1
|
Öztürk C, Küfrevioğlu Öİ. Affinity gel synthesis from the p-aminobenzoic acid derivative 4-amino-2-methylbenzoic acid and purification of polyphenol oxidase from various plant sources. Protein Expr Purif 2024; 219:106474. [PMID: 38518927 DOI: 10.1016/j.pep.2024.106474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/11/2024] [Accepted: 03/17/2024] [Indexed: 03/24/2024]
Abstract
The polyphenol oxidase (PPO) enzyme, which causes enzymatic browning, has been repeatedly purified from fruit and vegetables by affinity chromatography. In the present research, Sepharose 4B-l-tyrosine-4-amino-2-methylbenzoic acid, a novel affinity gel for the purification of the PPO enzyme with high efficiency, was synthesized. Additionally, Sepharose 4B-l-tyrosine-p-aminobenzoic acid affinity gel, known in the literature, was also synthesized, and 9.02, 16.57, and 28.13 purification folds were obtained for the PPO enzymes of potato, mushroom, and eggplant by the reference gel. The PPO enzymes of potato, mushroom, and eggplant were purified 41.17, 64.47, and 56.78-fold from the new 4-amino-2-methylbenzoic acid gel. Following their isolation from the new affinity column, the assessment of PPO enzyme purity involved the utilization of SDS-PAGE. According to the results from SDS-PAGE and native PAGE, the molecular weight of each enzyme was 50 kDa. Then, the inhibition effects of naringin, morin hydrate, esculin hydrate, homovanillic acid, vanillic acid, phloridzin dihydrate, and p-coumaric acid phenolic compounds on purified potato, mushroom, and eggplant PPO enzyme were investigated. Among the tested phenolic compounds, morin hydrate was determined to be the most potent inhibitor on the potato (Ki: 0.07 ± 0.03 μM), mushroom (Ki: 0.7 ± 0.3 μM), and eggplant (Ki: 4.8 ± 1.2 μM) PPO enzymes. The studies found that the weakest inhibitor was homovanillic acid for the potato (Ki: 1112 ± 324 μM), mushroom (Ki: 567 ± 81 μM), and eggplant (Ki: 2016.7 ± 805.6 μM) PPO enzymes. Kinetic assays indicated that morin hydrate was a remarkable inhibitor on PPO.
Collapse
Affiliation(s)
- Cansu Öztürk
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| | | |
Collapse
|
2
|
Alam MZ, Okonkwo CE, Cachaneski-Lopes JP, Graeff CFO, Batagin-Neto A, Tariq S, Varghese S, O'Connor MJ, Albadri AE, Webber JBW, Tarique M, Ayyash M, Kamal-Eldin A. Date fruit melanin is primarily based on (-)-epicatechin proanthocyanidin oligomers. Sci Rep 2024; 14:4863. [PMID: 38418836 PMCID: PMC10901811 DOI: 10.1038/s41598-024-55467-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/23/2024] [Indexed: 03/02/2024] Open
Abstract
Plant-based melanin seems to be abundant, but it did not receive scientific attention despite its importance in plant biology and medicinal applications, e.g. photoprotection, radical scavenging, antimicrobial properties, etc. Date fruit melanin (DM) has complex, graphene-like, polymeric structure that needs characterization to understand its molecular properties and potential applications. This study provides the first investigation of the possible molecular composition of DM. High performance size-exclusion chromatography (HPSEC) suggested that DM contains oligomeric structures (569-3236 Da) and transmission electron microscopy (TEM) showed agglomeration of these structures in granules of low total porosity (10-1000 Å). Nuclear magnetic resonance (NMR) spectroscopy provided evidence for the presence of oligomeric proanthocyanidins and electron paramagnetic resonance (EPR) spectroscopy revealed a g-factor in the range 2.0034-2.005. Density functional theory (DFT) calculations suggested that the EPR signals can be associated with oligomeric proanthocyanidin structures having 4 and above molecular units of (-)-epicatechin. The discovery of edible melanin in date fruits and its characterization are expected to open a new area of research on its significance to nutritional and sensory characteristics of plant-based foods.
