1
|
Kaster N, Khan R, Ahmad I, Zhigerbayevich KN, Seisembay I, Nurbolat A, Hamitovna SK, Mirambekovna OK, Bekbolatovna MA, Amangaliyev TG, Bolatbek A, Yeginbaevich TZ, Ahmad S, Linsen Z, Baibolsynovna BA. RNA-Seq explores the functional role of the fibroblast growth factor 10 gene in bovine adipocytes differentiation. Anim Biosci 2024; 37:929-943. [PMID: 37946430 PMCID: PMC11065710 DOI: 10.5713/ab.23.0185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/27/2023] [Accepted: 09/18/2023] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVE The present study was executed to explore the molecular mechanism of fibroblast growth factor 10 (FGF10) gene in bovine adipogenesis. METHODS The bovine FGF10 gene was overexpressed through Ad-FGF10 or inhibited through siFGF10 and their negative control (NC) in bovine adipocytes, and the multiplicity of infection, transfection efficiency, interference efficiency were evaluated through quantitative real-time polymerase chain reaction, western blotting and fluorescence microscopy. The lipid droplets, triglycerides (TG) content and the expression levels of adipogenic marker genes were measured during preadipocytes differentiation. The differentially expressed genes were explored through deep RNA sequencing. RESULTS The highest mRNA level was found in omasum, subcutaneous fat, and intramuscular fat. Moreover, the highest mRNA level was found in adipocytes at day 4 of differentiation. The results of red-oil o staining showed that overexpression (Ad-FGF10) of the FGF10 gene significantly (p<0.05) reduced the lipid droplets and TG content, and their downregulation (siFGF10) increased the measurement of lipid droplets and TG in differentiated bovine adipocytes. Furthermore, the overexpression of the FGF10 gene down regulated the mRNA levels of adipogenic marker genes such as CCAAT enhancer binding protein alpha (C/EBPα), fatty acid binding protein (FABP4), peroxisome proliferator-activated receptor-γ (PPARγ), lipoprotein lipase (LPL), and Fas cell surface death receptor (FAS), similarly, down-regulation of the FGF10 gene enriched the mRNA levels of C/EBPα, PPARγ, FABP4, and LPL genes (p<0.01). Additionally, the protein levels of PPARγ and FABP4 were reduced (p<0.05) in adipocytes infected with Ad-FGF10 gene and enriched in adipocytes transfected with siFGF10. Moreover, a total of 1,774 differentially expressed genes (DEGs) including 157 up regulated and 1,617 down regulated genes were explored in adipocytes infected with Ad-FGF10 or Ad-NC through deep RNA-sequencing. The top Kyoto encyclopedia of genes and genomes pathways regulated through DEGs were the PPAR signaling pathway, cell cycle, base excision repair, DNA replication, apoptosis, and regulation of lipolysis in adipocytes. CONCLUSION Therefore, we can conclude that the FGF10 gene is a negative regulator of bovine adipogenesis and could be used as a candidate gene in marker-assisted selection.
