1
|
Shi W, Zhang M, Tang W, Tang K. The Association Between the Thickness of the Hypoechoic Halo of Thyroid Nodules and Thyroid Cancer: A Retrospective Study. Acad Radiol 2025; 32:1906-1917. [PMID: 39730247 DOI: 10.1016/j.acra.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/29/2024]
Abstract
RATIONALE AND OBJECTIVES The association between hypoechoic halos and thyroid cancer in patients with thyroid nodules remains a contentious issue. The objective of this study was to examine the potential correlation between the thickness of hypoechoic halos and the presence of thyroid cancer in individuals with thyroid nodules. METHODS The study retrospectively analyzed a cohort of 320 patients with thyroid nodules presenting hypoechoic halos from January 2019 to December 2022. Logistic regression models, both univariate and multivariate, were applied to investigate the association between hypoechoic halo thickness and thyroid cancer, with adjustments for potential confounding variables. Interaction and stratified analyses were conducted to assess the influence of demographic and tumor-specific characteristics, such as age, sex, halo thickness, tumor size, and tumor location, on the relationship between halo thickness and thyroid cancer risk. RESULTS After adjusting for multiple covariates, the odds ratios (ORs) (95% confidence intervals (CIs)) of thyroid cancer for participants with a halo thickness ≥1 mm were 3.99 (2.4-6.62), 3.73 (2.09-6.67), and 3.16 (1.61-6.19), compared to those with a thickness <1 mm. The association between thyroid cancer and the thickness of the halo remained stable across different subgroups (all P for interaction > 0.05). The area under the curve (AUC) for the hypoechoic halo in nodules for diagnosing thyroid cancer was 0.821 (95% CI: 0.774-0.868), with the highest sensitivity and specificity observed at a thickness cutoff value of 1.29 mm. CONCLUSION Our single-center study on adults reveals a positive correlation between halo thickness and thyroid cancer risk, indicating that halo thickness may potentially serve as a valuable predictor for thyroid cancer incidence.
Collapse
Affiliation(s)
- Weizhen Shi
- Department of Ultrasound Diagnosis, Guilin Hospital of the Second Xiangya Hospital CSU, Guilin 541003, China (W.S., W.T.)
| | - Ming Zhang
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, China (M.Z., K.T.)
| | - Weiyi Tang
- Department of Ultrasound Diagnosis, Guilin Hospital of the Second Xiangya Hospital CSU, Guilin 541003, China (W.S., W.T.)
| | - Kui Tang
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, China (M.Z., K.T.).
| |
Collapse
|
2
|
Schwartzman JD, McCall M, Ghattas Y, Pugazhendhi AS, Wei F, Ngo C, Ruiz J, Seal S, Coathup MJ. Multifunctional scaffolds for bone repair following age-related biological decline: Promising prospects for smart biomaterial-driven technologies. Biomaterials 2024; 311:122683. [PMID: 38954959 DOI: 10.1016/j.biomaterials.2024.122683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/09/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
The repair of large bone defects due to trauma, disease, and infection can be exceptionally challenging in the elderly. Despite best clinical practice, bone regeneration within contemporary, surgically implanted synthetic scaffolds is often problematic, inconsistent, and insufficient where additional osteobiological support is required to restore bone. Emergent smart multifunctional biomaterials may drive important and dynamic cellular crosstalk that directly targets, signals, stimulates, and promotes an innate bone repair response following age-related biological decline and when in the presence of disease or infection. However, their role remains largely undetermined. By highlighting their mechanism/s and mode/s of action, this review spotlights smart technologies that favorably align in their conceivable ability to directly target and enhance bone repair and thus are highly promising for future discovery for use in the elderly. The four degrees of interactive scaffold smartness are presented, with a focus on bioactive, bioresponsive, and the yet-to-be-developed autonomous scaffold activity. Further, cell- and biomolecular-assisted approaches were excluded, allowing for contemporary examination of the capabilities, demands, vision, and future requisites of next-generation biomaterial-induced technologies only. Data strongly supports that smart scaffolds hold significant promise in the promotion of bone repair in patients with a reduced osteobiological response. Importantly, many techniques have yet to be tested in preclinical models of aging. Thus, greater clarity on their proficiency to counteract the many unresolved challenges within the scope of aging bone is highly warranted and is arguably the next frontier in the field. This review demonstrates that the use of multifunctional smart synthetic scaffolds with an engineered strategy to circumvent the biological insufficiencies associated with aging bone is a viable route for achieving next-generation therapeutic success in the elderly population.
Collapse
Affiliation(s)
| | - Max McCall
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Yasmine Ghattas
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Abinaya Sindu Pugazhendhi
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Fei Wei
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Christopher Ngo
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Jonathan Ruiz
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Sudipta Seal
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA; Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, USA, Orlando, FL
| | - Melanie J Coathup
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
3
|
Cruells A, Cabrera-Rubio R, Bustamante M, Pelegrí D, Cirach M, Jimenez-Arenas P, Samarra A, Martínez-Costa C, Collado MC, Gascon M. The influence of pre- and postnatal exposure to air pollution and green spaces on infant's gut microbiota: Results from the MAMI birth cohort study. ENVIRONMENTAL RESEARCH 2024; 257:119283. [PMID: 38830395 DOI: 10.1016/j.envres.2024.119283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/14/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Animal and human studies indicate that exposure to air pollution and natural environments might modulate the gut microbiota, but epidemiological evidence is very scarce. OBJECTIVES To assess the potential impact of pre- and postnatal exposure to air pollution and green spaces on infant gut microbiota assembly and trajectories during the first year of life. METHODS MAMI ("MAternal MIcrobes") birth cohort (Valencia, Spain, N = 162) was used to study the impact of environmental exposure (acute and chronic) on infant gut microbiota during the first year of life (amplicon-based 16S rRNA sequencing). At 7 days and at 1, 6 and 12 months, residential pre- and postnatal exposure to air pollutants (NO2, black carbon -BC-, PM2.5 and O3) and green spaces indicators (NDVI and area of green spaces at 300, 500 and 1000 m buffers) were obtained. For the association between exposures and alpha diversity indicators linear regression models (cross-sectional analyses) and mixed models, including individual as a random effect (longitudinal analyses), were applied. For the differential taxon analysis, the ANCOM-BC package with a log count transformation and multiple-testing corrections were used. RESULTS Acute exposure in the first week of life and chronic postnatal exposure to NO2 were associated with a reduction in microbial alpha diversity, while the effects of green space exposure were not evident. Acute and chronic (prenatal or postnatal) exposure to NO2 resulted in increased abundance of Haemophilus, Akkermansia, Alistipes, Eggerthella, and Tyzerella populations, while increasing green space exposure associated with increased Negativicoccus, Senegalimassilia and Anaerococcus and decreased Tyzzerella and Lachnoclostridium populations. DISCUSSION We observed a decrease in the diversity of the gut microbiota and signs of alteration in its composition among infants exposed to higher levels of NO2. Increasing green space exposure was also associated with changes in gut microbial composition. Further research is needed to confirm these findings.