Collapse
Affiliation(s)
- Muneeba Zubair Alam
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Clinton Emeka Okonkwo
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - João P Cachaneski-Lopes
- Postgraduate Program in Materials Science and Technology (POSMAT), São Paulo State University (UNESP), Bauru, SP, Brazil
| | - Carlos F O Graeff
- Postgraduate Program in Materials Science and Technology (POSMAT), São Paulo State University (UNESP), Bauru, SP, Brazil
- Department of Physics, School of Sciences, São Paulo State University (UNESP), Bauru, SP, Brazil
| | - Augusto Batagin-Neto
- Postgraduate Program in Materials Science and Technology (POSMAT), São Paulo State University (UNESP), Bauru, SP, Brazil
- Institute of Sciences and Engineering, São Paulo State University (UNESP), Itapeva, SP, Brazil
| | - Saeed Tariq
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sabu Varghese
- Core Technology Platforms, New York University Abu Dhabi, 129188, Abu Dhabi, United Arab Emirates
| | - Matthew J O'Connor
- Core Technology Platforms, New York University Abu Dhabi, 129188, Abu Dhabi, United Arab Emirates
| | - Abuzar E Albadri
- Department of Chemistry, College of Science, Qassim University, 51452, Buraidah, Saudi Arabia
| | - J Beau W Webber
- Lab-Tools Ltd., Marlowe Innovation Centre, Marlowe Way, Ramsgate, CT12 6FA, UK
| | - Mohammed Tarique
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Afaf Kamal-Eldin
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates.
- National Water and Energy Center (NWEC), United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates.
| |
Collapse
|
3
|
Li Z, Huang J, Wang L, Li D, Chen Y, Xu Y, Li L, Xiao H, Luo Z. Novel insight into the role of sulfur dioxide in fruits and vegetables: Chemical interactions, biological activity, metabolism, applications, and safety. Crit Rev Food Sci Nutr 2023; 64:8741-8765. [PMID: 37128783 DOI: 10.1080/10408398.2023.2203737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Sulfur dioxide (SO2) are a category of chemical compounds widely used as additives in food industry. So far, the use of SO2 in fruit and vegetable industry has been indispensable although its safety concerns have been controversial. This article comprehensively reviews the chemical interactions of SO2 with the components of fruit and vegetable products, elaborates its mechanism of antimicrobial, anti-browning, and antioxidation, discusses its roles in regulation of sulfur metabolism, reactive oxygen species (ROS)/redox, resistance induction, and quality maintenance in fruits and vegetables, summarizes the application technology of SO2 and its safety in human (absorption, metabolism, toxicity, regulation), and emphasizes the intrinsic metabolism of SO2 and its consequences for the postharvest physiology and safety of fresh fruits and vegetables. In order to fully understand the benefits and risks of SO2, more research is needed to evaluate the molecular mechanisms of SO2 metabolism in the cells and tissues of fruits and vegetables, and to uncover the interaction mechanisms between SO2 and the components of fruits and vegetables as well as the efficacy and safety of bound SO2. This review has important guiding significance for adjusting an applicable definition of maximum residue limit of SO2 in food.