Collapse
Affiliation(s)
- Nurgulsim Kaster
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100,
China
- Faculty of Veterinary and Livestock Technology, S. Seifullin Kazakh Agro Technical University, Astana 010000,
Kazakhstan
| | - Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100,
China
- Department of Livestock Management, Breeding and Genetics, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture Peshawar, 25130,
Pakistan
| | - Ijaz Ahmad
- Department of Livestock Management, Breeding and Genetics, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture Peshawar, 25130,
Pakistan
| | - Kazhgaliyev Nurlybay Zhigerbayevich
- Candidate of Sciences in Agriculture, Researcher of Scientific and Production Centre for Animal Husbandry and Veterinary Limited Liability Partnership, Astana 010000,
Kazakhstan
| | - Imbay Seisembay
- Faculty of Veterinary and Livestock Technology, S. Seifullin Kazakh Agro Technical University, Astana 010000,
Kazakhstan
| | - Akhmetbekov Nurbolat
- Faculty of Veterinary and Livestock Technology, S. Seifullin Kazakh Agro Technical University, Astana 010000,
Kazakhstan
| | - Shaikenova Kymbat Hamitovna
- Faculty of Veterinary and Livestock Technology, S. Seifullin Kazakh Agro Technical University, Astana 010000,
Kazakhstan
| | - Omarova Karlygash Mirambekovna
- Faculty of Veterinary and Livestock Technology, S. Seifullin Kazakh Agro Technical University, Astana 010000,
Kazakhstan
| | | | | | - Ateikhan Bolatbek
- Faculty of Agricultural Sciences, Toraighyrov University, Pavlodar 140000,
Kazakhstan
| | | | - Shakoor Ahmad
- College of Veterinary Sciences, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture Peshawar, 25130,
Pakistan
| | - Zan Linsen
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100,
China
| | | |
Collapse
|
2
|
Jia Q, Li B, Wang X, Ma Y, Li G. Comprehensive analysis of peroxisome proliferator-activated receptors to predict the drug resistance, immune microenvironment, and prognosis in stomach adenocarcinomas. PeerJ 2024; 12:e17082. [PMID: 38529307 PMCID: PMC10962337 DOI: 10.7717/peerj.17082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/19/2024] [Indexed: 03/27/2024] Open
Abstract
Background Peroxisome proliferator-activated receptors (PPARs) exert multiple functions in the initiation and progression of stomach adenocarcinomas (STAD). This study analyzed the relationship between PPARs and the immune status, molecular mutations, and drug therapy in STAD. Methods The expression profiles of three PPAR genes (PPARA, PPARD and PPARG) were downloaded from The Cancer Genome Atlas (TCGA) dataset to analyze their expression patterns across pan-cancer. The associations between PPARs and clinicopathologic features, prognosis, tumor microenvironment, genome mutation and drug sensitivity were also explored. Co-expression between two PPAR genes was calculated using Pearson analysis. Regulatory pathways of PPARs were scored using gene set variation analysis (GSVA) package. Quantitative real-time polymerase chain reaction (qRT-PCR), Western blot, Cell Counting Kit-8 (CCK-8) assay and transwell assay were conducted to analyze the expression and function of the PPAR genes in STAD cell lines (AGS and SGC7901 cells). Results PPARA, PPARD and PPARG were more abnormally expressed in STAD samples and cell lines when compared to most of 32 type cancers in TCGA. In STAD, the expression of PPARD was higher in Grade 3+4 and male patients, while that of PPARG was higher in patient with Grade 3+4 and age > 60. Patients in high-PPARA expression group tended to have longer survival time. Co-expression analysis revealed 6 genes significantly correlated with the three PPAR genes in STAD. Single-sample GSEA (ssGSEA) showed that the three PPAR genes were enriched in 23 pathways, including MITOTIC_SPINDLE, MYC_TARGETS_V1, E2F_TARGETS and were closely correlated with immune cells, including NK_cells_resting, T_cells_CD4_memory_resting, and macrophages_M0. Immune checkpoint genes (CD274, SIGLEC15) were abnormally expressed between high-PPAR expression and low-PPAR expression groups. TTN, MUC16, FAT2 and ANK3 genes had a high mutation frequency in both high-PPARA/PPARG and low-PPARA/PPARG expression group. Fourteen and two PPARA/PPARD drugs were identified to be able to effectively treat patients in high-PPARA/PPARG and low-PPARA/PPARG expression groups, respectively. We also found that the chemotherapy drug Vinorelbine was positively correlated with the three PPAR genes, showing the potential of Vinorelbine to serve as a treatment drug for STAD. Furthermore, cell experiments demonstrated that PPARG had higher expression in AGS and SGC7901 cells, and that inhibiting PPARG suppressed the viability, migration and invasion of AGS and SGC7901 cells. Conclusions The current results confirmed that the three PPAR genes (PPARA, PPARD and PPARG) affected STAD development through mediating immune microenvironment and genome mutation.
