naturally occurring aryltetralin lignan. However, its clinical application has been limited due to its neurotoxicity, the mechanism of which remains unclear. This study aimed to investigate the potential involvement of the microbiota-gut-brain (MGB) axis in PPT-induced neurotoxicity using the toxicological evidence chain concept. Our approach included behavioral testing in rats, evaluation of colon and hippocampal pathological changes, examination of proinflammatory factors, brain-gut peptides, and an in-depth analysis of gut microbiome and metabolic profiles. Our results demonstrated that PPT exposure compromised cognitive functions, induced damage to the colon and hippocampus, and increased intestinal permeability in rats. Furthermore, it elevated proinflammatory factors, particularly TNF-α and IL-6, while causing disruptions in the gut microbiota, favoring Escherichia-Shigella over Lactobacillus. Significant alterations in metabolic profiles in feces, serum, and hippocampus, particularly in tryptophan metabolism with a correlation to inflammatory factors and Escherichia-Shigella, were also observed. Our findings suggest that PPT promotes the enrichment of Escherichia-Shigella leading to inflammatory factor production and alterations in kynurenine metabolism in the hippocampus, potentially contributing to neurotoxicity. The study provides novel insights into the mechanistic pathways of PPT-induced neurotoxicity, emphasizing the role of the MGB axis and offering avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Jiajia Duan
- Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China, 471003
| | - Jiaxing Sun
- Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China, 471003
| | - Tao Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China, 471003
| | - Xiao Ma
- Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China, 471003
| | - Xuejiao Li
- Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China, 471003
| | - Yuming Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China, 301617
| | - Fangfang Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China, 301617
| | - Chuanxin Liu
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China, 471003.
| |
Collapse
|
7
|
Yu H, Tang H, Hu G, Chen Z, Guo M, Jiang B, Zhang E, Hu C. Comparative study on main compounds and hypoglycemic effects of dispensing granules of Coptidis Rhizoma and Scutellaria-Coptis herb couple with traditional decoction. Chin Med 2023; 18:141. [PMID: 37907988 PMCID: PMC10617169 DOI: 10.1186/s13020-023-00848-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/05/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND The clinical applications of dispensing granules (DG) have increased dramatically. However, it is controversial whether the DG has the same quality and efficacy compared with traditional decoction (TD). In this study, the contents of main compounds, hypoglycemic effects, and potential mechanism of Coptidis Rhizoma (CR) and Scutellaria-coptis (SC), constituted of a 1:1 mixture of CR and Scutellariae Radix (SR), in the forms of TD and DG were compared. METHODS The quantitative analysis was performed on an UPLC-PDA method. The 6-weeks-old male db/db mice were used as Type 2 Diabetes Mellitus (T2DM) mouse modle to investigate the antidiabetic effects of CR and SC in TD form (CR TD and SC TD), as well as CR and SC in DG form (CR DG and SC DG). RESULTS The total content of five alkaloids in CR TD ranged from 71.00 to 78.62 mg, whereas in CR DG it ranged from 38.77 to 53.68 mg in CR DG per 1 g of decoction pieces. Compared to CR TD, CR DG exhibited a 36% reduction on average. For SC samples, the precipitation occurred in the processing of TD but not in the DG, and the relative ratio of alkaloids to flavonoids was determined to be 1:1 in TD and 1:2 in DG. Furthermore, the animal experiments showed that the CR DG (equivalent to 3 g decoction pieces/kg) had almost the same hypoglycemic effect as CR TD when they were administered for 6 weeks. Compared with SC DG (equivalent to 6 g decoction pieces/kg), SC TD showed a better trend in ameliorating T2DM via ameliorating pancreatic structure and function, and activating Akt/AMPK/GLUT4 signaling pathways. CONCLUSION This study indicated that the contents of main compounds were generally higher in CR TD than CR DG originated from the same raw materials. Additionally, changes in the contents of the primary components validated that the compound interactions are exclusive to SC TD during co-decoction, rather than SC DG. The disparate prossing of SC DG and SC TD caused differences both in chemical composition and hypoglycemic effect, suggesting that the substitutability of DG and TD requires further research.
Collapse
Affiliation(s)
- Huanhuan Yu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, Chongqing Institute for Food and Drug Control, Chongqing, 401121, China
| | - Huilan Tang
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, Chongqing Institute for Food and Drug Control, Chongqing, 401121, China
| | - Guang Hu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Zhu Chen
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, Chongqing Institute for Food and Drug Control, Chongqing, 401121, China
| | - Mudan Guo
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, Chongqing Institute for Food and Drug Control, Chongqing, 401121, China
| | - Bo Jiang
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, Chongqing Institute for Food and Drug Control, Chongqing, 401121, China
| | - En Zhang
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, Chongqing Institute for Food and Drug Control, Chongqing, 401121, China.
