1
|
Fornari Caprara AL, Rissardo JP, Nagele EP. Rasmussen Encephalitis: Clinical Features, Pathophysiology, and Management Strategies-A Comprehensive Literature Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1858. [PMID: 39597043 PMCID: PMC11596482 DOI: 10.3390/medicina60111858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
Rasmussen encephalitis (RE) is a rare and progressive form of chronic encephalitis that typically affects one hemisphere of the brain and primarily occurs in pediatric individuals. The current study aims to narratively review the literature about RE, including historical information, pathophysiology, and management of this condition. RE often occurs in individuals with normal development, and it is estimated that only a few new cases are identified each year in epilepsy centers. Approximately 10% of cases also occur in adolescents and adults. The hallmark feature of RE is drug-resistant focal seizures that can manifest as epilepsia partialis continua. Also, patients with RE usually develop motor and cognitive impairment throughout the years. Neuroimaging studies show progressive damage to the affected hemisphere, while histopathological examination reveals T-cell-dominated encephalitis with activated microglial cells and reactive astrogliosis. The current therapy guidelines suggest cerebral hemispherotomy is the most recommended treatment for seizures in RE, although significant neurological dysfunction can occur. Another option is pharmacological management with antiseizure medications and immunomodulatory agents. No significant progress has been made in understanding the pathophysiology of this condition in the last decades, especially regarding genetics. Notably, RE diagnosis still depends on the criteria established by Bien et al., and the accuracy can be limited and include genetically different individuals, leading to unexpected responses to management.
Collapse
Affiliation(s)
| | - Jamir Pitton Rissardo
- Neurology Department, Cooper University Hospital, Camden, NJ 08103, USA; (A.L.F.C.); (E.P.N.)
| | | |
Collapse
|
2
|
Radoszkiewicz K, Bzinkowska A, Chodkowska M, Rybkowska P, Sypecka M, Zembrzuska-Kaska I, Sarnowska A. Deciphering the impact of cerebrospinal fluid on stem cell fate as a new mechanism to enhance clinical therapy development. Front Neurosci 2024; 17:1332751. [PMID: 38282622 PMCID: PMC10811009 DOI: 10.3389/fnins.2023.1332751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024] Open
Abstract
Neural stem cells (NSCs) hold a very significant promise as candidates for cell therapy due to their robust neuroprotective and regenerative properties. Preclinical studies using NSCs have shown enough encouraging results to perform deeper investigations into more potential clinical applications. Nevertheless, our knowledge regarding neurogenesis and its underlying mechanisms remains incomplete. To understand them better, it seems necessary to characterize all components of neural stem cell niche and discover their role in physiology and pathology. Using NSCs in vivo brings challenges including limited cell survival and still inadequate integration within host tissue. Identifying overlooked factors that might influence these outcomes becomes pivotal. In this review, we take a deeper examination of the influence of a fundamental element that is present in the brain, the cerebrospinal fluid (CSF), which still remains relatively unexplored. Its role in neurogenesis could be instrumental to help find novel therapeutic solutions for neurological disorders, eventually advancing our knowledge on central nervous system (CNS) regeneration and repair.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anna Sarnowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
3
|
Liu ZZ, Huang Y, Hong CG, Wang X, Duan R, Liu JY, He JL, Duan D, Xie H, Lu M. Autologous olfactory mucosa mesenchymal stem cells treatment improves the neural network in chronic refractory epilepsy. Stem Cell Res Ther 2023; 14:237. [PMID: 37674249 PMCID: PMC10483711 DOI: 10.1186/s13287-023-03458-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/18/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND AND AIMS Refractory epilepsy is also known as drug-resistant epilepsy with limited clinical treatment. Benefitting from its safety and easy availability, olfactory mucosa mesenchymal stem cells (OM-MSCs) are considered a preferable MSC source for clinical application. This study aims to investigate whether OM-MSCs are a promising alternative source for treating refractory epilepsy clinically and uncover the mechanism by OM-MSCs administration on an epileptic mouse model. METHODS OM-MSCs were isolated from turbinal and characterized by flow cytometry. Autologous human OM-MSCs treatment on a patient was carried out using intrathecal administration. Epileptic mouse model was established by 1 mg/kg scopolamine and 300 mg/kg pilocarpine treatment (intraperitoneal). Stereotaxic microinjection was employed to deliver the mouse OM-MSCs. Mouse electroencephalograph recording was used to investigate the seizures. Brain structure was evaluated by magnetic resonance imaging (MRI). Immunohistochemical and immunofluorescent staining of