1
|
Chen M, Wu Y, Wang Y, Li Z. Functional connectivity and white matter microstructural alterations in patients with left basal ganglia acute ischemic stroke. Brain Imaging Behav 2025; 19:421-432. [PMID: 39964657 DOI: 10.1007/s11682-025-00982-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2025] [Indexed: 04/09/2025]
Abstract
Lesions in the basal ganglia present different neuroimaging manifestations compared to other regions. The functional connectivity and white matter (WM) microstructural alterations in patients with left basal ganglia acute ischemic stroke (AIS) remain unknown. This study aimed to explore the alterations of functional connectivity and WM microstructure, as well as their relationship with cognitive performance in patients with left basal ganglia AIS. We acquired resting-state functional MRI (rs-fMRI) and diffusion kurtosis imaging (DKI) data from 41 individuals with left basal ganglia AIS and 41 healthy controls (HC). The degree centrality (DC) method was applied to calculate the functional connectivity and Tract-Based Spatial Statistics was employed to evaluate the voxel-based group differences of diffusion metrics for the values of fractional anisotropy (FA), mean diffusivity, axial diffusivity (AD), radial diffusivity, mean kurtosis (MK), axial kurtosis, and radial kurtosis (RK). AIS showed attenuated DC in the bilateral precuneus and enhanced DC in the left caudate nucleus, compared with HC. In AIS, DC in the left caudate nucleus correlated positively with the Montreal Cognitive Assessment (MoCA) score (r = 0.681, p < 0.05). AIS had significantly decreased FA, AD, MK, and RK in WM tracts, including the internal capsule (IC), genu of corpus callosum (CC), body of CC, left superior longitudinal fasciculus (SLF), left cerebral peduncle, left corticospinal tract, anterior corona radiata (ACR), and left cingulum gyrus (CG). The MK in a cluster including the body of CC, right IC, left cingulate, SLF, ACR, and left CG was also significantly negatively correlated with MoCA scores (r = -0.508, p < 0.05). This study revealed that left basal ganglia AIS not only disrupted the functional connectivity of the whole brain but also had a pervasive impact on the WM microstructure of the whole brain. These findings provide novel insights into the underlying neural mechanisms of early cognitive decline in patients after AIS.
Collapse
Affiliation(s)
- Meizhong Chen
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Yufan Wu
- Department of Imaging, The First Affiliated Hospital of Fujian Medical University, NO.20, Chazhong Road, Fuzhou City, Fujian Province, 350000, China
| | - Yuntao Wang
- Department of Radiology, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Zhongming Li
- Department of Imaging, The First Affiliated Hospital of Fujian Medical University, NO.20, Chazhong Road, Fuzhou City, Fujian Province, 350000, China.
| |
Collapse
|
2
|
Chen M, Wang Y, Li Z. Disrupted white matter structural networks in patients with acute ischemic stroke in the right basal ganglia. Neuroscience 2025; 568:68-75. [PMID: 39341271 DOI: 10.1016/j.neuroscience.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/27/2024] [Accepted: 08/03/2024] [Indexed: 09/30/2024]
Abstract
Widespread structural changes have been observed in patients with stroke in previous diffusion tensor imaging studies. However, the topological organization of white matter structural networks after acute ischemic stroke (AIS) in the right basal ganglia (BG) remains unknown. The aim of our study is to investigate whether the topological structure of the white matter structural network is altered in patients with AIS in the right BG, and its relationship with cognition. Graph theoretical analysis was employed to investigate the topological architecture of whole-brain white matter structural networks in 40 AIS patients in the right BG and 40 healthy controls (HC), and network-based statistics (NBS) were applied to examine structural connectivity alterations. Compared to HC, AIS patients exhibited altered global network properties characterized by increased small-worldness, normalized clustering coefficient, and shortest path length, as well as decreased clustering coefficient, local efficiency, and global efficiency. The nodes with significantly decreased nodal properties in AIS patients were primarily located in the default mode network, limbic system, sensorimotor system, salience network, and central executive network. Reduced structural connectivity detected by NBS in AIS patients were primarily located in the lesional hemisphere. Furthermore, altered nodal properties were correlated with cognitive scores. Documenting the alterations in the topological patterns of white matter structural networks will help to promote the understanding of the neural mechanisms of cognitive impairment after AIS in the right BG.