Collapse
Affiliation(s)
- Adrià Cruells
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Raúl Cabrera-Rubio
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain
| | - Mariona Bustamante
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Dolors Pelegrí
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Marta Cirach
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Pol Jimenez-Arenas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Anna Samarra
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain
| | - Cecilia Martínez-Costa
- Department of Pediatrics, University of Valencia, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain
| | - Mireia Gascon
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain.
| |
Collapse
|
4
|
Pavelka L, Rauschenberger A, Hemedan A, Ostaszewski M, Glaab E, Krüger R. Converging peripheral blood microRNA profiles in Parkinson's disease and progressive supranuclear palsy. Brain Commun 2024; 6:fcae187. [PMID: 38863572 PMCID: PMC11166179 DOI: 10.1093/braincomms/fcae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/02/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024] Open
Abstract
MicroRNAs act via targeted suppression of messenger RNA translation in the DNA-RNA-protein axis. The dysregulation of microRNA(s) reflects the epigenetic changes affecting the cellular processes in multiple disorders. To understand the complex effect of dysregulated microRNAs linked to neurodegeneration, we performed a cross-sectional microRNA expression analysis in idiopathic Parkinson's disease (n = 367), progressive supranuclear palsy (n = 35) and healthy controls (n = 416) from the Luxembourg Parkinson's Study, followed by prediction modelling, enriched pathway analysis and target simulation of dysregulated microRNAs using probabilistic Boolean modelling. Forty-six microRNAs were identified to be dysregulated in Parkinson's disease versus controls and 16 in progressive supranuclear palsy versus controls with 4 overlapping significantly dysregulated microRNAs between the comparisons. Predictive power of microRNA subsets (including up to 100 microRNAs) was modest for differentiating Parkinson's disease or progressive supranuclear palsy from controls (maximal cross-validated area under the receiver operating characteristic curve 0.76 and 0.86, respectively) and low for progressive supranuclear palsy versus Parkinson's disease (maximal cross-validated area under the receiver operating characteristic curve 0.63). The enriched pathway analysis revealed natural killer cell pathway to be dysregulated in both, Parkinson's disease and progressive supranuclear palsy versus controls, indicating that the immune system might play an important role in both diseases. Probabilistic Boolean modelling of pathway dynamics affected by dysregulated microRNAs in Parkinson's disease and progressive supranuclear palsy revealed partially overlapping dysregulation in activity of the transcription factor EB, endoplasmic reticulum stress signalling, calcium signalling pathway, dopaminergic transcription and peroxisome proliferator-activated receptor gamma coactivator-1α activity, though involving different mechanisms. These findings indicated a partially convergent (sub)cellular end-point dysfunction at multiple levels in Parkinson's disease and progressive supranuclear palsy, but with distinctive underlying molecular mechanisms.
Collapse
Affiliation(s)
- Lukas Pavelka
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen L-1445, Luxembourg
- Parkinson’s Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg L-1210, Luxembourg
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette L-4367, Luxembourg
| | - Armin Rauschenberger
- Biomedical Data Science Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette L-4367, Luxembourg
- Competence Centre for Methodology and Statistics, Translational Medicine Operations Hub, Luxembourg Institute of Health (LIH), Strassen L-1445, Luxembourg
| | - Ahmed Hemedan
- Bioinformatics Core Unit, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette L-4367, Luxembourg
| | - Marek Ostaszewski
- Bioinformatics Core Unit, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette L-4367, Luxembourg
| | - Enrico Glaab
- Biomedical Data Science Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette L-4367, Luxembourg
| | - Rejko Krüger
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen L-1445, Luxembourg
- Parkinson’s Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg L-1210, Luxembourg
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette L-4367, Luxembourg
| |
Collapse
|
5
|
Hong JG, Zheng HL, Wang P, Huang P, Gong DP, Zeng ZY. Hsa_ circ_0006867 regulates ox-LDL-induced endothelial injury via the miR-499a-3p/ADAM10 axis. Clin Hemorheol Microcirc 2024; 88:115-127. [PMID: 37694359 PMCID: PMC11491994 DOI: 10.3233/ch-231895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Circular RNAs (circRNAs) have been reported to participate in the development of various diseases. In this study, we investigated the potential mechanism underlying the role of circRNAs in atherosclerosis. Human umbilical vein endothelial cells (HUVECs) were treated with 100 μg/mL oxidized low-density lipoprotein (ox-LDL) to simulate atherosclerosis. We observed that hsa_circ_0006867 (circ_0006867), a circRNA markedly increased in ox-LDL-treated endothelial cells, acted as a molecular sponge of miR-499a-3p and regulated its expression. This interaction led to changes in the downstream target gene ADAM10, thus affecting cell apoptosis and migration. Thus, our study suggests that circ_0006867 regulates ox-LDL-induced endothelial injury via the circ_0006867/miR-499a-3p/ADAM10 axis, indicating its potential as an exploitable therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Ji-Ge Hong
- Department of Geriatric Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, Guangxi, China
| | - Hui-Lei Zheng
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, Guangxi, China
- Department of Health Management, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Peng Wang
- Department of Health Management, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ping Huang
- Department of Health Management, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Dan-Ping Gong
- Department of Geriatric Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhi-Yu Zeng
- Department of Geriatric Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, Guangxi, China
| |
Collapse
|
6
|
Alasaad H, Ibrahim J. Primary total knee arthroplasty in patients with a significant bone defect in the medial tibial plateau: Case series and literature review. Int J Surg Case Rep 2023; 110:108779. [PMID: 37666156 PMCID: PMC10510074 DOI: 10.1016/j.ijscr.2023.108779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023] Open
Abstract
INTRODUCTION AND IMPORTANCE Total knee arthroplasty (TKA) can significantly enhance a patient's quality of life and knee function. As a result, it has become a popular procedure among orthopedic surgeons. However, there are some challenging cases that surgeons may encounter, such as treating bony defects in the tibial plateau in patients with advanced degeneration. If not managed properly, these cases can have serious consequences. CASE PRESENTATION 4 patients with severe knee joint degeneration and bone loss in the medial tibial plateau were included in the series. The patients underwent TKA using the cement and screws technique to compensate for the defect in the medial tibial plateau. After (12-24 months) follow-up, all patients showed a clear clinical and functional improvement. CLINICAL DISCUSSION Several ways exist to address bone loss in the tibial plateau in primary total knee joint arthroplasty. Among them, metal prostheses are frequently used. In certain situations, we may need to use more affordable techniques to ensure success for patients facing financial difficulties. This is particularly common in our country, and we may utilize methods such as the cement and screws technique. This study showed a clear improvement in the patient's clinical and functional outcomes according to The Western Ontario and McMaster Universities Arthritis Index (WOMAC) at the end of the follow-up period. CONCLUSION The cement and screw technique might be a good solution for moderate bone loss in the tibial plateau. It might be a safe and simple method for patients, and it's also a viable option for those who can't afford pricier alternatives like metal augmentation or structural allografts.