| | - Changhua Hu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
8
|
Aziz C, Morales A, Pinto W, Fanchini V, Dell Aquila L, Sangaleti C, Elias R, Dalboni M. Evaluation of IL-6, FoxP3 Treg lymphocytes, intestinal barrier biomarkers and the use of synbiotics in obese adolescents: a pilot study. Front Pediatr 2023; 11:1215793. [PMID: 37859769 PMCID: PMC10583575 DOI: 10.3389/fped.2023.1215793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023] Open
Abstract
Aim This prospective pilot study evaluated inflammatory and intestinal barrier biomarkers and the effects of a synbiotic in obese adolescents. Methods Eighteen obese and 20 eutrophic adolescents were evaluated for body composition using bioimpedance analysis (BIA), body mass index (BMI), IL-6 and lipopolysaccharide (LPS) serum levels, CD4 and FoxP3 Treg lymphocytes and monocytes. Synbiotic supplementation for 60 days was also evaluated for these parameters only in obese adolescents. Results We observed an increase in CD4 lymphocyte (18.0 ± 12.4 vs. 8.9 ± 7.5; p < 0.01), IL-6 (0.30 ± 0.06 vs. 0.20 ± 0.06; p = 0.02) and LPS (0.18 ± 0.15 vs. 0.08 ± 0.05; p < 0.01) levels in obese compared to eutrophic adolescents. After synbiotic supplementation, FoxP3 Treg lymphocytes increased (14.0 ± 6.7 vs. 9.9 ± 5.4; p = 0.02) in obese adolescents. Conclusions Obese adolescents presented a state of microinflammation and intestinal barrier breakdown, and synbiotic supplementation increased the expression of FoxP3 Treg lymphocytes, an anti-inflammatory regulator. Whether the increase in FoxP3 Treg lymphocytes may have an impact on inflammation and outcomes in obese adolescents deserves further evaluation.
Collapse
Affiliation(s)
- Cylmara Aziz
- Department of Postgraduate Studies in Medicine, Universidade Nove de Julho, São Paulo, Brazil
| | - Armando Morales
- Department of Postgraduate Studies in Medicine, Universidade Nove de Julho, São Paulo, Brazil
| | - Walter Pinto
- Department of Postgraduate Studies in Medicine, Universidade Nove de Julho, São Paulo, Brazil
| | - Vanessa Fanchini
- Department of Postgraduate Studies in Medicine, Universidade Nove de Julho, São Paulo, Brazil
| | - Luis Dell Aquila
- Department of Postgraduate Studies in Medicine, Universidade Nove de Julho, São Paulo, Brazil
| | - Carine Sangaleti
- Department of Postgraduate Studies in Nanosciences and Biosciences, Universidade Estadual do Centro Oeste, Guarapuava, Brazil
| | - Rosilene Elias
- Department of Postgraduate Studies in Medicine, Universidade Nove de Julho, São Paulo, Brazil
| | - Maria Dalboni
- Department of Postgraduate Studies in Medicine, Universidade Nove de Julho, São Paulo, Brazil
| |
Collapse
|
9
|
Chen X, Wu J, Fu X, Wang P, Chen C. Fructus mori polysaccharide alleviates diabetic symptoms by regulating intestinal microbiota and intestinal barrier against TLR4/NF-κB pathway. Int J Biol Macromol 2023; 249:126038. [PMID: 37516223 DOI: 10.1016/j.ijbiomac.2023.126038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/17/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Fructus mori polysaccharide (FMP) has a variety of biological activities. In this study, the results showed that FMP alleviated hyperglycemia, insulin resistance, hyperlipidemia, endotoxemia, and high metabolic inflammation levels in type 2 diabetic (T2DM) mice. Next, it was found that the above beneficial effects of FMP on diabetic mice were significantly attenuated after antibiotics eliminated intestinal microbiota (IM) of mice. In addition, FMP suppressed intestinal inflammation and oxidative stress levels by inhibiting the activation of the TLR4/MyD88/NF-κB pathway, and indirectly upregulated the expression of the tight junction proteins Claudin-1, Occludin, and Zonula occlusionn-1 (ZO-1) to repair the intestinal barrier. Interestingly, the protective effect of FMP on the intestinal barrier was also attributed to its regulation of IM. The 16S rRNA and Spearman correlation analysis showed that FMP could repair the intestinal barrier to improve T2DM by remodeling specific IM, especially by significantly inhibiting 93.66 % of endotoxin-producing Shigella and promoting the proliferation of probiotic Allobaculum and Bifidobacterium by 16.31 % and 19.07 %, respectively. This study provided a theoretical support for the application of FMP as a novel probiotic in functional foods for diabetes.
