1
|
Ma L, Zhu Y, Zhang Z, Fan D, Zhai H, Li D, Kang W, Qiao X, Lu H, Liu C. Effects of Mandibular Advancement Device on Genioglossus of Rabbits in Obstructive Sleep Apnea Through PINK1/Parkin Pathway. J Oral Rehabil 2025; 52:343-349. [PMID: 39593277 DOI: 10.1111/joor.13907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/18/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND Early treatment of mandibular advancement device (MAD) reverses the abnormal changes resulting from obstructive sleep apnoea (OSA), but the underlying mechanism is not clear. We analysed the changes of genioglossus function before and after MAD treatment in OSA rabbits and explored the mechanism of mitochondrial autophagy. METHODS Eighteen male New Zealand rabbits were randomised into three groups: the control group, Group OSA, and Group MAD. After successful modelling, all animals were induced sleep in supine positions for 4-6 h per day for 8 weeks. Cone beam computed tomography (CBCT) and polysomnography (PSG) were performed to record sleep conditions. The genioglossus contractile force and the levels of LC3-I, LC3-II, Beclin-1, PINK1 and Parkin were detected in three groups. In vitro, C2C12 myoblast cells were cultured under normoxic or hypoxic conditions for 24 h, and then the changes in mitochondrial structure and accumulation of autolysosomes were detected by transmission electron microscopy (TEM). RESULTS The contractile tension of the genioglossus in Group OSA was significantly lower than that in the control group. The ratio of LC3II/LC3I and the levels of Beclin-1, PINK1 and Parkin were higher in Group OSA than that in the control group. And the abnormal changes were tended to be normal after MAD treatment. The mitochondrial structure was disrupted, and the number of autolysosomes increased in C2C12 after 24 h of hypoxia. CONCLUSIONS MAD treatment in male rabbits may decrease the contractile tension of the genioglossus and increase the level of mitochondrial autophagy caused by OSA. And the mechanism of mitochondrial autophagy was mediated by the PINK1/Parkin pathway in male rabbits.
Collapse
Affiliation(s)
- Lishuang Ma
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, Shijiazhuang, PR China
- Department of Stomatology, Harrison International Peace Hospital, Hengshui, China
| | - Yahui Zhu
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, Shijiazhuang, PR China
| | - Zuo Zhang
- Department of Stomatology, Ningxia People's Hospital, Ningxia, China
| | - Dengying Fan
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, Shijiazhuang, PR China
| | - Haoyan Zhai
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, Shijiazhuang, PR China
| | - Dongna Li
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, Shijiazhuang, PR China
| | - Wenjing Kang
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, Shijiazhuang, PR China
| | - Xing Qiao
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, Shijiazhuang, PR China
| | - Haiyan Lu
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, Shijiazhuang, PR China
| | - Chunyan Liu
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, Shijiazhuang, PR China
| |
Collapse
|
2
|
Rasti Z, Afrisham R, Bahrami Vahdat E, Kashanikhatib Z, Mousavi SH, Alizadeh S. The Influence of Circulating Exosomes Derived From Younger and Older Donors on Hypoxia-Inducible Factor 1 Alpha Gene Expression and P21 Protein in Cord Blood Hematopoietic Stem Cells. J Hematol 2024; 13:192-199. [PMID: 39493603 PMCID: PMC11526583 DOI: 10.14740/jh1291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/26/2024] [Indexed: 11/05/2024] Open
Abstract
Background Exosomes are a group of extracellular vesicles that are influential in intercellular signaling and can affect aging. Hypoxia-inducible factor 1α (HIF-1α) is the principal mediator in response to hypoxia and can regulate aging. Moreover, P21 is a part of the downstream signaling pathway of hypoxia and is elevated during aging. Therefore, this research was conducted to investigate the effect of plasma exosomes of younger and older individuals on the expression of HIF-1α gene and P21 protein in hematopoietic stem cells (HSCs). Methods Plasma exosomes were derived from older and younger men and were characterized. Then, HSCs were isolated from cord blood samples and treated with exosomes of older and younger men. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was performed to evaluate cell viability. Next, the expression of HIF-1α gene and P21 protein were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot, respectively. Results HIF-1α gene expression was considerably increased in HSCs treated with 10 µg/mL of exosomes isolated from younger men (Y10-Exo) compared to the untreated group (P = 0.002). Moreover, HIF-1α gene expression was remarkably decreased in HSCs treated with 10 µg/mL of exosomes obtained from older men (O10-Exo) in comparison with the untreated group (P < 0.001). Additionally, the expression of P21 protein was significantly increased in HSCs treated with 5 µg/mL of exosomes derived from older individuals (O5-Exo) and O10-Exo compared to the untreated group (P = 0.000 and P = 0.002, respectively). Conclusions Our findings showed that exosomes isolated from younger participants cause elevation in HIF-1α and may lead to delayed aging in HSCs. In addition, exosomes isolated from older participants can probably lead to aging through the reduction in HIF-1α and elevation in P21.