Collapse
Affiliation(s)
- Qing Jia
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China
| | - Baozhen Li
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China
| | - Xiulian Wang
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China
| | - Yongfen Ma
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China
| | - Gaozhong Li
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China
| |
Collapse
|
3
|
Zhang Y, Xiao B, Liu Y, Wu S, Xiang Q, Xiao Y, Zhao J, Yuan R, Xie K, Li L. Roles of PPAR activation in cancer therapeutic resistance: Implications for combination therapy and drug development. Eur J Pharmacol 2024; 964:176304. [PMID: 38142851 DOI: 10.1016/j.ejphar.2023.176304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/09/2023] [Accepted: 12/21/2023] [Indexed: 12/26/2023]
Abstract
Therapeutic resistance is a major obstacle to successful treatment or effective containment of cancer. Peroxisome proliferator-activated receptors (PPARs) play an essential role in regulating energy homeostasis and determining cell fate. Despite of the pleiotropic roles of PPARs in cancer, numerous studies have suggested their intricate relationship with therapeutic resistance in cancer. In this review, we provided an overview of the roles of excessively activated PPARs in promoting resistance to modern anti-cancer treatments, including chemotherapy, radiotherapy, targeted therapy, and immunotherapy. The mechanisms through which activated PPARs contribute to therapeutic resistance in most cases include metabolic reprogramming, anti-oxidant defense, anti-apoptosis signaling, proliferation-promoting pathways, and induction of an immunosuppressive tumor microenvironment. In addition, we discussed the mechanisms through which activated PPARs lead to multidrug resistance in cancer, including drug efflux, epithelial-to-mesenchymal transition, and acquisition and maintenance of the cancer stem cell phenotype. Preliminary studies investigating the effect of combination therapies with PPAR antagonists have suggested the potential of these antagonists in reversing resistance and facilitating sustained cancer management. These findings will provide a valuable reference for further research on and clinical translation of PPAR-targeting treatment strategies.
Collapse
Affiliation(s)
- Yanxia Zhang
- School of Medicine, The South China University of Technology, Guangzhou, 510006, China; Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Bin Xiao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Yunduo Liu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Shunhong Wu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Qin Xiang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Yuhan Xiao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Junxiu Zhao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Ruanfei Yuan
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Keping Xie
- School of Medicine, The South China University of Technology, Guangzhou, 510006, China.
| | - Linhai Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China.
| |
Collapse
|
4
|
Gu X, Xu L, Fu Y, Fan S, Huang T, Yu J, Chen J, Sui X, Xie X. Elemene Injection Overcomes Paclitaxel Resistance in Breast Cancer through AR/RUNX1 Signal: Network Pharmacology and Experimental Validation. Curr Pharm Des 2024; 30:2313-2324. [PMID: 38918989 PMCID: PMC11475252 DOI: 10.2174/0113816128315677240620052444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Paclitaxel (PTX) is a cornerstone chemotherapy for Breast Cancer (BC), yet its impact is limited by emerging resistance. Elemene Injection (EI) has shown potential in overcoming chemotherapy resistance. However, the efficacy by which EI restores PTX sensitivity in BC and the implicated molecular mechanism remain uncharted. METHODS Network pharmacology and bioinformatic analysis were conducted to investigate the targets and mechanisms of EI in overcoming PTX resistance. A paclitaxel-resistant MCF-7 cell line (MCF-7PR) was established. The efficacy of EI and/or PTX in inhibiting cell viability was evaluated using sulforhodamine B assay, while cell proliferation was assessed using EdU staining. Furthermore, protein and gene expression analysis was performed through Western blotting and qPCR. RESULTS The EI containing three active components exhibited a multifaceted impact by targeting an extensive repertoire of 122 potential molecular targets. By intersecting with 761 differentially expressed genes, we successfully identified 9 genes that displayed a direct association with resistance to PTX in BC, presenting promising potential as therapeutic targets for the EI to effectively counteract PTX resistance. Enrichment analysis indicated a significant correlation between these identified targets and critical biological processes, particularly DNA damage response and cell cycle regulation. This correlation was further substantiated through meticulous analysis of single-cell datasets. Molecular docking analysis revealed robust binding affinities between the active components of the EI and the identified molecular targets. Subsequently, in vitro experiments unequivocally demonstrated the dose- and time-dependent inhibitory effects of the EI on both PTX-resistant and sensitive BC cell lines, effectively mitigating the resistance phenotype associated with PTX administration. Furthermore, our findings have indicated EI to effectively suppress the protein expression levels of AR and RUNX1 in MCF-7 and MCF-7PR cells under PTX treatment, as well as downregulate the mRNA expression levels of stem-like properties' markers, KLF4 and OCT4, in these cell lines. CONCLUSION Elemene Injection (EI) application has exhibited a significant capability to mitigate PTX resistance in BC, which has been achieved through targeted suppression of the AR/RUNX1 axis, revealing a key strategy to overcome chemotherapeutic resistance.