Collapse
Affiliation(s)
- Xiaoxia Chen
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China; SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Junlin Wu
- Guangzhou Wondfo Health Science and Technology Co., Ltd, China.
| | - Xiong Fu
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China; SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China; Guangzhou Institute of Modern Industrial Technology, Nansha 511458, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Pingping Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Chun Chen
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China; SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China; Guangzhou Institute of Modern Industrial Technology, Nansha 511458, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| |
Collapse
|
10
|
Wen Z, Kang L, Fu H, Zhu S, Ye X, Yang X, Zhang S, Hu J, Li X, Chen L, Hu Y, Yang X. Oral delivery of porous starch-loaded bilayer microgels for controlled drug delivery and treatment of ulcerative colitis. Carbohydr Polym 2023; 314:120887. [PMID: 37173037 DOI: 10.1016/j.carbpol.2023.120887] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/16/2023] [Accepted: 04/03/2023] [Indexed: 05/15/2023]
Abstract
We prepared one type of bilayer microgels for oral administration with three effects: pH responsiveness, time lag, and colon enzyme degradation. Combined with the dual biological effects of curcumin (Cur) for reducing inflammation and promoting repair of colonic mucosal injury, targeted colonic localization and release of Cur according to the colonic microenvironment were enhanced. The inner core, derived from guar gum and low-methoxyl pectin, afforded colonic adhesion and degradation behavior; the outer layer, modified by alginate and chitosan via polyelectrolyte interaction, achieved colonic localization. The porous starch (PS)-mediated strong adsorption allowed Cur loading in inner core to achieve a multifunctional delivery system. In vitro, the formulations exhibited good bioresponses at different pH conditions, potentially delaying Cur release in the upper gastrointestinal tract. In vivo, dextran sulfate sodium-induced ulcerative colitis (UC) symptoms were significantly alleviated after oral administration, accompanied by reduced levels of inflammatory factors. The formulations facilitated colonic delivery, allowing Cur accumulation in colonic tissue. Moreover, the formulations could alter gut microbiota composition in mice. During Cur delivery, each formulation increased species richness, decreased pathogenic bacterial content, and afforded synergistic effects against UC. These PS-loaded bilayer microgels, exhibiting excellent biocompatibility, multi-bioresponsiveness, and colon targeting, could be beneficial in UC therapy, allowing development into a novel oral formulation.
Collapse
Affiliation(s)
- Zhijie Wen
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Li Kang
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Hudie Fu
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Shengpeng Zhu
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Xuexin Ye
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Xuedan Yang
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Shangwen Zhang
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Jie Hu
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Xiaojun Li
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Lvyi Chen
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China
| | - Yan Hu
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China.
| | - Xinzhou Yang
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan 430074, PR China; National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan 430074, PR China; Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central MinZu University, Wuhan 430074, PR China.
| |
Collapse
|
11
|
Chen X, Chen C, Fu X. Dendrobium officinale Polysaccharide Alleviates Type 2 Diabetes Mellitus by Restoring Gut Microbiota and Repairing Intestinal Barrier via the LPS/TLR4/TRIF/NF-kB Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11929-11940. [PMID: 37526282 DOI: 10.1021/acs.jafc.3c02429] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Dendrobium officinale polysaccharide (DOP), the main active component, has a variety of bioactivities. In this study, a type 2 diabetes mellitus (T2DM) and antibiotic-induced pseudo-germ-free mouse models were used to investigate the hypoglycemic mechanisms of DOP. The findings showed that DOP ameliorated dysfunctional glucolipid metabolism, lipopolysaccharide (LPS) leakage, and metabolic inflammation levels in T2DM mice. Furthermore, DOP significantly upregulated the mRNA expression of tight junction proteins Claudin-1, Occludin, and ZO-1 and reduced intestinal inflammation and oxidative stress damage through the LPS/TLR4/TRIF/NF-κB axis to repair the intestinal barrier. Interestingly, pseudo-germ-free mouse experiments confirmed that the above beneficial effects of DOP were dependent on gut microbiota. 16S rRNA analysis showed that DOP strongly inhibited the harmful bacterium Helicobacter by 94.57% and facilitated the proliferation of probiotics Allobaculum, Bifidobacterium, and Lactobacillus by 34.96, 139.41, and 88.95%, respectively. Therefore, DOP is capable of rebuilding certain specific intestinal microbiota to restore intestinal barrier injury, which supports the utilization of DOP as a new type of prebiotic in functional foods for T2DM.