Collapse
Affiliation(s)
- Zahra Rasti
- Department of Hematology, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Afrisham
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Bahrami Vahdat
- Department of Hematology, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Kashanikhatib
- Department of Hematology, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hadi Mousavi
- Department of Hematology, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Shaban Alizadeh
- Department of Hematology, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Lee PY, Sitorus MA, Kuo CH, Tsai BCK, Kuo WW, Lin KH, Lu SY, Lin YM, Ho TJ, Huang CY. Platycodi radix aqueous extract salvages doxorubicin-induced senescence by mitochondrial reactive oxygen species reduction in umbilical cord matrix stem cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:3872-3882. [PMID: 38558324 DOI: 10.1002/tox.24240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/18/2023] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
Platycodi radix is a widely used herbal medicine that contains numerous phytochemicals beneficial to health. The health and biological benefits of P. radix have been found across various diseases. The utilization of umbilical cord stromal stem cells, derived from Wharton's jelly of the human umbilical cord, has emerged as a promising approach for treating degenerative diseases. Nevertheless, growing evidence indicates that the function of stem cells declines with age, thereby limiting their regenerative capacity. The primary objective in this study is to investigate the beneficial effects of P. radix in senescent stem cells. We conducted experiments to showcase that diminished levels of Lamin B1 and Sox-2, along with an elevation in p21, which serve as indicative markers for the senescent stem cells. Our findings revealed the loss of Lamin B1 and Sox-2, coupled with an increase in p21, in umbilical cord stromal stem cells subjected to a low-dose (0.1 μM) doxorubicin (Dox) stimulation. However, P. radix restored the Dox-damage in the umbilical cord stromal stem cells. P. radix reversed the senescent conditions when the umbilical cord stromal stem cells exposed to Dox-induced reactive oxygen species (ROS) and mitochondrial membrane potential are significantly changed. In Dox-challenged aged umbilical cord stromal stem cells, P. radix reduced senescence, increased longevity, prevented mitochondrial dysfunction and ROS and protected against senescence-associated apoptosis. This study suggests that P. radix might be as a therapeutic and rescue agent for the aging effect in stem cells. Inhibition of cell death, mitochondrial dysfunction and aging-associated ROS with P. radix provides additional insights into the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Pei-Ying Lee
- Holistic Education Center, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Maria Angelina Sitorus
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
- School of Physical Education and Sports Science, Soochow University, Suzhou, China
- Department of Kinesiology and Health, College of William and Mary, Williamsburg, Virginia, USA
| | - Bruce Chi-Kang Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Kuan-Ho Lin
- Division of Cardiovascular Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Shang-Yeh Lu
- Division of Cardiovascular Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
4
|
Zhang MH, Han XX, Lu Y, Deng JJ, Zhang WH, Mao JQ, Mi J, Ding WH, Wu MJ, Yu LM, Liu YH. Chronic intermittent hypoxia impaired collagen synthesis in mouse genioglossus via ROS accumulation: A transcriptomic analysis. Respir Physiol Neurobiol 2023; 308:103980. [PMID: 36273780 DOI: 10.1016/j.resp.2022.103980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Obstructive sleep apnea (OSA) is a sleep-related breathing disorder characterized by intermittent and recurrent upper airway collapse during sleep that leads to chronic intermittent hypoxia (CIH). The genioglossus (GG) is the largest dilator muscle, which controls the upper airway and plays an important role in OSA pathology. Elucidating its genetic alterations may help identify potential targets for OSA. However, the genetic aspects of the GG in CIH mice remain unclear. Here, we have conducted an RNA sequencing (RNA-Seq) analysis to assess the differentially expressed genes (DEGs) in the GG between CIH mice and normoxia (NOR) mice. A total of 637 DEGs were identified to be dysregulated in CIH mice compared with control mice. Bioinformatics analysis showed that the DEGs were related to various physiological processes, such as the endogenous stimulus responses, cellular component organization and metabolic processes. Extracellular matrix (ECM)-receptor interaction was the top KEGG pathway in the environmental information processing category with high significance and large fold changes. From the gene weight distributions of collagen (Col)-related biological processes (BPs), we found several significant DEGs, such as Col1a1, Col1a2, Mmp2, Col3a1, Col5a1, Fmod, and Col5a2. A PPI network showed that Col1a1 was linked to ECM-receptor interactions, responses to reactive oxygen species (ROS) and Col-related BPs. It was verified in vivo and in vitro that hypoxia can induce excess ROS and reduce Col expression levels. Moreover, we found NAC can effectively scavenge ROS and restore collagen synthesis. These findings contribute to a better understanding of the mechanisms linking OSA and upper airway muscle injury and may help identify potential therapeutic targets.