Collapse
Affiliation(s)
- Xidong Gu
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310003, Zhejiang, China
| | - Leilai Xu
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310003, Zhejiang, China
| | - Yuanyuan Fu
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310003, Zhejiang, China
| | - Shuyao Fan
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310003, Zhejiang, China
| | - Tianjian Huang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Jiangting Yu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Jiaying Chen
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Xinbing Sui
- Department of Medical Oncology, School of Pharmacy, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, Zhejiang, China
| | - Xiaohong Xie
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310003, Zhejiang, China
| |
Collapse
|
5
|
Luo M, Wang L, Xiao C, Zhou M, Li M, Li H. miR136 regulates proliferation and differentiation of small tail han sheep preadipocytes. Adipocyte 2023; 12:2173966. [PMID: 36722834 PMCID: PMC9928478 DOI: 10.1080/21623945.2023.2173966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Low meat performance is the defect of Small Tail Han sheep. Intramuscular fat affects meat quality and largely determined by adipogenesis. In previous study, miR136 was showed one of differentially expressed microRNAs between preadipocytes and mature adipocytes of Small Tail Han sheep but its role in adipogenesis is still not elucidated. Here, we investigated the effect of miR136 on adipogenesis and the underlying mechanism. qPCR data showed that miR136 level increased with preadipocytes proliferation while declined with preadipocytes differentiation. Moreover, miR136 mimics blocked lipid droplet formation, reduced lipid content and triglyceride accumulation while miR136 inhibitor showed the opposite effects, revealing that miR136 promoted preadipocytes proliferation but inhibited preadipocytes differentiation. Bioinformatics and biochemical validation manifested that PPARGC1B was a target of miR136. Furthermore, miR136 mimics decreased PPARγ and C/EBPα expression accompanied by PPARGC1B expression descending. Reverse effects were observed with miR136 inhibitor. Besides, overexpression of miR136 elevated IGF1 expression. Collectively, our data first exhibited a regulatory role of miR136 in adipogenesis, which is promoting preadipocytes proliferation through elevating IGF1 expression while inhibiting preadipocytes differentiation through targeting PPARGC1B and further declined PPARγ and C/EBPα expression. The modulation of PPARGC1B by miR136 may provide a new potential target for increasing intramuscular fat.
Collapse
Affiliation(s)
- Man Luo
- Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China,Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China,School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lin Wang
- Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Cheng Xiao
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Mengsi Zhou
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Minghui Li
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Hongjuan Li
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China,CONTACT Hongjuan Li Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 16 Tongbai North Road, Zhengzhou450001, China
| |
Collapse
|
6
|
Yu J, Hu G, Guo X, Cao H, Zhang C. Quercetin Alleviates Inflammation and Energy Deficiency Induced by Lipopolysaccharide in Chicken Embryos. Animals (Basel) 2023; 13:2051. [PMID: 37443849 DOI: 10.3390/ani13132051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