Collapse
|
7
|
Gong Q, Huang X, Chen X, Zhang L, Zhou C, Li S, Song T, Zhuang L. Construction and validation of an angiogenesis-related lncRNA prognostic model in lung adenocarcinoma. Front Genet 2023; 14:1083593. [PMID: 36999053 PMCID: PMC10043447 DOI: 10.3389/fgene.2023.1083593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
Background: There is increasing evidence that long non-coding RNAs (lncRNAs) can be used as potential prognostic factors for cancer. This study aimed to develop a prognostic model for lung adenocarcinoma (LUAD) using angiogenesis-related long non-coding RNAs (lncRNAs) as potential prognostic factors.Methods: Transcriptome data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) were analyzed to identify aberrantly expressed angiogenesis-related lncRNAs in LUAD. A prognostic signature was constructed using differential expression analysis, overlap analysis, Pearson correlation analysis, and Cox regression analysis. The model’s validity was assessed using K-M and ROC curves, and independent external validation was performed in the GSE30219 dataset. Prognostic lncRNA-microRNA (miRNA)-messenger RNA (mRNA) competing endogenous RNA (ceRNA) networks were identified. Immune cell infiltration and mutational characteristics were also analyzed. The expression of four human angiogenesis-associated lncRNAs was quantified using quantitative real-time PCR (qRT-PCR) gene arrays.Results: A total of 26 aberrantly expressed angiogenesis-related lncRNAs in LUAD were identified, and a Cox risk model based on LINC00857, RBPMS-AS1, SYNPR-AS1, and LINC00460 was constructed, which may be an independent prognostic predictor for LUAD. The low-risk group had a significant better prognosis and was associated with a higher abundance of resting immune cells and a lower expression of immune checkpoint molecules. Moreover, 105 ceRNA mechanisms were predicted based on the four prognostic lncRNAs. qRT-PCR results showed that LINC00857, SYNPR-AS1, and LINC00460 were significantly highly expressed in tumor tissues, while RBPMS-AS1 was highly expressed in paracancerous tissues.Conclusion: The four angiogenesis-related lncRNAs identified in this study could serve as a promising prognostic biomarker for LUAD patients.
Collapse
Affiliation(s)
- Quan Gong
- Department of Palliative Medicine, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China
- *Correspondence: Quan Gong,
| | - Xianda Huang
- Emergency Department, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Xiaobo Chen
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Lijuan Zhang
- Department of Palliative Medicine, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Chunyan Zhou
- Department of Palliative Medicine, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Shijuan Li
- Department of Palliative Medicine, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Tingting Song
- Department of Palliative Medicine, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Li Zhuang
- Department of Palliative Medicine, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China
| |
Collapse
|
8
|
Sabeena S. Role of noncoding RNAs with emphasis on long noncoding RNAs as cervical cancer biomarkers. J Med Virol 2023; 95:e28525. [PMID: 36702772 DOI: 10.1002/jmv.28525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/28/2022] [Accepted: 01/20/2023] [Indexed: 01/28/2023]
Abstract
Cervical cancer is a significant public health problem in developing countries, as most cases present at an advanced stage. This review aimed to analyze the role of noncoding RNAs as diagnostic and prognostic biomarkers in cervical cancers. Published studies on specific microRNA signatures in body fluids and cervical cancer tissues are highly heterogeneous, and there are no validated assays. The precision of the various immune-associated long noncoding (lncRNA) signatures should be assessed in clinical samples. Even though lncRNAs are tissue and cancer-specific, safe and appropriate methods for delivery to tumor tissues, toxicities and side effects are to be explored. Few studies have evaluated deregulated lncRNA expression levels with clinicopathological factors in a limited number of clinical samples. Prospective studies assessing the diagnostic and prognostic roles of circulating lncRNAs and P-Element-induced wimpy testis interacting PIWI RNAs (Piwil RNAs) in cervical cancer cases are essential. For the clinical application of lnc-RNA-based biomarkers, comprehensive research is needed as the impact of noncoding transcripts on molecular pathways is complex. The standardization and validation of deregulated ncRNAs in noninvasive samples of cervical cancer cases are needed.
Collapse
|
9
|
Mao Y, Cai F, Jiang T, Zhu X. Identification Invasion-Related Long Non-Coding RNAs in Lung Adenocarcinoma and Analysis of Competitive Endogenous RNA Regulatory Networks. Int J Gen Med 2023; 16:1817-1831. [PMID: 37213476 PMCID: PMC10198273 DOI: 10.2147/ijgm.s407266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/01/2023] [Indexed: 05/23/2023] Open
Abstract
Background Cell invasion plays a vital role in cancer development and progression. Aberrant expression of long non-coding RNAs (lncRNAs) is also critical in carcinogenesis. However, the prognostic value of invasion-related lncRNAs in lung adenocarcinoma (LUAD) remains unknown. Methods Differentially expressed mRNAs (DEmRNAs), lncRNAs (DElncRNAs), and microRNAs (DEmiRNAs) were between LUAD and control samples. Pearson correlation analyses were performed to screen for invasion-related DElncRNAs (DEIRLs). Univariate and multivariate Cox regression algorithms were applied to identify key genes and construct the risk score model, which was evaluated using receiver operating characteristic (ROC) curves. Gene set enrichment analysis (GSEA) was used to explore the underlying pathways of the risk model. Moreover, an invasion-related competitive endogenous RNA (ceRNA) regulatory network was constructed. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to detect the expression of prognostic lncRNAs in the LUAD and control samples. Results A total of 45 DElncRNAs were identified as DEIRLs. RP3-525N10.2, LINC00857, EP300-AS1, PDZRN3-AS1, and RP5-1102E8.3 were potential prognostic lncRNAs, the expression of which was verified by RT-qPCR in LUAD samples. Both the risk score model and nomogram used the prognostic lncRNAs. ROC curves showed the risk score model had moderate accuracy and the nomogram had high accuracy in predicting patient prognosis. GSEA results indicated that the risk score model was associated with many biological processes and pathways relevant to cell proliferation. A ceRNA regulatory network was constructed in which PDZRN3-miR-96-5p-CPEB1, EP300-AS1-miR-93-5p-CORO2B, and RP3-525N10.2-miR-130a-5p-GHR may be key invasion-related regulatory pathways in LUAD. Conclusion Our study identified five novel invasion-related prognostic lncRNAs (RP3-525N10.2, LINC00857, EP300-AS1, PDZRN3-AS1, and RP5-1102E8.3) and established an accurate model for predicting the prognosis of patients with LUAD. These findings enrich our understanding of the relationships between cell invasion, lncRNAs, and LUAD and may provide novel treatment directions.