Collapse
Affiliation(s)
- Meng-Han Zhang
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China; Department of Orthodontics, School of Stomatology affiliated to Medical College, Zhejiang University, Hangzhou 310005, China
| | - Xin-Xin Han
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| | - Yun Lu
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| | - Jia-Jia Deng
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| | - Wei-Hua Zhang
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| | - Jia-Qi Mao
- Department of Endodontics, Stomatological Hospital, Hebei Medical University, Shijiazhuang 050017, China
| | - Jing Mi
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| | - Wang-Hui Ding
- Department of Orthodontics, School of Stomatology affiliated to Medical College, Zhejiang University, Hangzhou 310005, China
| | - Meng-Jie Wu
- Department of Orthodontics, School of Stomatology affiliated to Medical College, Zhejiang University, Hangzhou 310005, China
| | - Li-Ming Yu
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China.
| | - Yue-Hua Liu
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China.
| |
Collapse
|
5
|
Bordoni B, Escher AR, Toccafondi A, Mapelli L, Banfi P. Obstructive Sleep Apnea and Role of the Diaphragm. Cureus 2022; 14:e29004. [PMID: 36159353 PMCID: PMC9495286 DOI: 10.7759/cureus.29004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2022] [Indexed: 11/07/2022] Open
Abstract
Obstructive sleep apnea (OSA) causes multiple local and systemic pathophysiological consequences, which lead to an increase in morbidity and mortality in patients suffering from this disorder. OSA presents with various nocturnal events of apnoeas or hypopneas and with sub-clinical airflow limitations during wakefulness. OSA involves a large percentage of the population, particularly men, but the estimate of OSA patients could be much broader than data from the literature. Most of the research carried out in the muscle field is to understand the causes of the presence of chronic nocturnal desaturation and focus on the genioglossus muscle and other muscles related to dilating the upper airways. Sparse research has been published regarding the diaphragm muscle, which is the main muscle structure to insufflate air into the airways. The article reviews the functional anatomy of the muscles used to open the upper respiratory tract and the non-physiological adaptation that follows in the presence of OSA, as well as the functional anatomy and pathological adaptive aspects of the diaphragm muscle. The intent of the text is to highlight the disparity of clinical interest between the dilator muscles and the diaphragm, trying to stimulate a broader approach to patient evaluation.
Collapse
|
6
|
Opportunities and Challenges in Stem Cell Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1341:143-175. [PMID: 33748933 DOI: 10.1007/5584_2021_624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Studying aging, as a physiological process that can cause various pathological phenotypes, has attracted lots of attention due to its increasing burden and prevalence. Therefore, understanding its mechanism to find novel therapeutic alternatives for age-related disorders such as neurodegenerative and cardiovascular diseases is essential. Stem cell senescence plays an important role in aging. In the context of the underlying pathways, mitochondrial dysfunction, epigenetic and genetic alterations, and other mechanisms have been studied and as a consequence, several rejuvenation strategies targeting these mechanisms like pharmaceutical interventions, genetic modification, and cellular reprogramming have been proposed. On the other hand, since stem cells have great potential for disease modeling, they have been useful for representing aging and its associated disorders. Accordingly, the main mechanisms of senescence in stem cells and promising ways of rejuvenation, along with some examples of stem cell models for aging are introduced and discussed. This review aims to prepare a comprehensive summary of the findings by focusing on the most recent ones to shine a light on this area of research.