Energy deficiency causes multiple organ dysfunctions after LPS induction. Quercetin is a phenolic compound found in herbal medicines. However, the effects of quercetin in alleviating LPS-induced energy deficiency remain unclear. In the present study, an in vivo LPS-induced inflammation model was established in chicken embryos. Specific pathogen-free chicken embryos (n = 120) were allocated to control, PBS with or without ethanol, quercetin (10, 20, or 40 nmol, respectively), and LPS (125 ng/egg) with or without quercetin groups. Fifteen day old embryonated eggs were injected with the abovementioned solutions via the allantoic cavity. On embryonic day 19, the tissues of the embryos were collected for histopathological examination using frozen oil red O staining, RNA extraction, real-time quantitative polymerase chain reaction, and immunohistochemical investigations. The glycogen and lipid contents in the liver increased after LPS stimulation as compared with the PBS group, whereas quercetin decreased the accumulation as compared with the LPS group. The mRNA expressions of AMPKα1 and AMPKα2 in the duodena, ceca, and livers were upregulated after LPS induction as compared with the PBS group, while quercetin could downregulate these expressions as compared with the LPS group. The immunopositivity of AMPKα2 in the villus, crypt, lamina propria, tunica muscularis, and myenteric plexus in the duodena and in the cytoplasms of hepatocytes significantly increased after LPS induction when compared with the PBS group (p < 0.01), whereas the immunopositivity to AMPKα2 in the quercetin treatment group significantly decreased when compared with the LPS group (p < 0.01 or p < 0.05). The LPS-induced high expressions of transcription factor PPARα and glucose transporter (SGLT1) were blocked by quercetin in the duodena, ceca, and livers. Quercetin treatment improved the LPS-induced decrease in APOA4 in the duodena, ceca, and livers. The mRNA expression of PEPT1 in the duodena and ceca increased after LPS challenge, whereas quercetin could downregulate PEPT1 gene expression. These data demonstrate that quercetin improved the energy deficiency induced by LPS in chicken embryos. The LPS-induced inflammation model was established to avoid the effect of LPS exposure from the environment and intestinal flora. The results form the basis the administration of quercetin pretreatment (in ovo infection) to improve the energy state of chicken embryos and improve the inflammation response.
Collapse
Affiliation(s)
- Jinhai Yu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
7
|
Yin X, Teng X, Ma T, Yang T, Zhang J, Huo M, Liu W, Yang Y, Yuan B, Yu H, Huang W, Wang Y. RUNX2 recruits the NuRD(MTA1)/CRL4B complex to promote breast cancer progression and bone metastasis. Cell Death Differ 2022; 29:2203-2217. [PMID: 35534547 PMCID: PMC9613664 DOI: 10.1038/s41418-022-01010-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023] Open
Abstract
Runt-related transcription factor 2 (RUNX2) is an osteogenesis-related transcription factor that has emerged as a prominent transcription repressing factor in carcinogenesis. However, the role of RUNX2 in breast cancer metastasis remains poorly understood. Here, we show that RUNX2 recruits the metastasis-associated 1 (MTA1)/NuRD and the Cullin 4B (CUL4B)-Ring E3 ligase (CRL4B) complex to form a transcriptional-repressive complex, which catalyzes the histone deacetylation and ubiquitylation. Genome-wide analysis of the RUNX2/NuRD(MTA1)/CRL4B complex targets identified a cohort of genes including peroxisome proliferator-activated receptor alpha (PPARα) and superoxide dismutase 2 (SOD2), which are critically involved in cell growth, epithelial-to-mesenchymal transition (EMT) and invasion. We demonstrate that the RUNX2/NuRD(MTA1)/CRL4B complex promotes the proliferation, invasion, tumorigenesis, bone metastasis, cancer stemness of breast cancer in vitro and in vivo. Strikingly, RUNX2 expression is upregulated in multiple human carcinomas, including breast cancer. Our study suggests that RUNX2 is a promising potential target for the future treatment strategies of breast cancer.