Collapse
Affiliation(s)
- Meizhong Chen
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuntao Wang
- Department of Radiology, Fujian Cancer Hospital, Fuzhou, China
| | - Zhongming Li
- Department of Imaging, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
| |
Collapse
|
3
|
Liu X, Qian Z, Li Y, Wang Y, Zhang Y, Zhang Y, Enoch IVMV. Unveiling synergies: Integrating TCM herbal medicine and acupuncture with conventional approaches in stroke management. Neuroscience 2025; 567:109-122. [PMID: 39730019 DOI: 10.1016/j.neuroscience.2024.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/09/2024] [Accepted: 12/21/2024] [Indexed: 12/29/2024]
Abstract
This review explores the mechanisms and treatment strategies of ischemic stroke, a leading cause of morbidity and mortality worldwide. Ischemic stroke results from the obstruction of blood flow to the brain, leading to significant neurological impairment. The paper categorizes ischemic stroke into subtypes based on etiology, including cardioembolism and large artery atherosclerosis, and discusses the challenges of current therapeutic approaches. Conventional treatments like tissue plasminogen activator (tPA) and surgical interventions are limited by narrow windows and potential complications. The review highlights the promise of acupuncture, which offers neuroprotective benefits by promoting cerebral ischemic tolerance and neural regeneration. Integrating acupuncture with conventional treatments may enhance patient outcomes. Emphasis is placed on understanding the pathophysiology to develop targeted therapies that mitigate neuronal damage and enhance recovery.
Collapse
Affiliation(s)
- Xiliang Liu
- Department of Rehabilitation Medicine, Dezhou Traditional Chinese Medicine Hospital, Dezhou 253000, China
| | - Zhendong Qian
- Department of Rehabilitation Medicine, Dezhou Traditional Chinese Medicine Hospital, Dezhou 253000, China
| | - Yuxuan Li
- Department of Rehabilitation Medicine, Dezhou Traditional Chinese Medicine Hospital, Dezhou 253000, China
| | - Yanwei Wang
- Department of Rehabilitation Medicine, Dezhou Traditional Chinese Medicine Hospital, Dezhou 253000, China
| | - Yan Zhang
- Department of Rehabilitation Medicine, Dezhou Traditional Chinese Medicine Hospital, Dezhou 253000, China
| | - Yu Zhang
- Department of Rehabilitation Medicine, Dezhou Traditional Chinese Medicine Hospital, Dezhou 253000, China.
| | - Israel V M V Enoch
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India
| |
Collapse
|
4
|
Niu B, Wu H, Li Y, Klugah-Brown B, Hanna G, Yao Y, Jing J, Baig TI, Xia Y, Yao D, Biswal B. Topological functional network analysis of cortical blood flow in hyperacute ischemic rats. Brain Struct Funct 2024; 230:20. [PMID: 39724244 PMCID: PMC11671571 DOI: 10.1007/s00429-024-02864-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024]
Abstract
Acute cerebral ischemia alters brain network connectivity, leading to notable increases in both anatomical and functional connectivity while observing a reduction in metabolic connectivity. However, alterations of the cerebral blood flow (CBF) based functional connectivity remain unclear. We collected continuous CBF images using laser speckle contrast imaging (LSCI) technology to monitor ischemic occlusion-reperfusion progression through occlusion of the left carotid artery. We also used a dense cortical grid atlas to construct CBF-based functional connectivity networks for hyperacute ischemic rodents. Graph theoretical analysis was used to measure network topological characteristics and construct topological connection graphs. Coactivation pattern (CAP) analysis was utilized to examine the spatiotemporal characteristics of the global network. Additionally, we measured evoked functional hyperemia and correlated it with network topologies. Network analysis indicated a significant increase in functional connectivity, global efficiency, local efficiency, small-worldness, clustering coefficient, and regional degree centrality primarily within the left ischemic intra-hemisphere, accompanied by weaker changes in the right intra-hemisphere. Inter-hemisphere networks exhibited reduced homologous connections, global efficiency, and small-worldness. CAP analysis revealed increased strength of the left negative activation brain network's state fraction of time and transition probability from equilibrium-to-imbalance states. Left network metrics declined following blood flow reperfusion. Furthermore, positive/negative correlations between barrel-evoked intensity and regional network topologies were reversed as negative/positive correlations after cerebral ischemia. These findings suggest a damaged CBF functional network mechanism following acute cerebral ischemia and a disrupted association between resting state and evoked hyperemia.