GFAP, IBA1, MAP2, TUBB3, OLIG2, CD4, CD25, and FOXP3 was carried out to investigate the neural cells and Treg cells. QRT-PCR and ELISA were performed to determine the cytokines (Il1b, Il6, Tnf, Il10) on mRNA and protein level. Y-maze, the object location test, and novel object recognition test were performed to measure the cognitive function. Footprint test, rotarod test, balance beam test, and grip strength test were conducted to evaluate the locomotive function. Von Frey testing was carried out to assess the mechanical allodynia. RESULTS Many beneficial effects of the OM-MSC treatment on disease status, including seizure type, frequency, severity, duration, and cognitive function, and no apparent adverse effects were observed at the 8-year follow-up case. Brain MRI indicated that autologous OM-MSC treatment alleviated brain atrophy in epilepsy patients. A study in an epileptic mouse model revealed that OM-MSC treatment recruited Treg cells to the brain, inhibited inflammation, rebuilt the neural network, and improved the cognitive, locomotive, and perceptive functions of epileptic mice. CONCLUSIONS Autologous OM-MSC treatment is efficacious for improving chronic refractory epilepsy, suggesting a future therapeutic candidate for epilepsy. TRIAL REGISTRATION The study was registered with Chinese Clinical Trial Registry (ChiCTR2200055357).
Collapse
Affiliation(s)
- Zheng-Zhao Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Bone Joint Degeneration and Injury, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yan Huang
- NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, Hunan, China
- Hunan Provincial Key Laboratory of Neurorestoration, Hunan Normal University, Changsha, 410081, Hunan, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, 410219, Hunan, China
- First Clinical Department of Changsha Medical University, Changsha, 410081, Hunan, China
| | - Chun-Gu Hong
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xin Wang
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ran Duan
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jian-Yang Liu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Jia-Lin He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Da Duan
- Department of Neurosurgery, the 921st Hospital of PLA (Second Affiliated Hospital of Hunan Normal University), Changsha, 410081, Hunan, China
| | - Hui Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Bone Joint Degeneration and Injury, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Ming Lu
- Department of Neurosurgery, the 921st Hospital of PLA (Second Affiliated Hospital of Hunan Normal University), Changsha, 410081, Hunan, China.
- Hunan Provincial Key Laboratory of Neurorestoration, Hunan Normal University, Changsha, 410081, Hunan, China.
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, 410219, Hunan, China.
| |
Collapse
|
4
|
Tesiye MR, Gol M, Fadardi MR, Kani SNM, Costa AM, Ghasemi-Kasman M, Biagini G. Therapeutic Potential of Mesenchymal Stem Cells in the Treatment of Epilepsy and Their Interaction with Antiseizure Medications. Cells 2022; 11:cells11244129. [PMID: 36552892 PMCID: PMC9777461 DOI: 10.3390/cells11244129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Epilepsy is a life-threatening neurological disease that affects approximately 70 million people worldwide. Although the vast majority of patients may be successfully managed with currently used antiseizure medication (ASM), the search for alternative therapies is still necessary due to pharmacoresistance in about 30% of patients with epilepsy. Here, we review the effects of ASMs on stem cell treatment when they could be, as expected, co-administered. Indeed, it has been reported that ASMs produce significant effects on the differentiation and determination of stem cell fate. In addition, we discuss more recent findings on mesenchymal stem cells (MSCs) in pre-clinical and clinical investigations. In this regard, their ability to differentiate into various cell types, reach damaged tissues and produce and release biologically active molecules with immunomodulatory/anti-inflammatory and regenerative properties make them a high-potential therapeutic tool to address neuroinflammation in different neurological disorders, including epilepsy. Overall, the characteristics of MSCs to be genetically engineered, in order to replace dysfunctional elements with the aim of restoring normal tissue functioning, suggested that these cells could be good candidates for the treatment of epilepsy refractory to ASMs. Further research is required to understand the potential of stem cell treatment in epileptic patients and its interaction with ASMs.
Collapse
Affiliation(s)
- Maryam Rahimi Tesiye
- Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran 19839-69411, Iran
| | - Mohammad Gol
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- PhD School of Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, 41125 Modena, Italy
| | | | | | - Anna-Maria Costa
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol 47176-47745, Iran
- Department of Physiology, School of Medical Sciences, Babol University of Medical Sciences, Babol 47176-47745, Iran
- Correspondence: (M.G.-K.); (G.B.)