Collapse
Affiliation(s)
- Xiaoxia Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Chun Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- SCUT-Zhuhai Institute of Modern Industrial Innovation, Zhuhai 519175, China
- Guangzhou Institute of Modern Industrial Technology, Nansha 511458, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Xiong Fu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- SCUT-Zhuhai Institute of Modern Industrial Innovation, Zhuhai 519175, China
- Guangzhou Institute of Modern Industrial Technology, Nansha 511458, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| |
Collapse
|
12
|
Wang X, Liu D, Li D, Yan J, Yang J, Zhong X, Xu Q, Xu Y, Xia Y, Wang Q, Cao H, Zhang F. Combined treatment with glucosamine and chondroitin sulfate improves rheumatoid arthritis in rats by regulating the gut microbiota. Nutr Metab (Lond) 2023; 20:22. [PMID: 37016458 PMCID: PMC10071728 DOI: 10.1186/s12986-023-00735-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/27/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND To investigate the ameliorative effects of glucosamine (GS), chondroitin sulphate (CS) and glucosamine plus chondroitin sulphate (GC) on rheumatoid arthritis (RA) in rats, and to explore the mechanism of GS, CS and GC in improving RA based on the gut microbiota. METHODS RA rat models were effectively developed 14 days after CFA injection, and then garaged with GS, CS and GC. Body weight and paw volume of rats were monitored at multiple time points at the beginning of CFA injection. Until D36, serum and ankle tissue specimens were used to measure levels of circulating inflammatory factors (TNF-α, IL-1β, MMP-3, NO and PGE2) and local inflammatory indicators (TLR-4 and NF-κB). On D18, D25, and D36, intergroup gut microbiota was compared using 16S rRNA gene sequencing and bioinformatics analysis. We also performed the correlation analysis of gut bacteria, joint swelling and inflammatory indicators. RESULTS GC, rather than GS and CS, could reduce right paw volumes, levels of TLR-4 and NF-κB in synovial tissues. In addition, enriched genera in RA model rats screened out by LEfSe analysis could be inhibited by GC intervention, including potential LPS-producing bacteria (Enterobacter, Bacteroides, Erysipelotrichaceae_unclassified and Erysipelotrichaceae_uncultured) and some other opportunistic pathogens (Esherichia_Shigella, Nosocomiicoccus, NK4A214_group, Odoribacter, Corynebacterium and Candidatus_Saccharimonas.etc.) that positively correlated with pro-inflammatory cytokines, right paw volume, and pathology scores. Furthermore, the gut microbiota dysbiosis was observed to recover before alleviating joint swelling after interventions. CONCLUSIONS GC could inhibit potential LPS-producing bacteria and the activation of TLR-4/NF-κB pathway in RA rats, thus alleviating RA-induced joint injury.
Collapse
Affiliation(s)
- Xuesong Wang
- Affiliated Hospital of Jiangnan University, Wuxi, China
- School of Medicine, Nantong University, Nantong, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Dongsong Liu
- Affiliated Hospital of Jiangnan University, Wuxi, China
- School of Medicine, Nantong University, Nantong, China
| | - Dan Li
- Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jiai Yan
- Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Ju Yang
- Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiaohui Zhong
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Qin Xu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yuanze Xu
- School of Medicine, Nantong University, Nantong, China
| | - Yanping Xia
- Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Qinyue Wang
- Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Hong Cao
- Affiliated Hospital of Jiangnan University, Wuxi, China.
- School of Medicine, Nantong University, Nantong, China.
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| | - Feng Zhang
- Affiliated Hospital of Jiangnan University, Wuxi, China.
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| |
Collapse
|
13
|
Chemical Influence of Scutellaria baicalensis—Coptis chinensis Pair on the Extraction Efficiencies of Flavonoids and Alkaloids at Different Extraction Times and Temperatures. SEPARATIONS 2023. [DOI: 10.3390/separations10020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
The Scutellaria baicalensis—Coptis chinensis pair is an herbal combination used for the treatment of various heat-related diseases. During the extraction process, two herbs can mutually influence the extraction efficiency of the chemical constituents contained in each herb. The concentrations of five flavonoids from S. baicalensis and seven alkaloids from C. chinensis were compared in paired or single hot-water extracts at different temperatures (80, 90, and 100 °C) and extraction times (60, 90, and 120 min). Temperature- and time-dependent increases in marker compound concentrations were observed in both paired and single extracts, with the exception of baicalin, berberine, and coptisine in the paired extracts at 100 °C. However, the extractions of the compounds in the paired and single extracts were affected differently by the extraction conditions. Furthermore, the concentrations of most marker compounds in single extracts were 1.09–44.13 times those in paired extracts. The contents of baicalin, wogonoside, coptisine, and berberine, known to be easily aggregated by the flavonoid–alkaloid complex, were changed by 0.024–0.764-fold in the paired extract. The effect of extraction temperature and time on the formation of the flavonoid–alkaloid complex was not significant. The extraction efficiency of the flavonoids and alkaloids can be affected by the pair of S. baicalensis—C. chinensis, which is a primary factor in the chemical modification of two herb-containing herbal extracts.