Collapse
Affiliation(s)
- Bochao Niu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Hongzhou Wu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yilu Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Benjamin Klugah-Brown
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - George Hanna
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Youwang Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Junlin Jing
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Talha Imtiaz Baig
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yang Xia
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Bharat Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China.
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| |
Collapse
|
5
|
Ke C, Shi W, Zhou Z, Xie Z, Sun M, Yu J, Shan S, Zhang W. Overview of evidence-based research on acupuncture for stroke treatment using magnetic resonance imaging technology. Front Neurosci 2024; 18:1495435. [PMID: 39654647 PMCID: PMC11625797 DOI: 10.3389/fnins.2024.1495435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/28/2024] [Indexed: 12/12/2024] Open
Abstract
Background Stroke is a neurological condition characterized by high rates of disability and mortality. Magnetic resonance imaging (MRI) is widely used to examine the mechanisms of acupuncture in stroke treatment. Purpose This review provides neuroimaging evidence for the efficacy of acupuncture in treating stroke using MRI. Method We conducted a comprehensive search of databases, including PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure (CNKI), Wan Fang Data, Chinese BioMedical Literature Database (CBM), and Chonqing VIP (CQVIP), from inception to April 2024. Relevant neuroimaging studies on acupuncture for stroke were included, and the research findings were presented through charts and textual analyses. Results A total of 158 studies were included, and the overall methodological quality of the included studies was moderate to high. The results were divided into three categories: basic characteristics, clinical characteristics, and quality assessment of the included literature. Conclusion We elucidated the neural mechanisms underlying the effects of acupuncture on stroke; however, the evidence remains preliminary. There is a need for large-scale, well-designed, multimodal neuroimaging trials. This review represents the first active use of an evidence map to systematically review and illustrate the current state of neuroimaging research on the acupuncture treatment of stroke, thereby providing a valuable reference for future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wei Zhang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
6
|
Tang Z, Zhao Y, Sun X, Liu Y, Su W, Liu T, Zhang X, Zhang H. Evidence that robot-assisted gait training modulates neuroplasticity after stroke: An fMRI pilot study based on graph theory analysis. Brain Res 2024; 1842:149113. [PMID: 38972627 DOI: 10.1016/j.brainres.2024.149113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/10/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
OBJECTIVES To investigate alterations of whole-brain network after stroke and therapeutic mechanisms of robot-assisted gait training (RAGT). METHODS 21 stroke patients and 20 healthy subjects were enrolled, with the stroke patients randomized to either control group (n = 11) or robot group (n = 10), and resting-state functional magnetic resonance imaging data were collected. The global network metrics were obtained using graph theory analysis and compared between stroke patients and healthy subjects, and the effect of the RAGT on the whole-brain networks was explored. RESULTS Compared to healthy subjects, area under the curve (AUC) for small-worldness (σ), clustering coefficient (Cp), global efficiency (Eg) and mean local efficiency (Eloc) were significantly lower in stroke patients, whereas AUC for characteristic path length (Lp) were significantly higher. Compared with the control group, patients in robot group showed significant improvement in lower limb motor function, balance function and walking function after intervention, with a significant reduction in the AUC of Cp. Moreover, the improvement of walking function was positively correlated with the changes of AUC of σ and Eg, and negatively correlated with the changes of AUC of Cp. CONCLUSIONS Small-worldness and network efficiency were significantly reduced after stroke, whereas RAGT decreased characteristic path length and promoted normalization of the whole-brain network, and this change was associated with improvement in walking function. Our findings reveal the mechanism by which RAGT regulates network reorganization and neuroplasticity after stroke.