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Correspondence: (M.G.-K.); (G.B.)
| |
Collapse
|
5
|
Chang BL, Chang KH. Stem Cell Therapy in Treating Epilepsy. Front Neurosci 2022; 16:934507. [PMID: 35833086 PMCID: PMC9271895 DOI: 10.3389/fnins.2022.934507] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
Epilepsy is a common disabling chronic neurological disorder characterized by an enduring propensity for the generation of seizures that result from abnormal hypersynchronous firing of neurons in the brain. Over 20–30% of epilepsy patients fail to achieve seizure control or soon become resistant to currently available therapies. Prolonged seizures or uncontrolled chronic seizures would give rise to neuronal damage or death, astrocyte activation, reactive oxygen species production, and mitochondrial dysfunction. Stem cell therapy is potentially a promising novel therapeutic strategy for epilepsy. The regenerative properties of stem cell-based treatment provide an attractive approach for long-term seizure control, particularly in drug-resistant epilepsy. Embryonic stem cells (ESCs), mesenchymal stem cells (MSCs), neural stem cells (NSCs), induced pluripotent stem cells (iPSCs), and adipose-derived regenerative cells (ADRCs) are capable of differentiating into specialized cell types has been applied for epilepsy treatment in preclinical animal research and clinical trials. In this review, we focused on the advances in stem cell therapy for epilepsies. The goals of stem cell transplantation, its mechanisms underlying graft effects, the types of grafts, and their therapeutic effects were discussed. The cell and animal models used for investigating stem cell technology in epilepsy treatment were summarized.
Collapse
Affiliation(s)
- Bao-Luen Chang
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, Taoyuan City, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- *Correspondence: Bao-Luen Chang
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital-Linkou Medical Center, Taoyuan City, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| |
Collapse
|
6
|
Shaimardanova AA, Chulpanova DS, Mullagulova AI, Afawi Z, Gamirova RG, Solovyeva VV, Rizvanov AA. Gene and Cell Therapy for Epilepsy: A Mini Review. Front Mol Neurosci 2022; 15:868531. [PMID: 35645733 PMCID: PMC9132249 DOI: 10.3389/fnmol.2022.868531] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
Epilepsy is a chronic non-infectious disease of the brain, characterized primarily by recurrent unprovoked seizures, defined as an episode of disturbance of motor, sensory, autonomic, or mental functions resulting from excessive neuronal discharge. Despite the advances in the treatment achieved with the use of antiepileptic drugs and other non-pharmacological therapies, about 30% of patients suffer from uncontrolled seizures. This review summarizes the currently available methods of gene and cell therapy for epilepsy and discusses the development of these approaches. Currently, gene therapy for epilepsy is predominantly adeno-associated virus (AAV)-mediated delivery of genes encoding neuro-modulatory peptides, neurotrophic factors, enzymes, and potassium channels. Cell therapy for epilepsy is represented by the transplantation of several types of cells such as mesenchymal stem cells (MSCs), bone marrow mononuclear cells, neural stem cells, and MSC-derived exosomes. Another approach is encapsulated cell biodelivery, which is the transplantation of genetically modified cells placed in capsules and secreting various therapeutic agents. The use of gene and cell therapy approaches can significantly improve the condition of patient with epilepsy. Therefore, preclinical, and clinical studies have been actively conducted in recent years to prove the benefits and safety of these strategies.