Collapse
|
7
|
Chen MH, Wang YH, Sun BJ, Yu LM, Chen QQ, Han XX, Liu YH. HIF-1α activator DMOG inhibits alveolar bone resorption in murine periodontitis by regulating macrophage polarization. Int Immunopharmacol 2021; 99:107901. [PMID: 34273637 DOI: 10.1016/j.intimp.2021.107901] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/10/2021] [Accepted: 06/16/2021] [Indexed: 11/24/2022]
Abstract
Periodontitis is initiated by serious and sustained bacterial infection and ultimately results in chronic immune-mediated inflammation, tissue destruction, and bone loss. The pathogenesis of periodontitis remains unclear. Host immunological responses to periodontal bacteria ultimately determine the severity and mechanisms governing periodontitis progression. This study aimed to clarify the effect of the hypoxia-inducible factor-1α (HIF-1α) activator dimethyloxalylglycine (DMOG) on a mouse periodontitis model and its underlying role in macrophage polarization. qRT-PCR analysis showed that DMOG inhibited the M1-like polarization of both RAW264.7 macrophages and murine bone marrow macrophages (BMMs) and downregulated TNF-α, IL-6, CD86, and MCP-1 expression in vitro. Immunofluorescence staining and flow cytometry also confirmed the less percentage of F4/80 + CD86 + cells after DMOG treatment. The phosphorylation of NF-κB pathway was also inhibited by DMOG with higher level of HIF-1α expression. Furthermore, mice treated with DMOG showed decreased alveolar bone resorption in the experimental periodontitis model, with significant increases in alveolar bone volume/tissue volume (BV/TV) and bone mineral density (BMD). DMOG treatment of mice decreased the ratio of M1/M2 (CD86+/CD206+) macrophages in periodontal tissues, resulting in the downregulation of proinflammatory cytokines such as TNF-α and IL-6 and increased levels of anti-inflammatory factors such as IL-4 and IL-10. DMOG treatment promoted the number of HIF-1α-positive cells in periodontal tissues. This study demonstrated the cell-specific roles of DMOG in macrophage polarization in vitro and provided insight into the mechanism underlying the protective effect of DMOG in a model of periodontitis.
Collapse
Affiliation(s)
- Mei-Hua Chen
- Department of Periodontology, Shanghai Stomatological Hospital, Fudan University, Shanghai, China; Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Yu-Hui Wang
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China; Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Bing-Jing Sun
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China; Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Li-Ming Yu
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China; Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Qing-Qing Chen
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China; Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Xin-Xin Han
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Yue-Hua Liu
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China; Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Chen Q, Han X, Chen M, Zhao B, Sun B, Sun L, Zhang W, Yu L, Liu Y. High-Fat Diet-Induced Mitochondrial Dysfunction Promotes Genioglossus Injury - A Potential Mechanism for Obstructive Sleep Apnea with Obesity. Nat Sci Sleep 2021; 13:2203-2219. [PMID: 34992480 PMCID: PMC8711738 DOI: 10.2147/nss.s343721] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Obesity is a worldwide metabolic disease and a critical risk factor for several chronic conditions. Obstructive sleep apnea (OSA) is an important complication of obesity. With the soaring morbidity of obesity, the prevalence of OSA has markedly increased. However, the underlying mechanism of the high relevance between obesity and OSA has not been elucidated. This study investigated the effects of obesity on the structure and function of the genioglossus to explore the possible mechanisms involved in OSA combined with obesity. METHODS Six-week-old male C57BL/6J mice were fed high-fat diet (HFD, 60% energy) or normal diet (Control, 10% energy) for 16 weeks. The muscle fibre structure and electromyography (EMG) activity of genioglossus were measured. The ultrastructure and function of mitochondrial, oxidative damage and apoptosis in genioglossus were detected by transmission electron microscopy (TEM), qPCR, Western blotting, immunohistochemistry and TUNEL staining. We further studied the influence of palmitic acid (PA) on the proliferation and myogenic differentiation of C2C12 myoblasts, as well as mitochondrial function, oxidative stress, and apoptosis in C2C12 myotubes. RESULTS Compared with the control, the number of muscle fibres was decreased, the fibre type was remarkably changed, and the EMG activity had declined in genioglossus. In addition, a HFD also reduced mitochondria quantity and function, induced excessive oxidative stress and increased apoptosis in genioglossus. In vitro, PA treatment significantly inhibited the proliferation and myogenic differentiation of C2C12 myoblasts. Moreover, PA decreased the mitochondrial membrane potential, upregulated mitochondrial reactive oxygen species (ROS) levels, and activated the mitochondrial-related apoptotic pathway in myotubes. CONCLUSION Our findings suggest that a HFD caused genioglossus injury in obese mice. The mitochondrial dysfunction and the accompanying oxidative stress were involved in the genioglossus injury, which may provide potential therapeutic targets for OSA with obesity.
Collapse
Affiliation(s)
- Qingqing Chen
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, People's Republic of China
| | - Xinxin Han
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, People's Republic of China
| | - Meihua Chen
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, People's Republic of China.,Department of Periodontology, Shanghai Stomatological Hospital, Fudan University, Shanghai, People's Republic of China
| | - Bingjiao Zhao
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, People's Republic of China
| | - Bingjing Sun
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, People's Republic of China
| | - Liangyan Sun
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, People's Republic of China
| | - Weihua Zhang
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, People's Republic of China
| | - Liming Yu
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, People's Republic of China
| | - Yuehua Liu
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|