Collapse
Affiliation(s)
- Zhenbiao Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Jing Huang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Lei Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Dong Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yanpei Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yanqun Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
| | - Li Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Hang Xiao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou, China
| |
Collapse
|
4
|
Bhukya J, Mohapatra D, Naik R. Hydrodynamic cavitation processing of ascorbic acid treated precooled sugarcane juice for physiochemical, bioactive, enzyme stability, and microbial safety. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Jithender Bhukya
- Outreach campus PG School IARI ICAR‐Central Institute of Agricultural Engineering Bhopal India
| | - Debabandya Mohapatra
- Outreach campus PG School IARI ICAR‐Central Institute of Agricultural Engineering Bhopal India
| | - Ravindra Naik
- Regional Center, ICAR‐Central Institute of Agricultural Engineering Coimbatore India
| |
Collapse
|
5
|
Lara G, Takahashi C, Nagaya M, Uemura K. Improving the shelf life stability of vacuum‐packed fresh‐cut peaches (
Prunus persica
L.) by radio frequency heating in water. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Grace Lara
- Food Research Institute, NARO 2‐1‐12 Kannondai Tsukuba Ibaraki 305‐8642 Japan
| | - Chieko Takahashi
- Food Research Institute, NARO 2‐1‐12 Kannondai Tsukuba Ibaraki 305‐8642 Japan
| | - Miku Nagaya
- Food Research Institute, NARO 2‐1‐12 Kannondai Tsukuba Ibaraki 305‐8642 Japan
| | - Kunihiko Uemura
- Food Research Institute, NARO 2‐1‐12 Kannondai Tsukuba Ibaraki 305‐8642 Japan
| |
Collapse
|
6
|
Synthesis and Tyrosinase Inhibitory Activity of (E)-5-Benzyl-7- (3-Bromobenzylidene)-3-(3-Bromophenyl)-2-Phenyl-3,3a, 4,5,6,7-Hexahydro-2H-Pyrazolo[4,3-c]Pyridine. JURNAL KIMIA SAINS DAN APLIKASI 2022. [DOI: 10.14710/jksa.25.5.185-191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The tyrosinase enzyme plays an essential role in the pigmentation of human skin, fruits, and vegetables. It has been tied with several human skin diseases and post-harvest problems. Hence, the tyrosinase enzyme becomes an excellent therapeutic target to overcome these issues. This study aimed to screen tyrosinase inhibitors by synthesizing halogen-substituted pyrazolopyridine derivatives. The pyrazolopyridine compound was obtained through two stages of synthesis. First, the intermediate compound, a derivative of 3,5-bis(arylidene)-4-piperidone, was synthesized through the Cleisen-Schmidt condensation reaction of 4-piperidone and benzaldehyde derivatives. Furthermore, the intermediate compound was reacted with phenylhydrazine through a cyclocondensation reaction to produce the titled compound with an 11% yield. The chemical structure of the target compound was identified through the interpretation of UV, FTIR, NMR, and HRMS spectra. Then an in vitro assay was conducted on the tyrosinase enzyme of the fungus Agaricus bisporus by detecting the presence of dopachrome at a wavelength of 492 nm. As a result, the in vitro assay showed that the titled compound had a weak inhibitory activity, and the IC50 value was > 500 µM. Thus, the synthesized compound is considered inactive.
Collapse
|
7
|
Alam MZ, Ramachandran T, Antony A, Hamed F, Ayyash M, Kamal-Eldin A. Melanin is a plenteous bioactive phenolic compound in date fruits (Phoenix dactylifera L.). Sci Rep 2022; 12:6614. [PMID: 35459886 PMCID: PMC9033825 DOI: 10.1038/s41598-022-10546-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/22/2022] [Indexed: 11/09/2022] Open
Abstract
Date palm fruits (Phoenix dactylifera L.) were found to contain high levels of allomelanin (1.2-5.1%). The melanin is localized in the tanniferous cells between the inner and outer mesocarp tissues of the fruit. The melanin, extracted with 2 M sodium hydroxide, consisted of amorphous graphene-like granular structures of irregular shape and variable size. The date fruit melanin mainly comprises carbon (64.6%) and oxygen (30.6) but no nitrogen, and was thermally stable. It has radical scavenging (63.6-75.1 IC50, µg/mL), antimicrobial (250-1000 µg/mL), hypoglycemic (51.8-58.2%), and angiotensin-converting-enzyme inhibitory (65.8%) effects. The high level of melanin in date fruits highlights the importance of investigating its dietary intake and its impact on nutrition. This study also suggests that date fruit melanin can be a functional ingredient in foods, food packages, pharmaceuticals, and cosmetics.