Collapse
Affiliation(s)
- Zhiqing Tang
- School of Rehabilitation, Capital Medical University, Beijing, China; Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Yaxian Zhao
- Department of Cardiac Surgery, Peking University International Hospital, Beijing, China
| | - Xinting Sun
- School of Rehabilitation, Capital Medical University, Beijing, China; Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Ying Liu
- School of Rehabilitation, Capital Medical University, Beijing, China; Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Wenlong Su
- School of Rehabilitation, Capital Medical University, Beijing, China; Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China; University of Health and Rehabilitation Sciences, Shandong Province, China
| | - Tianhao Liu
- School of Rehabilitation, Capital Medical University, Beijing, China; Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Xiaonian Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China; Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Hao Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China; Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China; Cheeloo College of Medicine, Shandong University, Shandong Province, China; University of Health and Rehabilitation Sciences, Shandong Province, China.
| |
Collapse
|
7
|
Li S, Xing X, Hua X, Zhang Y, Wu J, Shan C, Wang H, Zheng M, Xu J. Electroacupuncture modulates abnormal brain connectivity after ischemia reperfusion injury in rats: A graph theory-based approach. Brain Behav 2024; 14:e3504. [PMID: 38698583 PMCID: PMC11066419 DOI: 10.1002/brb3.3504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 03/29/2024] [Accepted: 04/06/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Electroacupuncture (EA) has been shown to facilitate brain plasticity-related functional recovery following ischemic stroke. The functional magnetic resonance imaging technique can be used to determine the range and mode of brain activation. After stroke, EA has been shown to alter brain connectivity, whereas EA's effect on brain network topology properties remains unclear. An evaluation of EA's effects on global and nodal topological properties in rats with ischemia reperfusion was conducted in this study. METHODS AND RESULTS There were three groups of adult male Sprague-Dawley rats: sham-operated group (sham group), middle cerebral artery occlusion/reperfusion (MCAO/R) group, and MCAO/R plus EA (MCAO/R + EA) group. The differences in global and nodal topological properties, including shortest path length, global efficiency, local efficiency, small-worldness index, betweenness centrality (BC), and degree centrality (DC) were estimated. Graphical network analyses revealed that, as compared with the sham group, the MCAO/R group demonstrated a decrease in BC value in the right ventral hippocampus and increased BC in the right substantia nigra, accompanied by increased DC in the left nucleus accumbens shell (AcbSh). The BC was increased in the right hippocampus ventral and decreased in the right substantia nigra after EA intervention, and MCAO/R + EA resulted in a decreased DC in left AcbSh compared to MCAO/R. CONCLUSION The results of this study provide a potential basis for EA to promote cognitive and motor function recovery after ischemic stroke.
Collapse
Affiliation(s)
- Si‐Si Li
- School of Rehabilitation ScienceShanghai University of Traditional Chinese MedicineShanghaiChina
- Department of Physical Medicine and RehabilitationThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xiang‐Xin Xing
- Center of Rehabilitation MedicineYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xu‐Yun Hua
- Department of Traumatology and OrthopedicsYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yu‐Wen Zhang
- Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghaiChina
| | - Jia‐Jia Wu
- Center of Rehabilitation MedicineYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Chun‐Lei Shan
- School of Rehabilitation ScienceShanghai University of Traditional Chinese MedicineShanghaiChina
- Center of Rehabilitation MedicineYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of EducationShanghaiChina
| | - He Wang
- Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghaiChina
| | - Mou‐Xiong Zheng
- Department of Traumatology and OrthopedicsYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jian‐Guang Xu
- School of Rehabilitation ScienceShanghai University of Traditional Chinese MedicineShanghaiChina
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of EducationShanghaiChina
| |
Collapse
|
8
|
Li M, Zou F, Zheng T, Zou W, Li H, Lin Y, Peng L, Zheng S. Electroacupuncture alters brain network functional connectivity in subacute stroke: A randomised crossover trial. Medicine (Baltimore) 2024; 103:e37686. [PMID: 38579054 PMCID: PMC10994512 DOI: 10.1097/md.0000000000037686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/01/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Electroacupuncture (EA) is a promising rehabilitation treatment for upper-limb motor recovery in stroke patients. However, the neurophysiological mechanisms underlying its clinical efficacy remain unclear. This study aimed to explore the immediate modulatory effects of EA on brain network functional connectivity and topological properties. METHODS The randomized, single-blinded, self-controlled two-period crossover trial was conducted among 52 patients with subacute subcortical stroke. These patients were randomly allocated to receive either EA as the initial intervention or sham electroacupuncture (SEA) as the initial intervention. After a washout period of 24 hours, participants underwent the alternate intervention (SEA or EA). Resting state electroencephalography signals were recorded synchronously throughout both phases of the intervention. The functional connectivity (FC) of the parietofrontal network and small-world (SW) property indices of the whole-brain network were compared across the entire course of the two interventions. RESULTS The results demonstrated that EA significantly altered ipsilesional parietofrontal network connectivity in the alpha and beta bands (alpha: F = 5.05, P = .011; beta: F = 3.295, P = .047), whereas no significant changes were observed in the SEA group. When comparing between groups, EA significantly downregulated ipsilesional parietofrontal network connectivity in both the alpha and beta bands during stimulation (alpha: t = -1.998, P = .049; beta: t = -2.342, P = .022). Significant differences were also observed in the main effects of time and the group × time interaction for the SW index (time: F = 5.516, P = .026; group × time: F = 6.892, P = .01). In terms of between-group comparisons, the EA group exhibited a significantly higher SW index than the SEA group at the post-stimulation stage (t = 2.379, P = .018). CONCLUSION These findings suggest that EA downregulates ipsilesional parietofrontal network connectivity and enhances SW properties, providing a potential neurophysiological mechanism for facilitating motor performance in stroke patients.