Collapse
Affiliation(s)
- Xin Yin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xu Teng
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Tianyu Ma
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tianshu Yang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jingyao Zhang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Miaomiao Huo
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wei Liu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yunkai Yang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Baowen Yuan
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hefen Yu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Wei Huang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| | - Yan Wang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
8
|
Sathua KB, Singh RK. Mitochondrial biogenesis alteration in arsenic-induced carcinogenesis and its therapeutic interventions. TOXIN REV 2022. [DOI: 10.1080/15569543.2022.2124420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Affiliation(s)
- Kshirod Bihari Sathua
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Lucknow, India
- Department of Pharmacology, College of Pharmaceutical Sciences, Odisha, India
| | - Rakesh Kumar Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Lucknow, India
| |
Collapse
|
9
|
Ping W, Hong S, Xun Y, Li C. Comprehensive Bioinformatics Analysis of Toll-Like Receptors (TLRs) in Pan-Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4436646. [PMID: 35937402 PMCID: PMC9352480 DOI: 10.1155/2022/4436646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/20/2022] [Accepted: 07/14/2022] [Indexed: 11/18/2022]
Abstract
Background To conduct a comprehensive bioinformatics analysis on the transcriptome signatures of Toll-like receptors (TLRs) in pan-cancer. Materials and methods. A total of 11,057 tissues consisting of 33 types of carcinoma in The Cancer Genome Atlas (TCGA) were retrieved, and then we further explored the correlation between TLRs' expression with tumorigenesis, immune infiltration, and drug sensitivity. We conducted a comprehensive bioinformatics analysis on TLR1 to 10 in pan-cancer, including differential expression analysis between normal and tumor tissues, differential immune subtype correlation, survival analysis, tumor immune infiltration estimating, stemness indices correlation, and drug responses correlation. Results TLR2 was highly expressed in most types of tumors. TLR9 was hardly expressed compared to other TLR genes, which lead to TLR9 showing less correlation with both immune-estimate scores and stromal-estimate scores. All the TLRs were related with immune subtype of tumor samples that all of them were differentially expressed in differential immune subtype samples. The expression of TLRs was positively related with immune-estimate scores and stromal-estimate scores in almost all types of tumor. The expression of TLRs was negatively correlated with mRNA expression-based stemness scores (RNAss) in nearly almost type of tumors except kidney renal clear cell carcinoma (KIRC) and also negatively correlated with DNA methylation-based stemness scores (DNAss) in many types of tumors except adrenocortical carcinoma (ACC), cholangiocarcinoma (CHOL), KIRC, acute myeloid leukemia (LAML), low-grade glioma (LGG), testicular germ cell tumors (TGCT), thyroid carcinoma (THCA), thymoma (THYM), and uveal melanoma (UVM). The expression of TLR9 was significantly positively correlated with the drug sensitivity of fluphenazine, alectinib, carmustine, and 7-hydroxystaurosporine. TLR7 was significantly positively correlated with the drug sensitivity of alectinib. Conclusions Our study reveals the significant role of TLRs family in pan-cancer and provides potential therapeutic strategies of cancer.
Collapse
Affiliation(s)
- Wei Ping
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, 430030 Wuhan, China
| | - Senyuan Hong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, 430030 Wuhan, China
| | - Yang Xun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, 430030 Wuhan, China
| | - Cong Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, 430030 Wuhan, China
| |
Collapse
|
10
|
Identification of a Novel PPAR Signature for Predicting Prognosis, Immune Microenvironment, and Chemotherapy Response in Bladder Cancer. PPAR Res 2022; 2021:7056506. [PMID: 35027921 PMCID: PMC8749226 DOI: 10.1155/2021/7056506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 01/14/2023] Open
Abstract
Background Mounting evidence has confirmed that peroxisome proliferator-activated receptors (PPARs) played a crucial role in the development and progression of bladder cancer (BLCA). The purpose of this study is to comprehensively investigate the function and prognostic value of PPAR-targeted genes in BLCA. Methods The RNA sequencing data and clinical information of BLCA patients were acquired from The Cancer Genome Atlas (TCGA). The differentially expressed PPAR-targeted genes were investigated. Cox analysis and least absolute shrinkage and selection operator (LASSO) analysis were performed for screening prognostic PPAR-targeted genes and constructing the prognostic PPAR signature and then validated by GSE13507 cohort and GSE32894 cohort. A nomogram was constructed to predict the outcomes of BLCA patients in combination with PPAR signature and clinical factors. Gene set enrichment analysis (GSEA) and immune cell infiltration were implemented to explore the molecular characteristics of the signature. The Genomics of Drug Sensitivity in Cancer (GDSC) database was used to predict the chemotherapy responses of the prognostic signature. The candidate small molecule drugs targeting PPAR-targeted genes were screened by the CMAP database. Results We constructed and validated the prognostic signature comprising of 4 PPAR-targeted genes (CPT1B, CALR, AHNAK, and FADS2), which was an independent prognostic biomarker in BLCA patients. A nomogram based on the signature and clinical factors was established in the TCGA set, and the calibration plots displayed the excellent predictive capacity. GSEA analysis indicated that PPAR signature was implicated in multiple oncogenic signaling pathways and correlated with tumor immune cell infiltration. Patients in the high-risk groups showed greater sensitivity to chemotherapy than those in the low-risk groups. Moreover, 11 candidate small molecule drugs were identified for the treatment of BLCA. Conclusion We constructed and validated a novel PPAR signature, which showed the excellent performance in predicting prognosis and chemotherapy sensitivity of BLCA patients.