Collapse
Affiliation(s)
- Muneeba Zubair Alam
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Tholkappiyan Ramachandran
- Department of Physics, College of Science and National Water and Energy Center United Arab, Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Asha Antony
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Fathalla Hamed
- Department of Physics, College of Science and National Water and Energy Center United Arab, Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Afaf Kamal-Eldin
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates.
| |
Collapse
|
8
|
Punia Bangar S, Trif M, Ozogul F, Kumar M, Chaudhary V, Vukic M, Tomar M, Changan S. Recent developments in cold plasma-based enzyme activity (browning, cell wall degradation, and antioxidant) in fruits and vegetables. Compr Rev Food Sci Food Saf 2022; 21:1958-1978. [PMID: 35080794 DOI: 10.1111/1541-4337.12895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 12/24/2022]
Abstract
According to the Food and Agriculture Organization of United Nations reports, approximately half of the total harvested fruits and vegetables vanish before they reach the end consumer due to their perishable nature. Enzymatic browning is one of the most common problems faced by fruit and vegetable processing. The perishability of fruits and vegetables is contributed by the various browning enzymes (polyphenol oxidase, peroxidase, and phenylalanine ammonia-lyase) and ripening or cell wall degrading enzyme (pectin methyl-esterase). In contrast, antioxidant enzymes (superoxide dismutase and catalase) assist in reversing the damage caused by reactive oxygen species or free radicals. The cold plasma technique has emerged as a novel, economic, and environmentally friendly approach that reduces the expression of ripening and browning enzymes while increasing the activity of antioxidant enzymes; microorganisms are significantly inhibited, therefore improving the shelf life of fruits and vegetables. This review narrates the mechanism and principle involved in the use of cold plasma technique as a nonthermal agent and its application in impeding the activity of browning and ripening enzymes and increasing the expression of antioxidant enzymes for improving the shelf life and quality of fresh fruits and vegetables and preventing spoilage and pathogenic germs from growing. An overview of hurdles and sustainability advantages of cold plasma technology is presented.
Collapse
Affiliation(s)
- Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
| | - Monica Trif
- Food Research Department, Centre for Innovative Process Engineering (Centiv) GmbH, Stuhr, Germany.,CENCIRA Agrofood Research and Innovation Centre, Cluj-Napoca, Romania
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | - Vandana Chaudhary
- Department of Dairy Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Milan Vukic
- Faculty of Technology Zvornik, University of East Sarajevo, Zvornik, Bosnia and Herzegovina
| | - Maharishi Tomar
- Seed Technology Division, ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Sushil Changan
- Division of Crop Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Potato Research Institute, Shimla, India
| |
Collapse
|
9
|
Zhang Y, Jiang C, Jing H, Fan X, Peng M, Lv W, Wang H. A comparative evaluation of physicochemical properties of pecan (Carya illinoinensis (Wangenh.) K. Koch) husk by different drying method. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01259-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Mohamad Salin NS, Md Saad WM, Abdul Razak HR, Salim F. Effect of Storage Temperatures on Physico-Chemicals, Phytochemicals and Antioxidant Properties of Watermelon Juice ( Citrullus lanatus). Metabolites 2022; 12:75. [PMID: 35050198 PMCID: PMC8780985 DOI: 10.3390/metabo12010075] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 02/04/2023] Open
Abstract
Watermelon (Citrullus lanatus) consists of high moisture content and is favoured for its juice products. The popular fruit has a tempting taste, sweet aroma and attractive flesh colour. It is enriched with phytochemicals and antioxidant properties that are beneficial to human health. Due to convenience, the majority of individuals are likely to consume watermelon juice. However, little is known about the fruit juice storage and temperatures that may affect its beneficial properties. This study investigated the effect of storage temperature at room temperature, refrigerator cold, refrigerator freeze and freeze-dried, and analyzed the juice physico-chemicals (weight loss, pH, ash, moisture, total soluble solid, browning and turbidity), phytochemicals (total phenolic, total flavonoid, lycopene and β-carotene) and antioxidant scavenging activities during 9 days of storage. The results showed that watermelon juice was affected by storage temperatures and conditions with significant changes in physico-chemical appearance and decrease in total phytochemical content, thus consequently affecting their antioxidant activities during 9 days of storage. Although fresh watermelon juice can be consumed for its high nutritional values, freeze-drying is the preferable technique to retain its benefits and to delay juice degradation.