Collapse
Affiliation(s)
- Yuze Mao
- Department of Cardio-Thoracic Surgery, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, 154000, People’s Republic of China
| | - Fangyu Cai
- Department of Thoracic Surgery, Beidahuang Industry Group General Hospital, Harbin, Heilongjiang, 150088, People’s Republic of China
| | - Tengjiao Jiang
- Department of Cardio-Thoracic Surgery, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, 154000, People’s Republic of China
| | - Xiaofeng Zhu
- Department of Cardio-Thoracic Surgery, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, 154000, People’s Republic of China
- Correspondence: Xiaofeng Zhu, Department of Cardio-Thoracic Surgery, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, 154000, People’s Republic of China, Tel +86-13845456700, Email
| |
Collapse
|
10
|
Longhitano L, Vicario N, Forte S, Giallongo C, Broggi G, Caltabiano R, Barbagallo GMV, Altieri R, Raciti G, Di Rosa M, Caruso M, Parenti R, Liso A, Busi F, Lolicato M, Mione MC, Li Volti G, Tibullo D. Lactate modulates microglia polarization via IGFBP6 expression and remodels tumor microenvironment in glioblastoma. Cancer Immunol Immunother 2023; 72:1-20. [PMID: 35654889 PMCID: PMC9813126 DOI: 10.1007/s00262-022-03215-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/25/2022] [Indexed: 01/09/2023]
Abstract
Lactic acidosis has been reported in solid tumor microenvironment (TME) including glioblastoma (GBM). In TME, several signaling molecules, growth factors and metabolites have been identified to induce resistance to chemotherapy and to sustain immune escape. In the early phases of the disease, microglia infiltrates TME, contributing to tumorigenesis rather than counteracting its growth. Insulin-like Growth Factor Binding Protein 6 (IGFBP6) is expressed during tumor development, and it is involved in migration, immune-escape and inflammation, thus providing an attractive target for GBM therapy. Here, we aimed at investigating the crosstalk between lactate metabolism and IGFBP6 in TME and GBM progression. Our results show that microglia exposed to lactate or IGFBP6 significantly increased the Monocarboxylate transporter 1 (MCT1) expression together with genes involved in mitochondrial metabolism. We, also, observed an increase in the M2 markers and a reduction of inducible nitric oxide synthase (iNOS) levels, suggesting a role of lactate/IGFBP6 metabolism in immune-escape activation. GBM cells exposed to lactate also showed increased levels of IGFBP6 and vice-versa. Such a phenomenon was coupled with a IGFBP6-mediated sonic hedgehog (SHH) ignaling increase. We, finally, tested our hypothesis in a GBM zebrafish animal model, where we observed an increase in microglia cells and igfbp6 gene expression after lactate exposure. Our results were confirmed by the analysis of human transcriptomes datasets and immunohistochemical assay from human GBM biopsies, suggesting the existence of a lactate/IGFBP6 crosstalk in microglial cells, so that IGFBP6 expression is regulated by lactate production in GBM cells and in turn modulates microglia polarization.
Collapse
Affiliation(s)
- Lucia Longhitano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Stefano Forte
- IOM Ricerca, 95029 Viagrande, CT Italy ,Department of Medical and Surgical Sciences and Advanced Technologies, F. Ingrassia, Anatomic Pathology, University of Catania, Catania, Italy
| | | | - Giuseppe Broggi
- Department of Drug Sciences, University of Catania, Catania, Italy
| | | | | | - Roberto Altieri
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Giuseppina Raciti
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Massimo Caruso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Arcangelo Liso
- Department of Cellular, Computational and Integrative Biology Cibio, University of Trento, 38123 Trento, Italy
| | - Federica Busi
- Department of Cellular, Computational and Integrative Biology Cibio, University of Trento, 38123 Trento, Italy
| | - Marco Lolicato
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Maria Caterina Mione
- Department of Cellular, Computational and Integrative Biology Cibio, University of Trento, 38123 Trento, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
11
|
Bieganowski T, Buchalter DB, Singh V, Mercuri JJ, Aggarwal VK, Rozell JC, Schwarzkopf R. Bone loss in aseptic revision total knee arthroplasty: management and outcomes. Knee Surg Relat Res 2022; 34:30. [PMID: 35725586 PMCID: PMC9208118 DOI: 10.1186/s43019-022-00158-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/21/2022] [Indexed: 12/04/2022] Open
Abstract
Background Although several techniques and implants have been developed to address bone loss in revision total knee arthroplasty (rTKA), management of these defects remains challenging. This review article discusses the indications and management options of bone loss following total knee arthroplasty based on preoperative workup and intraoperative findings. Main text Various imaging modalities are available that can be augmented with intraoperative examination to provide a clear classification of a bony defect. For this reason, the Anderson Orthopaedic Research Institute (AORI) classification is frequently used to guide treatment. The AORI provides a reliable system by which surgeons can classify lesions based on their size and involvement of surrounding structures. AORI type I defects are managed with cement with or without screws as well as impaction bone grafting. For AORI type IIA lesions, wedge or block augmentation is available. For large defects encompassing AORI type IIB and type III defects, bulk allografts, cones, sleeves, and megaprostheses can be used in conjunction with intramedullary stems. Conclusions Treatment of bone loss in rTKA continues to evolve as different techniques and approaches have been validated through short- and mid-term follow-up. Extensive preoperative planning with imaging, accurate intraoperative evaluation of the bone loss, and comprehensive understanding of all the implant options available for the bone loss are paramount to success.
Collapse
|
12
|
Abstract
Circadian rhythms drive our daily behaviors to coincide with the earth's rotation on an approximate 24-h cycle. The circadian clock mechanism present in nearly every cell is responsible for our circadian rhythms and is comprised of a transcriptional-translational feedback loop in mammals. The central clock resides in the hypothalamus responding to external light cues, whereas peripheral clocks receive signals from the central clock and are also sensitive to cues from feeding and activity. Of the peripheral clocks, the skeletal muscle clock is particularly sensitive to exercise which has shown to be an important time-cue with the ability to influence and adjust the muscle clock phase in response to exercise timing. Since the skeletal muscle clock is also involved in the expression of tissue-specific gene expression-including glucoregulatory genes-this might suggest a role for exercise timing as a therapeutic strategy in metabolic diseases, like type 2 diabetes. Notably, those with type 2 diabetes have accompanied disruptions in their skeletal muscle clock mechanism which may also be related to the increased risk of type 2 diabetes seen among shift workers. Therefore, the direct influence of exercise on the skeletal muscle clock might support the use of exercise timing to provide disease-mitigating effects. Here, we highlight the potential use of time-of-day exercise as a chronotherapeutic tool within circadian medicine to improve the metabolic profile of type 2 diabetes and support long-term glycemic control, potentially working through the skeletal muscle clock and circadian physiology.