Collapse
|
11
|
Lin Y, Wang Y, Li PF. PPARα: An emerging target of metabolic syndrome, neurodegenerative and cardiovascular diseases. Front Endocrinol (Lausanne) 2022; 13:1074911. [PMID: 36589809 PMCID: PMC9800994 DOI: 10.3389/fendo.2022.1074911] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Peroxisome proliferator-activated receptor α (PPARα) is a ligand-activated transcription factor that is involved in lipid metabolism of various tissues. Different metabolites of fatty acids and agonists like fibrates activate PPARα for its transactivative or repressive function. PPARα is known to affect diverse human diseases, and we focus on advanced studies of its transcriptional regulation in these diseases. In MAFLD, PPARα shows a protective function with its upregulation of lipid oxidation and mitochondrial biogenesis and transcriptional repression of inflammatory genes, which is similar in Alzheimer's disease and cardiovascular disease. Activation of PPARα also prevents the progress of diabetes complications; however, its role in diabetes and cancers remains uncertain. Some PPARα-specific agonists, such as Wy14643 and fenofibrate, have been applied in metabolic syndrome treatment, which might own potential in wider application. Future studies may further explore the functions and interventions of PPARα in cancer, diabetes, immunological diseases, and neurodegenerative disease.
Collapse
Affiliation(s)
- Yijun Lin
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen, China
- *Correspondence: Yijun Lin, ; Yan Wang, ; Pei-feng Li,
| | - Yan Wang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen, China
- *Correspondence: Yijun Lin, ; Yan Wang, ; Pei-feng Li,
| | - Pei-feng Li
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen, China
- *Correspondence: Yijun Lin, ; Yan Wang, ; Pei-feng Li,
| |
Collapse
|
12
|
Feng G, Wang T, Xue F, Qi Y, Wang R, Yuan H. Identification of enhancer RNAs for the prognosis of head and neck squamous cell carcinoma. Head Neck 2021; 43:3820-3831. [PMID: 34569097 DOI: 10.1002/hed.26877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/10/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Enhancer RNAs (eRNAs) play an important role in carcinogenesis. The landscape of eRNAs in head and neck squamous cell carcinoma (HNSCC) remains largely unknown. METHODS The eRNA expression matrix was obtained from the enhancer RNA in the cancer database. Functional enrichment analyses were performed using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG). Prognostic eRNAs were identified using Cox regression analysis, and a prognostic prediction model was constructed based on coefficients. RESULTS KEGG analysis showed that eRNA-related transcription factors were mainly enriched in herpes simplex virus 1 (HSV1) infection. The zinc finger (ZNF) family may play an essential role in HNSCC. ENSR00000188847, ENSR00000250663, ENSR00000313345, ENSR00000317887, and ENSR00000336429 were identified. The prediction model was robust. CONCLUSIONS We constructed a robust 5-eRNA prognostic prediction model, and these eRNAs are potential biomarkers for HNSCC prognosis.