Collapse
Affiliation(s)
- Nur Shafinaz Mohamad Salin
- Centre of Medical Laboratory Technology, Faculty of Health Sciences, Puncak Alam Campus, Universiti Teknologi MARA (UiTM) Selangor Branch, Puncak Alam 42300, Selangor, Malaysia;
| | - Wan Mazlina Md Saad
- Centre of Medical Laboratory Technology, Faculty of Health Sciences, Puncak Alam Campus, Universiti Teknologi MARA (UiTM) Selangor Branch, Puncak Alam 42300, Selangor, Malaysia;
| | - Hairil Rashmizal Abdul Razak
- Department of Radiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Fatimah Salim
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Puncak Alam Campus, Universiti Teknologi MARA (UiTM) Selangor Branch, Puncak Alam 42300, Selangor, Malaysia;
- Centre of Foundation Studies, Dengkil Campus, Universiti Teknologi MARA (UiTM) Selangor Branch, Dengkil 43800, Selangor, Malaysia
| |
Collapse
|
11
|
Tsikrika K, Tzima K, Rai DK. Recent advances in anti‐browning methods in minimally processed potatoes—A review. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Konstantina Tsikrika
- Department of Food Biosciences Teagasc Food Research Centre Dublin Ireland
- Laboratory of Food Microbiology and Biotechnology Department of Food Science and Technology Agricultural University of Athens Athens Greece
| | - Katerina Tzima
- Department of Food Biosciences Teagasc Food Research Centre Dublin Ireland
| | - Dilip K. Rai
- Department of Food Biosciences Teagasc Food Research Centre Dublin Ireland
| |
Collapse
|
12
|
Tsikrika K, Chu B, Bremner DH, Lemos MA. Effect of Ultrasonic Treatment on Enzyme Activity and Bioactives of Strawberry Puree. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Konstantina Tsikrika
- Division of Engineering and Food Sciences School of Applied Sciences Abertay University Bell Street Dundee DD1 1HG UK
| | - Boon‐Seang Chu
- Division of Engineering and Food Sciences School of Applied Sciences Abertay University Bell Street Dundee DD1 1HG UK
| | - David H. Bremner
- Division of Engineering and Food Sciences School of Applied Sciences Abertay University Bell Street Dundee DD1 1HG UK
| | - M. Adilia Lemos
- Division of Engineering and Food Sciences School of Applied Sciences Abertay University Bell Street Dundee DD1 1HG UK
| |
Collapse
|
13
|
Nizamlioglu NM, Yasar S, Bulut Y. Chemical versus infrared spectroscopic measurements of quality attributes of sun or oven dried fruit leathers from apple, plum and apple-plum mixture. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Wong JX, Ramli S, Desa S, Chen SN. Use of Centella asiatica extract in reducing microbial contamination and browning effect in fresh cut fruits and vegetables during storage: A potential alternative of synthetic preservatives. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Assessment of toxic effect of
Centella asiatica
extract and its application as natural preservative in fresh‐cut mango, pear and cabbage. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
16
|
Walker GA, Nelson J, Halligan T, Lima MMM, Knoesen A, Runnebaum RC. Monitoring Site-Specific Fermentation Outcomes via Oxidation Reduction Potential and UV-Vis Spectroscopy to Characterize "Hidden" Parameters of Pinot Noir Wine Fermentations. Molecules 2021; 26:4748. [PMID: 34443337 PMCID: PMC8400154 DOI: 10.3390/molecules26164748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/16/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
Real-time process metrics are standard for the majority of fermentation-based industries but have not been widely adopted by the wine industry. In this study, replicate fermentations were conducted with temperature as the main process parameter and assessed via in-line Oxidation Reduction Potential (ORP) probes and at-line profiling of phenolics compounds by UV-Vis spectroscopy. The California and Oregon vineyards used in this study displayed consistent vinification outcomes over five vintages and are representative of sites producing faster- and slower-fermenting musts. The selected sites have been previously characterized by fermentation kinetics, elemental profile, phenolics, and sensory analysis. ORP probes were integrated into individual fermentors to record how ORP changed throughout the fermentation process. The ORP profiles generally followed expected trends with deviations revealing previously undetectable process differences between sites and replicates. Site-specific differences were also observed in phenolic and anthocyanin extraction. Elemental composition was also analyzed for each vineyard, revealing distinctive profiles that correlated with the fermentation kinetics and may influence the redox status of these wines. The rapid ORP responses observed related to winemaking decisions and yeast activity suggest ORP is a useful process parameter that should be tracked in addition to Brix, temperature, and phenolics extraction for monitoring fermentations.