Collapse
|
14
|
Wang P, Guo R, Bai X, Cui W, Zhang Y, Li H, Shang J, Zhao Z. Sacubitril/Valsartan contributes to improving the diabetic kidney disease and regulating the gut microbiota in mice. Front Endocrinol (Lausanne) 2022; 13:1034818. [PMID: 36589853 PMCID: PMC9802116 DOI: 10.3389/fendo.2022.1034818] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/31/2022] [Indexed: 12/23/2022] Open
Abstract
Background Diabetic kidney disease (DKD), as a serious microvascular complication of diabetes, has limted treatment options. It is reported that the Sacubitril/Valsartan (Sac/Val) can improve kidney function, and the disordered gut microbiota and part of its metabolites are related to the development of DKD. Therefore, we aim to explore whether the effect of Sac/Val on DKD is associated with the gut microbiota and related plasma metabolic profiles. Methods Male C57BL/6J mice were randomly divided into 3 groups: Con group (n = 5), DKD group (n = 6), and Sac/Val group (n = 6) . Sac/Val group was treated with Sac/Val solution. The intervention was given once every 2 days for 6 weeks. We measured the blood glucose and urine protein level of mice at different times. We then collected samples at the end of experiment for the 16s rRNA gene sequencing analysis and the untargeted plasma metabonomic analysis. Results We found that the plasma creatinine concentration of DKD-group mice was significantly higher than that of Con-group mice, whereas it was reduced after the Sac/Val treatment. Compared with DKD mice, Sac/Val treatment could decrease the expression of indicators related to EndMT and renal fibrosis like vimentin, collagen IV and fibronectin in kidney. According to the criteria of LDA ≥ 2.5 and p<0.05, LefSe analysis of gut microbiota identified 13 biomarkers in Con group, and 33 biomarkers in DKD group, mainly including Prevotella, Escherichia_Shigella and Christensenellaceae_R_7_group, etc. For the Sac/Val group, there were 21 biomarkers, such as Bacteroides, Rikenellaceae_RC9_gut_group, Parabacteroides, Lactobacillus, etc. Plasma metabolomics analysis identified a total of 648 metabolites, and 167 important differential metabolites were screened among groups. KEGG pathway of tryptophan metabolism: M and bile secretion: OS had the highest significance of enrichment. Conclusions Sac/Val improves the renal function of DKD mice by inhibiting renal fibrosis. This drug can also regulate gut microbiota in DKD mice.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Ruixue Guo
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Xiwen Bai
- Nanchang University Queen Mary School, Nanchang, China
| | - Wen Cui
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Yiding Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Huangmin Li
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou University, Zhengzhou, China
| | - Jin Shang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Laboratory Animal Platform of Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Nephropathy Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhanzheng Zhao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Laboratory Animal Platform of Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Nephropathy Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
15
|
Yang S, Hao S, Wang Q, Lou Y, Jia L, Chen D. The interactions between traditional Chinese medicine and gut microbiota: Global research status and trends. Front Cell Infect Microbiol 2022; 12:1005730. [PMID: 36171760 PMCID: PMC9510645 DOI: 10.3389/fcimb.2022.1005730] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022] Open
Abstract
Background There is a crosstalk between traditional Chinese medicine (TCM) and gut microbiota (GM), many articles have studied and discussed the relationship between the two. The purpose of this study is to use bibliometric analysis to explore the research status and development trends of the TCM/GM research, identify and analyze the highly cited papers relating to the TCM/GM. Methods A literature search regarding TCM/GM publications from 2004 to 2021 was undertaken on August 13, 2022. The main information (full record and cited references) of publications was extracted from the Science Citation Index Expanded (SCI-E) of Web of Science Core Collection (WoSCC). The Bibliometrix of R package, CiteSpace and VOSviewer were used for bibliometric analysis. Results A total of 830 papers were included. The publication years of papers were from 2004 to 2021. The number of papers had increased rapidly since 2018. China had the most publications and made most contributions to this field. Nanjing University of Chinese Medicine and Beijing University of Chinese Medicine were in the leading productive position in TCM/GM research, Chinese Academy of Chinese Medical Sciences had the highest total citations (TC). Duan Jin-ao from Nanjing University of Chinese Medicine had the largest number of publications, and Tong Xiao-lin from China Academy of Chinese Medical Sciences had the most TC. The Journal of Ethnopharmacology had the most published papers and the most TC. The main themes in TCM/GM included the role of GM in TCM treatment of glucolipid metabolism diseases and lower gastrointestinal diseases; the mechanism of interactions between GM and TCM to treat diseases; the links between TCM/GM and metabolism; and the relationship between GM and oral bioavailability of TCM. Conclusion This study gained insight into the research status, hotspots and trends of global TCM/GM research, identified the most cited articles in TCM/GM and analyzed their characteristics, which may inform clinical researchers and practitioners’ future directions.