Collapse
Affiliation(s)
- Ryan A. Martin
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Myology Institute, University of Florida, Gainesville, Florida, USA
| | - Karyn A. Esser
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Myology Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
13
|
Laiman V, Lo YC, Chen HC, Yuan TH, Hsiao TC, Chen JK, Chang CW, Lin TC, Li SJ, Chen YY, Heriyanto DS, Chung KF, Chuang KJ, Ho KF, Chang JH, Chuang HC. Effects of antibiotics and metals on lung and intestinal microbiome dysbiosis after sub-chronic lower-level exposure of air pollution in ageing rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114164. [PMID: 36244167 DOI: 10.1016/j.ecoenv.2022.114164] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/05/2022] [Accepted: 10/05/2022] [Indexed: 05/06/2023]
Abstract
We investigated the effects of antibiotics, drugs, and metals on lung and intestinal microbiomes after sub-chronic exposure of low-level air pollution in ageing rats. Male 1.5-year-old Fischer 344 ageing rats were exposed to low-level traffic-related air pollution via whole-body exposure system for 3 months with/without high-efficiency particulate air (HEPA) filtration (gaseous vs. particulate matter with aerodynamic diameter of ≤2.5 µm (PM2.5) pollution). Lung functions, antibiotics, drugs, and metals in lungs were examined and linked to lung and fecal microbiome analyses by high-throughput sequencing analysis of 16 s ribosomal (r)DNA. Rats were exposed to 8.7 μg/m3 PM2.5, 10.1 ppb NO2, 1.6 ppb SO2, and 23.9 ppb O3 in average during the study period. Air pollution exposure decreased forced vital capacity (FVC), peak expiratory flow (PEF), forced expiratory volume in 20 ms (FEV20), and FEF at 25∼75% of FVC (FEF25-75). Air pollution exposure increased antibiotics and drugs (benzotriazole, methamphetamine, methyl-1 H-benzotriazole, ketamine, ampicillin, ciprofloxacin, pentoxifylline, erythromycin, clarithromycin, ceftriaxone, penicillin G, and penicillin V) and altered metals (V, Cr, Cu, Zn, and Ba) levels in lungs. Fusobacteria and Verrucomicrobia at phylum level were increased in lung microbiome by air pollution, whereas increased alpha diversity, Bacteroidetes and Proteobacteria and decreased Firmicutes at phylum level were occurred in intestinal microbiome. Lung function decline was correlated with increasing antibiotics, drugs, and metals in lungs as well as lung and intestinal microbiome dysbiosis. The antibiotics, drugs, and Cr, Co, Ca, and Cu levels in lung were correlated with lung and intestinal microbiome dysbiosis. The lung microbiome was correlated with intestinal microbiome at several phylum and family levels after air pollution exposure. Our results revealed that antibiotics, drugs, and metals in the lung caused lung and intestinal microbiome dysbiosis in ageing rats exposed to air pollution, which may lead to lung function decline.
Collapse
Affiliation(s)
- Vincent Laiman
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Anatomical Pathology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada - Dr. Sardjito Hospital, Yogyakarta, Indonesia.
| | - Yu-Chun Lo
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| | - Hsin-Chang Chen
- Department of Chemistry, College of Science, Tunghai University, Taichung, Taiwan.
| | - Tzu-Hsuen Yuan
- Department of Health and Welfare, College of City Management, University of Taipei, Taipei, Taiwan.
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan.
| | - Jen-Kun Chen
- Institute of Biomedical Engineering & Nanomedicine, National Health Research Institutes, Miaoli, Taiwan.
| | - Ching-Wen Chang
- Industrial Ph.D. Program of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Ting-Chun Lin
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Ssu-Ju Li
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - You-Yin Chen
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Industrial Ph.D. Program of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Didik Setyo Heriyanto
- Department of Anatomical Pathology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada - Dr. Sardjito Hospital, Yogyakarta, Indonesia.
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, UK.
| | - Kai-Jen Chuang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Kin-Fai Ho
- School of Public Health and Primary Care, the Chinese University of Hong Kong, Hong Kong.
| | - Jer-Hwa Chang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Departments of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
14
|
Ou HB, Wei Y, Liu Y, Zhou FX, Zhou YF. Characterization of the immune cell infiltration landscape in lung adenocarcinoma. Arch Biochem Biophys 2022; 721:109168. [DOI: 10.1016/j.abb.2022.109168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/30/2022]
|
15
|
Saxena V, Piao W, Li L, Paluskievicz C, Xiong Y, Simon T, Lakhan R, Brinkman CC, Walden S, Hippen KL, WillsonShirkey M, Lee YS, Wagner C, Blazar BR, Bromberg JS. Treg tissue stability depends on lymphotoxin beta-receptor- and adenosine-receptor-driven lymphatic endothelial cell responses. Cell Rep 2022; 39:110727. [PMID: 35443187 PMCID: PMC9093052 DOI: 10.1016/j.celrep.2022.110727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/23/2022] [Accepted: 03/30/2022] [Indexed: 02/03/2023] Open
Abstract
Regulatory T cell (Treg) lymphatic migration is required for resolving inflammation and prolonging allograft survival. Focusing on Treg interactions with lymphatic endothelial cells (LECs), we dissect mechanisms and functional consequences of Treg transendothelial migration (TEM). Using three genetic mouse models of pancreatic islet transplantation, we show that Treg lymphotoxin (LT) αβ and LEC LTβ receptor (LTβR) signaling are required for efficient Treg migration and suppressive function to prolong allograft survival. Inhibition of LT signaling increases Treg conversion to Foxp3loCD25lo exTregs. In a transwell-based model of TEM across polarized LECs, non-migrated Tregs become exTregs. Such conversion is regulated by LTβR nuclear factor κB (NF-κB) signaling in LECs, which increases interleukin-6 (IL-6) production and drives exTreg conversion. Migrating Tregs are ectonucleotidase CD39hi and resist exTreg conversion in an adenosine-receptor-2A-dependent fashion. Human Tregs migrating across human LECs behave similarly. These molecular interactions can be targeted for therapeutic manipulation of immunity and suppression.