Collapse
Affiliation(s)
- Gordon A. Walker
- Department of Viticulture & Enology, University of California, Davis, CA 95616, USA; (G.A.W.); (M.M.M.L.)
| | - James Nelson
- Department of Electrical and Computer Engineering, University of California, Davis, CA 95616, USA; (J.N.); (A.K.)
| | - Thomas Halligan
- Department of Chemical Engineering, University of California, Davis, CA 95616, USA;
| | - Maisa M. M. Lima
- Department of Viticulture & Enology, University of California, Davis, CA 95616, USA; (G.A.W.); (M.M.M.L.)
| | - Andre Knoesen
- Department of Electrical and Computer Engineering, University of California, Davis, CA 95616, USA; (J.N.); (A.K.)
| | - Ron C. Runnebaum
- Department of Viticulture & Enology, University of California, Davis, CA 95616, USA; (G.A.W.); (M.M.M.L.)
- Department of Chemical Engineering, University of California, Davis, CA 95616, USA;
| |
Collapse
|
17
|
Setyawan N, Maninang JS, Suzuki S, Fujii Y. Variation in the Physical and Functional Properties of Yam ( Dioscorea spp.) Flour Produced by Different Processing Techniques. Foods 2021; 10:foods10061341. [PMID: 34200821 PMCID: PMC8230538 DOI: 10.3390/foods10061341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/05/2021] [Accepted: 06/06/2021] [Indexed: 12/17/2022] Open
Abstract
Research on the processing of yam (Dioscorea spp.) into flour is aimed at optimizing techniques to obtain a material with high physicochemical and functional properties. The present study investigates the effect of the processing techniques on the levels of inulin, organic acids, total phenolics (TP), antioxidant capacity, and polyphenol oxidase (PPO) and peroxidase (POD) activities, as well as on the physicochemical properties of flour derived from two yam species-Dioscorea esculenta and Dioscorea bulbifera. All tubers were peeled and sliced, then subjected to different processing techniques through blanching, soaking, and drying. The results revealed that freeze-drying appears to be the best technique in achieving the highest whiteness index of yam flour. This coincided well with the low phenolics content and POD activity, which suggests a reduced enzymatic browning reaction in the freeze-dried yam flour. On the other hand, chemical analyses showed that D. esculenta and D. bulbifera flours have the highest levels of inulin (23.0 and 27.8 g/100 g DW, respectively) and succinic acid (7.96 and 7.65 g/100 g DW, respectively) in the samples subjected to direct oven-drying. Oven drying without pretreatment neither blanching nor water steeping maintained antioxidant activity in the flour derived from both D. esculenta and D. bulbifera.
Collapse
Affiliation(s)
- Nurdi Setyawan
- Indonesian Center for Agricultural Postharvest Research and Development, Jl. Tentara Pelajar No.12, Kampus Penelitian Pertanian Cimanggu, Bogor 16114, West Java, Indonesia
- Department of International Environmental and Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; (J.S.M.); (Y.F.)
- Correspondence: ; Tel.: +62-812-990-77714
| | - John Solomon Maninang
- Department of International Environmental and Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; (J.S.M.); (Y.F.)
- Center for Global Communication Strategies (CGCS), College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Sakae Suzuki
- Department of Science of Biological Production, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan;
| | - Yoshiharu Fujii
- Department of International Environmental and Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; (J.S.M.); (Y.F.)
| |
Collapse
|