Collapse
Affiliation(s)
- Mingfen Li
- Taihe Hospital, Hubei University of Medicine, Shiyan, China
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Fei Zou
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Tingting Zheng
- Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Weigeng Zou
- Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Haifeng Li
- Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yifang Lin
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Peng
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Su Zheng
- Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
9
|
Ding Q, Ou Z, Yao S, Wu C, Chen J, Shen J, Lan Y, Xu G. Cortical activation and brain network efficiency during dual tasks: An fNIRS study. Neuroimage 2024; 289:120545. [PMID: 38367652 DOI: 10.1016/j.neuroimage.2024.120545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 02/19/2024] Open
Abstract
OBJECTIVE Dual task (DT) is a commonly used paradigm indicative of executive functions. Brain activities during DT walking is usually measured by portable functional near infrared spectroscopy (fNIRS). Previous studies focused on cortical activation in prefrontal cortex and overlooked other brain regions such as sensorimotor cortices. This study is aimed at investigating the modulations of cortical activation and brain network efficiency in multiple brain regions from single to dual tasks with different complexities and their relationships with DT performance. METHODS Forty-two healthy adults [12 males; mean age: 27.7 (SD=6.5) years] participated in this study. Participants performed behavioral tasks with portable fNIRS simultaneous recording. There were three parts of behavioral tasks: cognitive tasks while standing (serial subtraction of 3's and 7's), walking alone and DT (walk while subtraction, including serial subtraction of 3's and 7's). Cognitive cost, walking cost and cost sum (i.e., sum of cognitive and walking costs) were calculated for DT. Cortical activation, local and global network efficiency were calculated for each task. RESULTS The cognitive cost was greater and the walking cost was less during DT with subtraction 3's compared with 7's (P's = 0.032 and 0.019, respectively). Cortical activation and network efficiency were differentially modulated among single and dual tasks (P's < 0.05). Prefrontal activation during DT was positively correlated with DT costs, while network efficiency was negatively correlated with DT costs (P's < 0.05). CONCLUSIONS Our results revealed prefrontal over-activation and reduced network efficiency in individuals with poor DT performance. Our findings suggest that reduced network efficiency could be a possible mechanism contributing to poor DT performance, which is accompanied by compensatory prefrontal over-activation.
Collapse
Affiliation(s)
- Qian Ding
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zitong Ou
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Department of Rehabilitation Medicine, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shantong Yao
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Cheng Wu
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Department of Rehabilitation Medicine, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jing Chen
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Junhui Shen
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yue Lan
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
| | - Guangqing Xu
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| |
Collapse
|
10
|
Yi L, Xie G, Li Z, Li X, Zhang Y, Wu K, Shao G, Lv B, Jing H, Zhang C, Liang W, Sun J, Hao Z, Liang J. Automatic depression diagnosis through hybrid EEG and near-infrared spectroscopy features using support vector machine. Front Neurosci 2023; 17:1205931. [PMID: 37694121 PMCID: PMC10483285 DOI: 10.3389/fnins.2023.1205931] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Depression is a common mental disorder that seriously affects patients' social function and daily life. Its accurate diagnosis remains a big challenge in depression treatment. In this study, we used electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) and measured the whole brain EEG signals and forehead hemodynamic signals from 25 depression patients and 30 healthy subjects during the resting state. On one hand, we explored the EEG brain functional network properties, and found that the clustering coefficient and local efficiency of the delta and theta bands in patients were significantly higher than those in normal subjects. On the other hand, we extracted brain network properties, asymmetry, and brain oxygen entropy as alternative features, used a data-driven automated method to select features, and established a support vector machine model for automatic depression classification. The results showed the classification accuracy was 81.8% when using EEG features alone and increased to 92.7% when using hybrid EEG and fNIRS features. The brain network local efficiency in the delta band, hemispheric asymmetry in the theta band and brain oxygen sample entropy features differed significantly between the two groups (p < 0.05) and showed high depression distinguishing ability indicating that they may be effective biological markers for identifying depression. EEG, fNIRS and machine learning constitute an effective method for classifying depression at the individual level.