Collapse
Affiliation(s)
| | - Daria S. Chulpanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Aysilu I. Mullagulova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Zaid Afawi
- Center for Neuroscience, Ben Gurion University of the Negev, Be’er Sheva, Israel
| | - Rimma G. Gamirova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- *Correspondence: Albert A. Rizvanov,
| |
Collapse
|
7
|
Nguyen Thanh L, Hoang VT, Le Thu H, Nguyen PAT, Hoang DM, Ngo DV, Cao Vu H, Nguyen Thi Bich V, Heke M. Human Umbilical Cord Mesenchymal Stem Cells for Severe Neurological Sequelae due to Anti- N-Methyl-d-Aspartate Receptor Encephalitis: First Case Report. Cell Transplant 2022; 31:9636897221110876. [PMID: 35815930 PMCID: PMC9277426 DOI: 10.1177/09636897221110876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Anti-N-methyl-d-aspartate (NMDA) receptor encephalitis is caused by altered patient immune reactions. This study reports the first patient with severe neurologic sequelae after NMDA receptor encephalitis treated with allogeneic umbilical cord-derived mesenchymal stem/stromal cells (UC-MSCs). A 5-year-old girl was diagnosed with NMDA receptor encephalitis and treated with immunosuppressive medicaments and intravenous immunoglobulin (IVIG). Despite intensive therapy, the patient's condition worsened so that allogenic UC-MSC therapy was contemplated. The patient received three intrathecal infusions of xeno- and serum-free cultured UC-MSCs at a dose of 106 cells/kg. At baseline and after each UC-MSC administration, the patient was examined by the German Coma Recovery Scale (CRS), the Gross Motor Function Classification System (GMFCS), the Gross Motor Function Measure-88 (GMFM-88), the Manual Ability Classification System (MACS), the Modified Ashworth Scale, and the Denver II test. Before cell therapy, she was in a permanent vegetative state with diffuse cerebral atrophy. Her cognition and motor functions improved progressively after three UC-MSC infusions. At the last visit, she was capable of walking, writing, and counting numbers. Control of urinary and bowel functions was completely recovered. Cerebral atrophy was reduced on brain magnetic resonance imaging (MRI). Overall, the outcomes of this patient suggest a potential cell therapy for autoimmune encephalitis and its neurological consequences.
Collapse
Affiliation(s)
- Liem Nguyen Thanh
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, Hanoi, Vietnam.,College of Health Science, VinUniversity, Hanoi, Vietnam
| | - Van T Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, Hanoi, Vietnam
| | | | | | - Duc M Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, Hanoi, Vietnam
| | | | - Hung Cao Vu
- Vietnam National Children's Hospital, Hanoi, Vietnam
| | | | - Michael Heke
- Department of Biology, Stanford University, Stanford, CA, USA
| |
Collapse
|
8
|
Galderisi U, Peluso G, Di Bernardo G. Clinical Trials Based on Mesenchymal Stromal Cells are Exponentially Increasing: Where are We in Recent Years? Stem Cell Rev Rep 2022; 18:23-36. [PMID: 34398443 PMCID: PMC8365566 DOI: 10.1007/s12015-021-10231-w] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2021] [Indexed: 12/16/2022]
Abstract
Mesenchymal stromal cells (MSCs), present in the stromal component of several tissues, include multipotent stem cells, progenitors, and differentiated cells. MSCs have quickly attracted considerable attention in the clinical field for their regenerative properties and their ability to promote tissue homeostasis following injury. In recent years, MSCs mainly isolated from bone marrow, adipose tissue, and umbilical cord-have been utilized in hundreds of clinical trials for the treatment of various diseases. However, in addition to some successes, MSC-based therapies have experienced several failures. The number of new trials with MSCs is exponentially growing; still, complete results are only available for a limited number of trials. This dearth does not help prevent potentially inefficacious and unnecessary clinical trials. Results from unsuccessful studies may be useful in planning new therapeutic approaches to improve clinical outcomes. In order to bolster critical analysis of trial results, we reviewed the state of art of MSC clinical trials that have been published in the last six years. Most of the 416 published trials evaluated MSCs' effectiveness in treating cardiovascular diseases, GvHD, and brain and neurological disorders, although some trials sought to treat immune system diseases and wounds and to restore tissue. We also report some unorthodox clinical trials that include unusual studies.
Collapse
Affiliation(s)
- Umberto Galderisi
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, Naples, Italy
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, USA
- Genome and Stem Cell Center (GENKÖK), Erciyes University, Kayseri, Turkey
| | | | - Giovanni Di Bernardo
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, Naples, Italy.