Collapse
Affiliation(s)
- Shanshan Yang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Shaodong Hao
- Sixth Clinical School of Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qin Wang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yanni Lou
- Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Liqun Jia
- Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Liqun Jia, ; Dongmei Chen,
| | - Dongmei Chen
- Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Liqun Jia, ; Dongmei Chen,
| |
Collapse
|
16
|
Li X, Liu C, Liang J, Zhou L, Li J, Chen H, Jiang T, Guan Y, Eng Khoo H. Antioxidative mechanisms and anticolitic potential of Desmodium styracifolium (Osb.) Merr. in DSS-induced colitic mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
17
|
Wang J, Li G, Zhong W, Zhang H, Yang Q, Chen L, Wang J, Yang X. Effect of Dietary Paeoniae Radix Alba Extract on the Growth Performance, Nutrient Digestibility and Metabolism, Serum Biochemistry, and Small Intestine Histomorphology of Raccoon Dog During the Growing Period. Front Vet Sci 2022; 9:839450. [PMID: 35445094 PMCID: PMC9014091 DOI: 10.3389/fvets.2022.839450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/10/2022] [Indexed: 12/28/2022] Open
Abstract
Paeoniae radix alba extract (PRA extract) has the functions of regulating immunity, resisting inflammation, and has antioxidant properties. However, current recommendations of dietary PRA extract levels for raccoon dogs were inadequate. The purpose of this experimental study was to gain information allowing for better estimating the effects of PRA extract on raccoon dogs, and their PRA requirements. Fifty healthy male raccoon dogs of (120 ± 5) days old were randomly divided into 5 groups (group PRA0, PRA1, PRA2, PRA4, PRA8) with 10 animals in each group and 1 in each replicate. Five kinds of experimental diets were prepared with five levels of Paeoniae radix alba extract (0, 1, 2, 4, 8 g/kg) in the basic diet. The prefeeding period was 7 days and the experimental period was 40 days. The results showed that the average daily feed intake in group PRA1 and PRA2 was significantly higher than that in other groups (P < 0.01). The dry matter excretion in group PRA8 was significantly higher than that in other groups (P < 0.01), while the dry matter digestibility and protein digestibility in group PRA8 were significantly lower than those in other groups (P < 0.01). Nitrogen retention in group PRA1 and PRA2 was significantly higher than that in group PRA8 (P < 0.05). With the increase of the content of Paeoniae radix alba extract in diet, the activity of alkaline phosphatase in group PRA2 was significantly higher than that in group PRA0 (P < 0.05); The activity of serum SOD in group PRA4 was significantly higher than that in other groups (P < 0.01). The content of serum IgA in group PRA2 was significantly higher than that in other groups (P < 0.05). The content of TNF-α in intestinal mucosa in group PRA1 and group PRA2 was significantly lower than that in group PRA0 (P < 0.05). In conclusion, we found that dietary Paeoniae radix alba extract intake significantly improved the feed intake and nitrogen deposition of Ussuri raccoon dog, increased the content of serum IgA and reduced the content of TNF-α in the small intestinal mucosa. We suggest that an estimated dietary Paeoniae radix alba extract level of 1 to 2 g/kg could be used as a guide to achieve the optimal performance of raccoon dogs.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Guangyu Li
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China.,College of Animal Science and Technology, Qingdao Agriculture University, Qingdao, China
| | - Wei Zhong
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Haihua Zhang
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Qianlong Yang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Lihong Chen
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jinming Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xuewen Yang
- China Animal Husbandry Group, Beijing, China
| |
Collapse
|
18
|
Zhang B, Liu K, Yang H, Jin Z, Ding Q, Zhao L. Gut Microbiota: The Potential Key Target of TCM's Therapeutic Effect of Treating Different Diseases Using the Same Method-UC and T2DM as Examples. Front Cell Infect Microbiol 2022; 12:855075. [PMID: 35433500 PMCID: PMC9005880 DOI: 10.3389/fcimb.2022.855075] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/04/2022] [Indexed: 12/13/2022] Open
Abstract
Traditional Chinese herbal medicine often exerts the therapeutic effect of "treating different diseases with the same method" in clinical practice; in other words, it is a kind of herbal medicine that can often treat two or even multiple diseases; however, the biological mechanism underlying its multi-path and multi-target pharmacological effects remains unclear. Growing evidence has demonstrated that gut microbiota dysbiosis plays a vital role in the occurrence and development of several diseases, and that the root cause of herbal medicine plays a therapeutic role in different diseases, a phenomenon potentially related to the improvement of the gut microbiota. We used local intestinal diseases, such as ulcerative colitis, and systemic diseases, such as type 2 diabetes, as examples; comprehensively searched databases, such as PubMed, Web of Science, and China National Knowledge Infrastructure; and summarized the related studies. The results indicate that multiple individual Chinese herbal medicines, such as Rhizoma coptidis (Huang Lian), Curcuma longa L (Jiang Huang), and Radix Scutellariae (Huang Qin), and Chinese medicinal compounds, such as Gegen Qinlian Decoction, Banxia Xiexin Decoction, and Shenling Baizhu Powder, potentially treat these two diseases by enriching the diversity of the gut microbiota, increasing beneficial bacteria and butyrate-producing bacteria, reducing pathogenic bacteria, improving the intestinal mucosal barrier, and inhibiting intestinal and systemic inflammation. In conclusion, this study found that a variety of traditional Chinese herbal medicines can simultaneously treat ulcerative colitis and type 2 diabetes, and the gut microbiota may be a significant target for herbal medicine as it exerts its therapeutic effect of "treating different diseases with the same method".