Collapse
Affiliation(s)
- Vikas Saxena
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wenji Piao
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Lushen Li
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Christina Paluskievicz
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yanbao Xiong
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Thomas Simon
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ram Lakhan
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - C Colin Brinkman
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sarah Walden
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Pediatrics, University of Minnesota Cancer Center, Minneapolis, MN 55455, USA
| | - Keli L Hippen
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Pediatrics, University of Minnesota Cancer Center, Minneapolis, MN 55455, USA
| | - Marina WillsonShirkey
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Young S Lee
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Chelsea Wagner
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Pediatrics, University of Minnesota Cancer Center, Minneapolis, MN 55455, USA
| | - Jonathan S Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
16
|
Deng L, Long F, Wang T, Dai L, Chen H, Yang Y, Xie G. Identification of an Immune Classification and Prognostic Genes for Lung Adenocarcinoma Based on Immune Cell Signatures. Front Med (Lausanne) 2022; 9:855387. [PMID: 35433762 PMCID: PMC9005848 DOI: 10.3389/fmed.2022.855387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/23/2022] [Indexed: 12/25/2022] Open
Abstract
ObjectiveCurrent advances in immunotherapy requires accurate tumor sub-classification due to the heterogeneity of lung adenocarcinoma (LUAD). This study aimed to develop a LUAD sub-classification system based on immune cell signatures and identified prognostic gene markers.MethodsSignatures related to the prognosis of TCGA-LUAD and 4 GSE cohorts were screened and intersected from 184 previously published immune cell signatures. The LUAD samples in the TCGA were clustered by ConsensusClusterPlus. Molecular characteristics, immune characteristics and sensitivity to immunotherapies/chemotherapies were compared. LDA score was established through Linear Discriminant Analysis (LDA). Co-expression module was constructed by Weighted Gene Co-Expression Network Analysis (WGCNA).ResultsFour LUAD subtypes with different molecular and immune characteristics were identified. Significant differences in prognosis among the four subtypes were observed. The IS1 subtype with the worst prognosis showed the highest number of TMB, mutant genes, IFN γ score, angiogenesis score and immune score. Twenty co-expression modules were generated by WGCNA. Blue module, sky blue module and light yellow module were significantly correlated with LUAD prognosis. The hub genes (CCDC90B, ARNTL2, RIPK2, SMCO2 and ADA and NBN) showing great prognostic significance were identified from the blue module. A total of 8 hub genes (NLRC3, CLEC2D, GIMAP5, CXorf65, PARP15, AKNA, ZC3H12D, and ARRDC5) were found in the light yellow module. Except for CXorf65, the expression of the other seven genes were significantly correlated with LUAD prognosis.ConclusionThis study determined four LUAD subtypes with different molecular and immune characteristics and 13 genes closely related to the prognosis of LUAD. The current findings could help understand the heterogeneity of LUAD immune classes.
Collapse
Affiliation(s)
- Lili Deng
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- Chongqing Health Statistics Information Center, Chongqing, China
| | - Fei Long
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Ting Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Ling Dai
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Huajian Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yujun Yang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- *Correspondence: Guoming Xie
| | - Guoming Xie
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- Yujun Yang
| |
Collapse
|
17
|
Yu M, Tian T, Zhang J, Hu T. miR-141-3p protects against blood-brain barrier disruption and brain injury after intracerebral hemorrhage by targeting ZEB2. J Clin Neurosci 2022; 99:253-260. [PMID: 35306455 DOI: 10.1016/j.jocn.2022.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/28/2022] [Accepted: 03/05/2022] [Indexed: 12/31/2022]
Abstract
MicroRNAs (miRNAs) participate in the diagnosis and treatment of intracerebral hemorrhage (ICH). miR-141-3p has been widely reported to regulate neurological disorders and cerebropathy. However, the specific role of miR-141-3p in ICH has not yet been revealed. The aim of this study was exploration of the biological functions and mechanism of miR-141-3p in ICH by establishing a collagenase-induced ICH mouse model. After ICH induction, miR-141-3p mimics or miR-NC were administered into the right striatum of the model mice followed by the performance of neurological tests. After euthanasia of the mice, the injury volume, brain water content, and injury to the blood-brain barrier (BBB) were evaluated. Evans blue (EB) was used to stain the brain slices, and EB extravasation was detected to evaluate the injury to BBB. miR-141-3p expression in perihematomal edema and hematoma areas after ICH was assessed by RT-qPCR. The levels of tight junction proteins in brain tissues and human brain microvascular endothelial cells (BMECs) were evaluated by western blotting. The FITC-dextran 20 method was used to assess BMEC permeability. The binding between miR-141-3p and zinc finger E-box-binding homeobox 2 (ZEB2) was verified with a luciferase reporter assay. In this study, miR-141-3p overexpression alleviated ICH-induced brain injury and protected BBB integrity in vivo. ZEB2 was a target gene of miR-141-3p. ZEB2 overexpression promoted BBB disruption, and miR-141-3p overexpression attenuated the promoting effect exerted by ZEB2. Overall, miR-141-3p protects against BBB disruption and attenuates brain injuries induced by ICH by targeting ZEB2.
Collapse
Affiliation(s)
- Miao Yu
- Department of Neurosurgery, Affiliated Hospital of Chengde Medical University, Chengde 067000, Hebei, China
| | - Tian Tian
- Department of Neurosurgery, Affiliated Hospital of Chengde Medical University, Chengde 067000, Hebei, China.
| | - Jiwei Zhang
- Department of Neurosurgery, Affiliated Hospital of Chengde Medical University, Chengde 067000, Hebei, China
| | - Tiemin Hu
- Department of Neurosurgery, Affiliated Hospital of Chengde Medical University, Chengde 067000, Hebei, China
| |
Collapse
|
18
|
Wang R, Wu Y, Liu R, Liu M, Li Q, Ba Y, Huang H. Deciphering therapeutic options for neurodegenerative diseases: insights from SIRT1. J Mol Med (Berl) 2022; 100:537-553. [PMID: 35275221 DOI: 10.1007/s00109-022-02187-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/23/2022]
Abstract
Silent information regulator 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD +)-dependent protein deacetylase that exerts biological effects through nucleoplasmic transfer. Recent studies have highlighted that SIRT1 deacetylates protein substrates to exert its neuroprotective effects, including decreased oxidative stress and inflammatory, increases autophagy, increases levels of nerve growth factors (correlated with behavioral changes), and maintains neural integrity (affects neuronal development and function) in aging or neurological disorder. In this review, we highlight the molecular mechanisms underlying the protective role of SIRT1 in modulating neurodegeneration, focusing on protein homeostasis, aging-related signaling pathways, neurogenesis, and synaptic plasticity. Meanwhile, the potential of targeting SIRT1 to block the occurrence and progression of neurodegenerative diseases is also discussed. Taken together, this review provides an up-to-date evaluation of our current understanding of the neuroprotective mechanisms of SIRT1 and also be involved in the potential therapeutic opportunities of AD and related neurodegenerative diseases.