Collapse
Affiliation(s)
- Guanying Feng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Tianxiao Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Feifei Xue
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Yibo Qi
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Ruixia Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Hua Yuan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Chen G, Yu M, Cao J, Zhao H, Dai Y, Cong Y, Qiao G. Identification of candidate biomarkers correlated with poor prognosis of breast cancer based on bioinformatics analysis. Bioengineered 2021; 12:5149-5161. [PMID: 34384030 PMCID: PMC8806858 DOI: 10.1080/21655979.2021.1960775] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Breast cancer (BC) is a malignancy with high incidence among women in the world. This study aims to screen key genes and potential prognostic biomarkers for BC using bioinformatics analysis. Total 58 normal tissues and 203 cancer tissues were collected from three Gene Expression Omnibus (GEO) gene expression profiles, and then the differential expressed genes (DEGs) were identified. Subsequently, the Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway were analyzed to investigate the biological function of DEGs. Additionally, hub genes were screened by constructing a protein–protein interaction (PPI) network. Then, we explored the prognostic value and molecular mechanism of these hub genes using Kaplan–Meier (KM) curve and Gene Set Enrichment Analysis (GSEA). As a result, 42 up-regulated and 82 down-regulated DEGs were screened out from GEO datasets. The DEGs were mainly related to cell cycles and cell proliferation by GO and KEGG pathway analysis. Furthermore, 12 hub genes (FN1, AURKA, CCNB1, BUB1B, PRC1, TPX2, NUSAP1, TOP2A, KIF20A, KIF2C, RRM2, ASPM) with a high degree were identified initially, among which, 11 hub genes were significantly correlated with the prognosis of BC patients based on the Kaplan–Meier-plotter. GSEA reviewed that these hub genes correlated with KEGG_CELL_CYCLE and HALLMARK_P53_PATHWAY. In conclusion, this study identified 11 key genes as BC potential prognosis biomarkers on the basis of integrated bioinformatics analysis. This finding will improve our knowledge of the BC progress and mechanisms.
Collapse
Affiliation(s)
- Gang Chen
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, P.R. China
| | - Mingwei Yu
- Department of Orthopedics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, P.R. China
| | - Jianqiao Cao
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, P.R. China
| | - Huishan Zhao
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, P.R. China
| | - Yuanping Dai
- Department of Medical Genetics, Liuzhou Maternal and Child Health Hospital, Guangxi, P.R. China
| | - Yizi Cong
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, P.R. China
| | - Guangdong Qiao
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, P.R. China
| |
Collapse
|
14
|
miR-22-3p/PGC1 β Suppresses Breast Cancer Cell Tumorigenesis via PPAR γ. PPAR Res 2021; 2021:6661828. [PMID: 33777130 PMCID: PMC7981180 DOI: 10.1155/2021/6661828] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/16/2020] [Accepted: 02/24/2021] [Indexed: 12/17/2022] Open
Abstract
In this study, we found that miR-22-3p expression was decreased in breast cancer (BC) cell lines and tissues. Overexpression of miR-22-3p inhibited the proliferation and migration of BC cells in vitro and in vivo, while depletion of miR-22-3p exhibited the opposite effect. Importantly, miR-22-3p could directly target PGC1β and finally regulate the PPARγ pathway in BC. In conclusion, miR-22-3p/PGC1β suppresses BC cell tumorigenesis via PPARγ, which may become a potential biomarker and therapeutic target.
Collapse
|
15
|
Wu L, Feng J, Li J, Yu Q, Ji J, Wu J, Dai W, Guo C. The gut microbiome-bile acid axis in hepatocarcinogenesis. Biomed Pharmacother 2021; 133:111036. [PMID: 33378947 DOI: 10.1016/j.biopha.2020.111036] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/01/2020] [Accepted: 11/15/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and is a leading cause of cancer-related deaths globally, with few effective therapeutic options. Bile acids (BAs) are synthesized from cholesterol in the liver and can be modulated by farnesoid X receptor (FXR) and G-protein coupled BA receptor 1 (GPBAR1/TGR5). Alterations in BAs can affect hepatic metabolic homeostasis and contribute to the pathogenesis of liver cancer. Increasing evidence points to the key role of bacterial microbiota in the promotion and development of liver cancer. They are also involved in the regulation of BA synthesis and metabolism. The purpose of this review is to integrate related articles involving gut microbiota, BAs and HCC, and review how the gut microbiota-BA signaling axis can possibly influence the development of HCC.
Collapse
Affiliation(s)
- Liwei Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China; Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jingjing Li
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China; Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Qiang Yu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jie Ji
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China.
| | - Weiqi Dai
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China; Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai 200032, China; Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai 200032, China; Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200336, China.
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, China; Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|