Collapse
Affiliation(s)
- Li Yi
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, China
| | - Guojun Xie
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, China
- Department of Psychiatry, The Third Affiliated Hospital of Foshan University, Foshan, China
| | - Zhihao Li
- School of Medicine, Foshan University, Foshan, China
| | - Xiaoling Li
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, China
- Department of Psychiatry, The Third Affiliated Hospital of Foshan University, Foshan, China
| | - Yizheng Zhang
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, China
| | - Kai Wu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Guangjian Shao
- School of Mechatronic Engineering and Automation, Foshan University, Foshan, China
| | - Biliang Lv
- School of Medicine, Foshan University, Foshan, China
| | - Huan Jing
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, China
- Department of Psychiatry, The Third Affiliated Hospital of Foshan University, Foshan, China
| | - Chunguo Zhang
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, China
- Department of Psychiatry, The Third Affiliated Hospital of Foshan University, Foshan, China
| | - Wenting Liang
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, China
- Department of Psychiatry, The Third Affiliated Hospital of Foshan University, Foshan, China
| | - Jinyan Sun
- School of Medicine, Foshan University, Foshan, China
| | - Zhifeng Hao
- College of Science, Shantou University, Shantou, China
| | - Jiaquan Liang
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, China
- Department of Psychiatry, The Third Affiliated Hospital of Foshan University, Foshan, China
| |
Collapse
|
11
|
Shi S, Qie S, Wang H, Wang J, Liu T. Recombination of the right cerebral cortex in patients with left side USN after stroke: fNIRS evidence from resting state. Front Neurol 2023; 14:1178087. [PMID: 37545727 PMCID: PMC10400010 DOI: 10.3389/fneur.2023.1178087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/29/2023] [Indexed: 08/08/2023] Open
Abstract
Objective Unilateral spatial neglect (USN) is an impaired contralesional stimulus detection, response, or action, causing functional disability. After a stroke, the right hemisphere experiences USN more noticeably, severely, and persistently than the left. However, few studies using fNIRS have been reported in cases of USN. This study aimed to confirm weaker RSFC in USN and investigate the potential inherent features in hemodynamic fluctuations that may be associated with USN. Furthermore, these features were combined into a mathematical model for more accurate classification. Methods A total of 33 stroke patients with right-sided brain damage were chosen, of whom 12 had non-USN after stroke, and 21 had USN after stroke (the USN group). Graph theory was used to evaluate the hemodynamic signals of the brain's right cerebral cortex during rest. Furthermore, a support vector machine model was built to categorize the subjects into two groups based on the chosen network properties. Results First, mean functional connectivity was lower in the USN group (0.745 ± 0.239) than in the non-USN group (0.843 ± 0.254) (t = -4.300, p < 0.001). Second, compared with the non-USN group, USN patients had a larger clustering coefficient (C) (t = 3.145, p < 0.001), local efficiency (LE) (t = 3.189, p < 0.001), and smaller global efficiency (GE) (t = 3.047, p < 0.001). Notably, there were differences in characteristic path length (L) and small worldness (σ) values between the two groups at certain thresholds, mainly as higher L (t = 3.074, p < 0.001) and lower small worldness (σ) values (t = 2.998, p < 0.001) in USN patients compared with non-USN patients. Finally, the classification accuracy of the SVM model based on AUC aC (t = -2.259, p = 0.031) and AUC aLE (t = -2.063, p = 0.048) was 85%, the sensitivity was 75%, and the specificity was 89%. Conclusion The functional network architecture of the right cerebral cortex exhibits significant topological alterations in individuals with USN following stroke, and the sensitivity index based on the small-world property AUC may be utilized to identify these patients accurately.