Collapse
Affiliation(s)
- Ruike Wang
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China.,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Yingying Wu
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China.,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Rundong Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China.,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Mengchen Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China.,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Qiong Li
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China.,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Yue Ba
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China.,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Hui Huang
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China. .,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China.
| |
Collapse
|
19
|
Wan Y, Qu N, Yang Y, Ma J, Li Z, Zhang Z. Identification of a 3-gene signature based on differentially expressed invasion genes related to cancer molecular subtypes to predict the prognosis of osteosarcoma patients. Bioengineered 2021; 12:5916-5931. [PMID: 34488541 PMCID: PMC8806416 DOI: 10.1080/21655979.2021.1971919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 12/31/2022] Open
Abstract
Invasion is a critical pathway leading to tumor metastasis. This study constructed an invasion-related polygenic signature to predict osteosarcoma prognosis. We initially determined two molecular subtypes of osteosarcoma, Cluster1 (C1) and Cluster2 (C2).. A 3 invasive-gene signature was established by univariate Cox analysis and least absolute shrinkage and selection operator (LASSO) Cox regression analysis of the differentially expressed genes (DEGs) between the two subtypes, and was validated in internal and two external data sets (GSE21257 and GSE39058). Patients were divided into high- and low-risk groups by their signature, and the prognosis of osteosarcoma patients in the high-risk group was poor. Based on the time-independent receiver operating characteristic (ROC) curve, the area under the curve (AUC) for 1-year and 2-year OS were higher than 0.75 in internal and external cohorts. This signature also showed a high accuracy and independence in predicting osteosarcoma prognosis and a higher AUC in predicting 1-year osteosarcoma survival than other four existing models. In a word, a 3 invasive gene-based signature was developed, showing a high performance in predicting osteosarcoma prognosis. This signature could facilitate clinical prognostic analysis of osteosarcoma.
Collapse
Affiliation(s)
- Yue Wan
- Oncology Department, Jinzhou Central Hospital, Jin Zhou, Liao Ning, China
| | - Ning Qu
- Paediatrics, Jinzhou Central Hospital, Jinzhou, Liaoning, China
| | - Yang Yang
- Neurosurgery, Jinzhou Central Hospital, Jinzhou, Liaoning, China
| | - Jing Ma
- Nursing Department, Jinzhou Central Hospital, Jinzhou, Liaoning, China
| | - Zhe Li
- Hematology Department, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Zhenyu Zhang
- Orthopedics Department, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
20
|
Ghafouri-Fard S, Moghadam MHB, Shoorei H, Bahroudi Z, Taheri M, Taheriazam A. The impact of non-coding RNAs on normal stem cells. Biomed Pharmacother 2021; 142:112050. [PMID: 34426251 DOI: 10.1016/j.biopha.2021.112050] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/02/2021] [Accepted: 08/12/2021] [Indexed: 12/11/2022] Open
Abstract
Self-renewal and differentiation into diverse cells are two main characteristics of stem cells. These cells have important roles in development and homeostasis of different tissues and are supposed to facilitate tissue regeneration. Function of stem cells is regulated by dynamic interactions between external signaling, epigenetic factors, and molecules that regulate expression of genes. Among the highly appreciated regulators of function of stem cells are long non-coding RNAs (lncRNAs) and microRNAs (miRNAs). Impact of miR-342-5p, miR-145, miR-1297, miR-204-5p, miR-132, miR-128-3p, hsa-miR-302, miR-26b-5p and miR-10a are among miRNAs that regulate function of stem cells. Among lncRNAs, AK141205, ANCR, MEG3, Pnky, H19, TINCR, HULC, EPB41L4A-AS1 and SNHG7 have important roles in the regulation of stem cells. In the current paper, we aimed at reviewing the importance of miRNAs and lncRNAs in differentiation of stem cells both in normal and diseased conditions. For this purpose, we searched PubMed/Medline and google scholar databases using "stem cell" AND "lncRNA", or "long non-coding RNA", or "microRNA" or "miRNA".
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Zahra Bahroudi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Afshin Taheriazam
- Department of Orthopedics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
21
|
Ding Z, Zhang J, Hu Y, Li N, Yu S, Zheng L, Lin L. Effects of PI3K/AKT/mTOR pathway regulation of HIF-1α on Lanthanum-induced neurotoxicity in rats. Brain Res 2021; 1761:147400. [PMID: 33705787 DOI: 10.1016/j.brainres.2021.147400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/30/2021] [Accepted: 02/27/2021] [Indexed: 10/22/2022]
Abstract
This study examined the effects of the AKT/mTOR/HIF-1α signaling pathway on learning and memory in offspring rats induced by lanthanum from neuroethology and molecular biology perspectives. 32 pregnant adult Wistar rats were divided into four groups randomly: control group (NC), 0.25%, 0.5% and 1.0% LaCl3 groups (n = 8). All rats were poisoned through free drinking from day 0 of pregnancy to postnatal day 21 (suckling period). All offspring rats were poisoned through free drinking from delactation to postnatal day 48. Offspring rats aged 49-days-old were used as sampling objects to construct an LaCl3 poisoning model of offspring rats. Changes in hippocampal neurons, apoptosis of hippocampal neurons, learning and memory abilities of LaCl3-poisoned animals were measured by Nissl staining, TUNEL method and the shuttle box test, respectively. Expressions of PI3K, AKT, and mTOR, HIF-1α, and VEGF in the hippocampus were tested by qPCR and Western blot. Distributions of PI3K and p-AKT in hippocampal neurons were observed through the immunohistochemical method. With increasing LaCl3 dose, lightning strike time and active avoidance incubation period of offspring rats in the different LaCl3 groups were significantly prolonged. The Nissl body positive neurons of hippocampal neurons gradually declined while apoptosis in cells increased. The expressions of both mRNA (PI3K, AKT, mTOR, HIF-1α, VEGF) and proteins (PI3K, p-AKT, p-mTOR, HIF-1α, VEGF) in the hippocampus of the LaCl3 groups were significantly lower than those of NC group (p < 0.05). LaCl3 poisoning can induce developmental injuries in hippocampal neurons and can increase cell apoptosis. As a result, learning and memory abilities of offspring rats, as well as the expressions of PI3K/AKT/mTOR, are decreased, thus inhibiting activation of HIF-1α and influencing the expression of the downstream VEGF gene.