Collapse
Affiliation(s)
- Boxun Zhang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ke Liu
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haoyu Yang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Zishan Jin
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Qiyou Ding
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
19
|
Huan P, Wang L, He Z, He J. The Role of Gut Microbiota in the Progression of Parkinson's Disease and the Mechanism of Intervention by Traditional Chinese Medicine. Neuropsychiatr Dis Treat 2022; 18:1507-1520. [PMID: 35923300 PMCID: PMC9341349 DOI: 10.2147/ndt.s367016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/07/2022] [Indexed: 11/29/2022] Open
Abstract
Parkinson's disease (PD) is a common degenerative disease of the nervous system that seriously affects the quality of life of the patients. The pathogenesis of PD is not yet fully clear. Previous studies have confirmed that patients with PD exhibit obvious gut microbiota imbalance, while intervention of PD by regulating the gut microbiota has become an important approach to the prevention and treatment of this disease. Traditional Chinese medicine (TCM) has been shown to be safe and effective in treating PD. It has the advantages of affecting multiple targets. Studies have shown TCM can regulate gut microbiota. However, the specific mechanism of action is still unclear. Therefore, this article will mainly discuss the association of the alteration of the gut microbiota and the incidence of PD, the advantages of TCM in treating PD, and the mechanism of regulating gut microbiota by TCM to treat PD. It will clarify the target and mechanism of TCM treating PD by acting gut microbiota and provided a novel methodology for the prevention and treatment of PD.
Collapse
Affiliation(s)
- Pengfei Huan
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.,Shanghai Key Laboratory of Health Identification and Assessment, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Li Wang
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.,Shanghai Key Laboratory of Health Identification and Assessment, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Zhuqing He
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.,Shanghai Key Laboratory of Health Identification and Assessment, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Jiancheng He
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.,Shanghai Key Laboratory of Health Identification and Assessment, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| |
Collapse
|
20
|
Portincasa P, Bonfrate L, Khalil M, Angelis MD, Calabrese FM, D’Amato M, Wang DQH, Di Ciaula A. Intestinal Barrier and Permeability in Health, Obesity and NAFLD. Biomedicines 2021; 10:83. [PMID: 35052763 PMCID: PMC8773010 DOI: 10.3390/biomedicines10010083] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023] Open
Abstract
The largest surface of the human body exposed to the external environment is the gut. At this level, the intestinal barrier includes luminal microbes, the mucin layer, gastrointestinal motility and secretion, enterocytes, immune cells, gut vascular barrier, and liver barrier. A healthy intestinal barrier is characterized by the selective permeability of nutrients, metabolites, water, and bacterial products, and processes are governed by cellular, neural, immune, and hormonal factors. Disrupted gut permeability (leaky gut syndrome) can represent a predisposing or aggravating condition in obesity and the metabolically associated liver steatosis (nonalcoholic fatty liver disease, NAFLD). In what follows, we describe the morphological-functional features of the intestinal barrier, the role of major modifiers of the intestinal barrier, and discuss the recent evidence pointing to the key role of intestinal permeability in obesity/NAFLD.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (L.B.); (M.K.); (A.D.C.)
| | - Leonilde Bonfrate
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (L.B.); (M.K.); (A.D.C.)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (L.B.); (M.K.); (A.D.C.)
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.D.A.); (F.M.C.)
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.D.A.); (F.M.C.)
| | - Francesco Maria Calabrese
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.D.A.); (F.M.C.)
| | - Mauro D’Amato
- Gastrointestinal Genetics Lab, CIC bioGUNE-BRTA, 48160 Derio, Spain;
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, New York, NY 10461, USA;
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (L.B.); (M.K.); (A.D.C.)
| |
Collapse
|
21
|
Chen Y, Wang M. New Insights of Anti-Hyperglycemic Agents and Traditional Chinese Medicine on Gut Microbiota in Type 2 Diabetes. Drug Des Devel Ther 2021; 15:4849-4863. [PMID: 34876807 PMCID: PMC8643148 DOI: 10.2147/dddt.s334325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a widespread metabolic disease characterized by chronic hyperglycemia. Human microbiota, which is regarded as a “hidden organ”, plays an important role in the initiation and development of T2DM. In addition, anti-hyperglycemic agents and traditional Chinese medicine may affect the composition of gut microbiota and consequently improve glucose metabolism. However, the relationship between gut microbiota, T2DM and anti-hyperglycemic agents or traditional Chinese medicine is poorly understood. In this review, we summarized pre-clinical and clinical studies to elucidate the possible underlying mechanism. Some anti-hyperglycemic agents and traditional Chinese medicine may partly exert hypoglycemic effects by altering the gut microbiota composition in ways that reduce metabolic endotoxemia, maintain the integrity of intestinal mucosal barrier, promote the production of short-chain fatty acids (SCFAs), decrease trimethylamine-N-oxide (TMAO) and regulate bile acid metabolism. In conclusion, gut microbiota may provide some new therapeutic targets for treatment of patients with diabetes mellitus.