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Hlebokazov F, Dakukina T, Potapnev M, Kosmacheva S, Moroz L, Misiuk N, Golubeva T, Slobina E, Krasko O, Shakhbazau A, Hlavinski I, Goncharova N. Clinical benefits of single vs repeated courses of mesenchymal stem cell therapy in epilepsy patients. Clin Neurol Neurosurg 2021; 207:106736. [PMID: 34119901 DOI: 10.1016/j.clineuro.2021.106736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE Epilepsy is defined as "drug-resistant" when existing anti-epileptic drugs (AED) are found to have minimal to no effect on patient's condition. Therefore the search and testing of new treatment strategies is warranted. This study focuses on the effects of autologous mesenchymal stem cells (MSC) in drug-resistant epilepsy patients within a Phase I/II open-label registered clinical trial NCT02497443. MATERIALS/METHODS A total of 67 patients was included (29 males, 38 females, mean age 33 ± 1.3 yo). The patients received either standard treatment with AEDs, or AEDs supplemented with one or two courses of therapy with autologous bone marrow-derived MSCs expanded in vitro. MSC therapy courses were 6 months apart, and each course consisted of two cell injections: an intravenous infusion of MSCs, followed within 1 week by an intrathecal injection. Primary outcome of the study was safety, secondary outcome was efficacy in terms of seizure frequency reduction and response to treatment. RESULTS MSC injections proved safe and did not cause any severe side effects. In MSC group (n = 34), 61.7% patients responded to therapy at 6 months timepoint (p < 0.01 vs control, n = 33), and the number rose to 76.5% by 12 months timepoint. Decrease in anxiety and depression scores and paroxysmal epileptiform activity was observed in MSC group based on HADS and EEG, respectively, and MMSE score has also improved. Another observation was that concomitant administration of levetiracetam, but not other AEDs, correlated significantly with the success of MSC therapy. Second course of MSC therapy facilitated further reduction in seizure count and epileptiform EEG activity (p < 0.05 vs single course). CONCLUSIONS Application of autologous mesenchymal stem cell-based therapy in patients with pharmacoresistant epilepsy demonstrated significant anticonvulsant potential. This effect lasted for at least 1 year, with repeated administration of MSCs conveying additional clinical benefit.
Collapse
Affiliation(s)
- Fedor Hlebokazov
- Republican Scientific and Practical Center of Mental Health, Minsk, Belarus
| | - Tatiana Dakukina
- Republican Scientific and Practical Center of Mental Health, Minsk, Belarus
| | - Michael Potapnev
- Republican Scientific and Practical Center of Transfusion and Medical Biotechnology, Minsk, Belarus.
| | - Svetlana Kosmacheva
- Republican Scientific and Practical Center of Transfusion and Medical Biotechnology, Minsk, Belarus
| | - Lubov Moroz
- Republican Scientific and Practical Center of Transfusion and Medical Biotechnology, Minsk, Belarus
| | - Nikolai Misiuk
- Republican Scientific and Practical Center of Mental Health, Minsk, Belarus
| | - Tatiana Golubeva
- Republican Scientific and Practical Center of Mental Health, Minsk, Belarus
| | - Elena Slobina
- Republican Scientific and Practical Center of Mental Health, Minsk, Belarus
| | - Olga Krasko
- United Institute of Informatics Problems of the National Academy of Sciences of Belarus, Minsk, Belarus
| | | | - Ivan Hlavinski
- Republican Scientific and Practical Center of Mental Health, Minsk, Belarus
| | - Natalia Goncharova
- Republican Scientific and Practical Center of Transfusion and Medical Biotechnology, Minsk, Belarus
| |
Collapse
|
10
|
Sadanandan N, Saft M, Gonzales-Portillo B, Borlongan CV. Multipronged Attack of Stem Cell Therapy in Treating the Neurological and Neuropsychiatric Symptoms of Epilepsy. Front Pharmacol 2021; 12:596287. [PMID: 33815100 PMCID: PMC8010689 DOI: 10.3389/fphar.2021.596287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/15/2021] [Indexed: 11/13/2022] Open
Abstract
Epilepsy stands as a life-threatening disease that is characterized by unprovoked seizures. However, an important characteristic of epilepsy that needs to be examined is the neuropsychiatric aspect. Epileptic patients endure aggression, depression, and other psychiatric illnesses. Therapies for epilepsy can be divided into two categories: antiepileptic medications and surgical resection. Antiepileptic drugs are used to attenuate heightened neuronal firing and to lessen seizure frequency. Alternatively, surgery can also be conducted to physically cut out the area of the brain that is assumed to be the root cause for the anomalous firing that triggers seizures. While both treatments serve as viable approaches that aim to regulate seizures and ameliorate the neurological detriments spurred by epilepsy, they do not serve to directly counteract epilepsy's neuropsychiatric traits. To address this concern, a potential new treatment involves the use of stem cells. Stem cell therapy has been employed in experimental models of neurological maladies, such as Parkinson's disease, and neuropsychiatric illnesses like depression. Cell-based treatments for epilepsy utilizing stem cells such as neural stem cells (NSCs), mesenchymal stem cells (MSCs), and interneuron grafts have been explored in preclinical and clinical settings, highlighting both the acute and chronic stages of epilepsy. However, it is difficult to create an animal model to capitalize on all the components of epilepsy due to the challenges in delineating the neuropsychiatric aspect. Therefore, further preclinical investigation into the safety and efficacy of stem cell therapy in addressing both the neurological and the neuropsychiatric components of epilepsy is warranted in order to optimize cell dosage, delivery, and timing of cell transplantation.