Collapse
Affiliation(s)
- Zhe Ding
- Institute of Molecular Medicine, School of Medicine, Eastern Liaoning University, Dandong 118003, Liaoning, People's Republic of China; Department of Nursing, School of Medicine, Eastern Liaoning University, Dandong 118003, Liaoning, People's Republic of China.
| | - Jinhui Zhang
- Institute of Molecular Medicine, School of Medicine, Eastern Liaoning University, Dandong 118003, Liaoning, People's Republic of China; Department of Nursing, School of Medicine, Eastern Liaoning University, Dandong 118003, Liaoning, People's Republic of China.
| | - Yuqian Hu
- Institute of Molecular Medicine, School of Medicine, Eastern Liaoning University, Dandong 118003, Liaoning, People's Republic of China; Department of Clinical Medicine, School of Medicine, Eastern Liaoning University, Dandong 118003, Liaoning, People's Republic of China.
| | - Nan Li
- Institute of Molecular Medicine, School of Medicine, Eastern Liaoning University, Dandong 118003, Liaoning, People's Republic of China; Department of Nursing, School of Medicine, Eastern Liaoning University, Dandong 118003, Liaoning, People's Republic of China.
| | - Shengjin Yu
- Institute of Molecular Medicine, School of Medicine, Eastern Liaoning University, Dandong 118003, Liaoning, People's Republic of China; Department of Basic Medicine, School of Medicine, Eastern Liaoning University, Dandong 118003, Liaoning, People's Republic of China.
| | - Linlin Zheng
- Institute of Molecular Medicine, School of Medicine, Eastern Liaoning University, Dandong 118003, Liaoning, People's Republic of China; Department of Nursing, School of Medicine, Eastern Liaoning University, Dandong 118003, Liaoning, People's Republic of China.
| | - Lijuan Lin
- Institute of Molecular Medicine, School of Medicine, Eastern Liaoning University, Dandong 118003, Liaoning, People's Republic of China; Department of Nursing, School of Medicine, Eastern Liaoning University, Dandong 118003, Liaoning, People's Republic of China.
| |
Collapse
|
22
|
Zengin T, Önal-Süzek T. Comprehensive Profiling of Genomic and Transcriptomic Differences between Risk Groups of Lung Adenocarcinoma and Lung Squamous Cell Carcinoma. J Pers Med 2021; 11:154. [PMID: 33672117 PMCID: PMC7926392 DOI: 10.3390/jpm11020154] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/11/2021] [Accepted: 02/19/2021] [Indexed: 12/17/2022] Open
Abstract
Lung cancer is the second most frequently diagnosed cancer type and responsible for the highest number of cancer deaths worldwide. Lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) are subtypes of non-small-cell lung cancer which has the highest frequency of lung cancer cases. We aimed to analyze genomic and transcriptomic variations including simple nucleotide variations (SNVs), copy number variations (CNVs) and differential expressed genes (DEGs) in order to find key genes and pathways for diagnostic and prognostic prediction for lung adenocarcinoma and lung squamous cell carcinoma. We performed a univariate Cox model and then lasso-regularized Cox model with leave-one-out cross-validation using The Cancer Genome Atlas (TCGA) gene expression data in tumor samples. We generated 35- and 33-gene signatures for prognostic risk prediction based on the overall survival time of the patients with LUAD and LUSC, respectively. When we clustered patients into high- and low-risk groups, the survival analysis showed highly significant results with high prediction power for both training and test datasets. Then, we characterized the differences including significant SNVs, CNVs, DEGs, active subnetworks, and the pathways. We described the results for the risk groups and cancer subtypes separately to identify specific genomic alterations between both high-risk groups and cancer subtypes. Both LUAD and LUSC high-risk groups have more downregulated immune pathways and upregulated metabolic pathways. On the other hand, low-risk groups have both up- and downregulated genes on cancer-related pathways. Both LUAD and LUSC have important gene alterations such as CDKN2A and CDKN2B deletions with different frequencies. SOX2 amplification occurs in LUSC and PSMD4 amplification in LUAD. EGFR and KRAS mutations are mutually exclusive in LUAD samples. EGFR, MGA, SMARCA4, ATM, RBM10, and KDM5C genes are mutated only in LUAD but not in LUSC. CDKN2A, PTEN, and HRAS genes are mutated only in LUSC samples. The low-risk groups of both LUAD and LUSC tend to have a higher number of SNVs, CNVs, and DEGs. The signature genes and altered genes have the potential to be used as diagnostic and prognostic biomarkers for personalized oncology.
Collapse
Affiliation(s)
- Talip Zengin
- Department of Molecular Biology and Genetics, Muğla Sıtkı Koçman University, 48000 Muğla, Turkey;
- Department of Bioinformatics, Muğla Sıtkı Koçman University, 48000 Muğla, Turkey
| | - Tuğba Önal-Süzek
- Department of Bioinformatics, Muğla Sıtkı Koçman University, 48000 Muğla, Turkey
- Department of Computer Engineering, Muğla Sıtkı Koçman University, 48000 Muğla, Turkey
| |
Collapse
|
23
|
Gomez Hernandez MP, Starman EE, Davis AB, Harishchandra Hikkaduwa Withanage M, Zeng E, Lieberman SM, Brogden KA, Lanzel EA. A distinguishing profile of chemokines, cytokines, and biomarkers in the saliva of children with Sjögren's syndrome. Rheumatology (Oxford) 2021; 60:4765-4777. [PMID: 33512494 PMCID: PMC8487313 DOI: 10.1093/rheumatology/keab098] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/17/2021] [Indexed: 01/08/2023] Open
Abstract
Objective SS is an autoimmune disease most commonly diagnosed in adults but can occur in children. Our objective was to assess the presence of chemokines, cytokines and biomarkers (CCBMs) in saliva from these children that were associated with lymphocyte and mononuclear cell functions. Methods Saliva was collected from 11 children diagnosed with SS prior to age 18 years and 16 normal healthy children. A total of 105 CCBMs were detected in multiplex microparticle-based immunoassays. ANOVA and t test (0.05 level) were used to detect differences. Ingenuity Pathway Analysis (IPA) was used to assess whether elevated CCBMs were in annotations associated with immune system diseases and select leukocyte activities and functions. Machine learning methods were used to evaluate the predictive power of these CCBMs for SS and were measured by receiver operating characteristic (ROC) curve and area under curve (AUC). Results Of the 105 CCBMs detected, 43 (40.9%) differed in children with SS from those in healthy study controls (P < 0.05) and could differentiate the two groups (P < 0.05). Elevated CCBMs in IPA annotations were associated with autoimmune diseases and with leukocyte chemotaxis, migration, proliferation, and regulation of T cell activation. The best AUC value in ROC analysis was 0.93, indicating that there are small numbers of CCBMs that may be useful for diagnosis of SS. Conclusion While 35 of these 43 CCBMs have been previously reported in SS, 8 CCBMs had not. Additional studies focusing on these CCBMs may provide further insight into disease pathogenesis and may contribute to diagnosis of SS in children.
Collapse
Affiliation(s)
| | - Emily E Starman
- Iowa Institute for Oral Health Research, College of Dentistry, University of Iowa, Iowa City, IA USA
| | - Andrew B Davis
- Department of Otolaryngology, College of Medicine, University of Iowa, Iowa City, IA USA
| | | | - Erliang Zeng
- Division of Biostatistics and Computational Biology, College of Dentistry, University of Iowa, Iowa City, IA USA
| | - Scott M Lieberman
- Stead Family Department of Pediatrics-Division of Rheumatology, Allergy and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA USA
| | - Kim A Brogden
- Iowa Institute for Oral Health Research, College of Dentistry, University of Iowa, Iowa City, IA USA
| | - Emily A Lanzel
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA USA
| |
Collapse
|