Collapse
Affiliation(s)
- Yanxia Chen
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
| | - Mian Wang
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
| |
Collapse
|
22
|
Usuda H, Okamoto T, Wada K. Leaky Gut: Effect of Dietary Fiber and Fats on Microbiome and Intestinal Barrier. Int J Mol Sci 2021; 22:ijms22147613. [PMID: 34299233 PMCID: PMC8305009 DOI: 10.3390/ijms22147613] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
Intestinal tract is the boundary that prevents harmful molecules from invading into the mucosal tissue, followed by systemic circulation. Intestinal permeability is an index for intestinal barrier integrity. Intestinal permeability has been shown to increase in various diseases-not only intestinal inflammatory diseases, but also systemic diseases, including diabetes, chronic kidney dysfunction, cancer, and cardiovascular diseases. Chronic increase of intestinal permeability is termed 'leaky gut' which is observed in the patients and animal models of these diseases. This state often correlates with the disease state. In addition, recent studies have revealed that gut microbiota affects intestinal and systemic heath conditions via their metabolite, especially short-chain fatty acids and lipopolysaccharides, which can trigger leaky gut. The etiology of leaky gut is still unknown; however, recent studies have uncovered exogenous factors that can modulate intestinal permeability. Nutrients are closely related to intestinal health and permeability that are actively investigated as a hot topic of scientific research. Here, we will review the effect of nutrients on intestinal permeability and microbiome for a better understanding of leaky gut and a possible mechanism of increase in intestinal permeability.
Collapse
Affiliation(s)
- Haruki Usuda
- Correspondence: (H.U.); (T.O.); Tel.: +81-853-20-3067 (H.U.)
| | | | | |
Collapse
|
23
|
Li L, Bao J, Chang Y, Wang M, Chen B, Yan F. Gut Microbiota May Mediate the Influence of Periodontitis on Prediabetes. J Dent Res 2021; 100:1387-1396. [PMID: 33899584 DOI: 10.1177/00220345211009449] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mounting evidence has shown that periodontitis is associated with diabetes. However, a causal relationship remains to be determined. Recent studies reported that periodontitis may be associated with gut microbiota, which plays an important role in the development of diabetes. Therefore, we hypothesized that gut microbiota might mediate the link between periodontitis and diabetes. Periodontitis was induced by ligatures. Glycemic homeostasis was evaluated through fasting blood glucose (FBG), serum glycosylated hemoglobin (HbA1c), and intraperitoneal glucose tolerance test. Micro-computed tomography and hematoxylin and eosin staining were used to evaluate periodontal destruction. The gut microbiota was analyzed using 16S ribosomal RNA gene sequencing and bioinformatics. Serum endotoxin, interleukin (IL) 6, tumor necrosis factor α (TNF-α), and IL-1β were measured to evaluate the systemic inflammation burden. We found that the levels of FBG, HbA1c, and glucose intolerance were higher in the periodontitis (PD) group than in the control (Con) group (P < 0.05). When periodontitis was eliminated, the FBG significantly decreased (P < 0.05). Several butyrate-producing bacteria were decreased in the gut microbiota of the PD group, including Lachnospiraceae_NK4A136_group, Eubacterium_fissicatena_group, Eubacterium_coprostanoligenes_group, and Ruminococcaceae_UCG-014 (P < 0.05), which were negatively correlated with serum HbA1c (P < 0.05). Subsequently, the gut microbiota was depleted using antibiotics or transplanted through cohousing. Compared with the PD group, the levels of HbA1c and glucose intolerance were decreased in the gut microbiota-depleted mice with periodontitis (PD + Abx) (P < 0.05), as well as the serum levels of endotoxin and IL-6 (P < 0.05). The serum levels of IL-6, TNF-α, and IL-1β in the PD + Abx group were higher than those of the Con group (P < 0.05). Antibiotics exerted a limited impact on the periodontal microbiota. When the PD mice were cohoused with healthy ones, the elevated FBG and HbA1c significantly recovered (P < 0.05), as well as the aforementioned butyrate producers (P < 0.05). Thus, within the limitations of this study, our data indicated that the gut microbiota may mediate the influence of periodontitis on prediabetes.
Collapse
Affiliation(s)
- L Li
- Department of Periodontology, Nangjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China.,Central laboratory of Stomatology, Nangjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - J Bao
- Department of Periodontology, Nangjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China.,Central laboratory of Stomatology, Nangjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Y Chang
- Department of Periodontology, Nangjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China.,The Affiliated Stomatological Hospital of Soochow University, Suzhou Stomatological Hospital, Suzhou, Jiangsu, China
| | - M Wang
- Department of Periodontology, Nangjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China.,Central laboratory of Stomatology, Nangjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - B Chen
- Department of Periodontology, Nangjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China.,Central laboratory of Stomatology, Nangjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - F Yan
- Department of Periodontology, Nangjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China.,Central laboratory of Stomatology, Nangjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|