Collapse
Affiliation(s)
| | | | | | - Cesar V. Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| |
Collapse
|
11
|
Fang J, Chen F, Liu D, Gu F, Wang Y. Adipose tissue-derived stem cells in breast reconstruction: a brief review on biology and translation. Stem Cell Res Ther 2021; 12:8. [PMID: 33407902 PMCID: PMC7789635 DOI: 10.1186/s13287-020-01955-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
Recent developments in adipose-derived stromal/stem cell (ADSC) biology provide new hopes for tissue engineering and regeneration medicine. Due to their pluripotent activity, paracrine activity, and immunomodulatory function, ADSCs have been widely administrated and exhibited significant therapeutic effects in the treatment for autoimmune disorders, neurodegenerative diseases, and ischemic conditions both in animals and human clinical trials. Cell-assisted lipotransfer (CAL) based on ADSCs has emerged as a promising cell therapy technology and significantly improved the fat graft retention. Initially applied for cosmetic breast and facial enhancement, CAL has found a potential use for breast reconstruction in breast cancer patients. However, more challenges emerge related to CAL including lack of a standardized surgical procedure, the controversy in the effectiveness of CAL, and the potential oncogenic risk of ADSCs in cancer patients. In this review, we summarized the latest research and intended to give an outline involving the biological characteristics of ADSCs as well as the preclinical and clinical application of ADSCs.
Collapse
Affiliation(s)
- Jun Fang
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China.,Department of Radiation Therapy, Zhejiang Cancer Hospital, Hangzhou, China.,Radiotherapy, Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Feng Chen
- Department of Breast Tumor Surgery, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Dong Liu
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China.,Department of Radiation Therapy, Zhejiang Cancer Hospital, Hangzhou, China.,Radiotherapy, Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Feiying Gu
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China.,Department of Radiation Therapy, Zhejiang Cancer Hospital, Hangzhou, China.,Radiotherapy, Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Yuezhen Wang
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China. .,Department of Radiation Therapy, Zhejiang Cancer Hospital, Hangzhou, China. .,Radiotherapy, Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China.
| |
Collapse
|
12
|
Aligholi H, Safahani M, Asadi-Pooya AA. Stem cell therapy in patients with epilepsy: A systematic review. Clin Neurol Neurosurg 2020; 200:106416. [PMID: 33338823 DOI: 10.1016/j.clineuro.2020.106416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 01/07/2023]
Abstract
PURPOSE The existing evidence of the potential applications and benefits of stem cell transplantation (SCT) in people with epilepsy and also its adverse effects in humans were systematically reviewed. METHODS MEDLINE (accessed from PubMed), Google Scholar, and Scopus from inception to August 17, 2020 were systematically reviewed for related published manuscripts. The following key words (in the title) were used: "stem cell" AND "epilepsy" OR "seizure". Articles written in English that were human studies on stem cell transplantation in people with epilepsy were all included. RESULTS We could identify six related articles. Because of their different methodologies, performing a meta-analysis was not feasible; they included 38 adults and 81 pediatric patients together. Five studies were single-arm human studies; there were no serious adverse events in any of the studies. CONCLUSION While stem cell transplantation seems like a promising therapeutic option for patients with drug-resistant epilepsy, data on its application is scarce and of low quality. For now, clinical stem cell-based interventions are not justified. Perhaps, in the future, there will be a rigorous and intensely scrutinized clinical trial protocol with informed consent that could provide enough scientific merit and could meet the required ethical standards.
Collapse
Affiliation(s)
- Hadi Aligholi
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Iran.
| | - Maryam Safahani
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali A Asadi-Pooya
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Jefferson Comprehensive Epilepsy Center, Department of Neurology, Thomas Jefferson University, Philadelphia, USA.
| |
Collapse
|