Collapse
Affiliation(s)
- Shanshan Shi
- Rehabilitation Clinic, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Shuyan Qie
- Rehabilitation Clinic, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Hujun Wang
- Rehabilitation Clinic, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Jie Wang
- Rehabilitation Clinic, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Tiejun Liu
- Department of General Surgery, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Lu M, Du Z, Zhao J, Jiang L, Liu R, Zhang M, Xu T, Wei J, Wang W, Xu L, Guo H, Chen C, Yu X, Tan Z, Fang J, Zou Y. Neuroimaging mechanisms of acupuncture on functional reorganization for post-stroke motor improvement: a machine learning-based functional magnetic resonance imaging study. Front Neurosci 2023; 17:1143239. [PMID: 37274194 PMCID: PMC10235506 DOI: 10.3389/fnins.2023.1143239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/03/2023] [Indexed: 06/06/2023] Open
Abstract
Objective Motor recovery is crucial in stroke rehabilitation, and acupuncture can influence recovery. Neuroimaging and machine learning approaches provide new research directions to explore the brain functional reorganization and acupuncture mechanisms after stroke. We applied machine learning to predict the classification of the minimal clinically important differences (MCID) for motor improvement and identify the neuroimaging features, in order to explore brain functional reorganization and acupuncture mechanisms for motor recovery after stroke. Methods In this study, 49 patients with unilateral motor pathway injury (basal ganglia and/or corona radiata) after ischemic stroke were included and evaluated the motor function by Fugl-Meyer Assessment scores (FMA) at baseline and at 2-week follow-up sessions. Patients were divided by the difference between the twice FMA scores into one group showing minimal clinically important difference (MCID group, n = 28) and the other group with no minimal clinically important difference (N-MCID, n = 21). Machine learning was performed by PRoNTo software to predict the classification of the patients and identify the feature brain regions of interest (ROIs). In addition, a matched group of healthy controls (HC, n = 26) was enrolled. Patients and HC underwent magnetic resonance imaging examination in the resting state and in the acupuncture state (acupuncture at the Yanglingquan point on one side) to compare the differences in brain functional connectivity (FC) and acupuncture effects. Results Through machine learning, we obtained a balance accuracy rate of 75.51% and eight feature ROIs. Compared to HC, we found that the stroke patients with lower FC between these feature ROIs with other brain regions, while patients in the MCID group exhibited a wider range of lower FC. When acupuncture was applied to Yanglingquan (GB 34), the abnormal FC of patients was decreased, with different targets of effects in different groups. Conclusion Feature ROIs identified by machine learning can predict the classification of stroke patients with different motor improvements, and the FC between these ROIs with other brain regions is decreased. Acupuncture can modulate the bilateral cerebral hemispheres to restore abnormal FC via different targets, thereby promoting motor recovery after stroke. Clinical trial registration https://www.chictr.org.cn/showproj.html?proj=37359, ChiCTR1900022220.
Collapse
Affiliation(s)
- Mengxin Lu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhongming Du
- Department of Acupuncture, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jiping Zhao
- Department of Acupuncture, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lan Jiang
- Department of Chinese Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Ruoyi Liu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Muzhao Zhang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tianjiao Xu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jingpei Wei
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Wang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lingling Xu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Haijiao Guo
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chen Chen
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xin Yu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhongjian Tan
- Department of Radiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jiliang Fang
- Department of Radiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yihuai Zou
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
13
|
Li R, Wang Y, Li H, Liu J, Liu S. Two similar carbon monoxide poisoning cases with different outcomes: evidence from longitudinal fMRI. Neurocase 2023; 29:58-65. [PMID: 38406979 DOI: 10.1080/13554794.2024.2315858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/18/2024] [Indexed: 02/27/2024]
Abstract
Prognosis after carbon monoxide (CO) poisoning is difficult to assess using structural images. Functional connectivity provided by functional magnetic resonance imaging (fMRI) may explain the mechanism of differential prognosis. We report here two cases of carbon monoxide poisoning with simultaneous coma. They were nearly normal on days 7-8, but diagnosed with delayed neurological sequelae (DNS) with cognitive and motor impairments on days 22-29. Similar Methylprednisolone pulse therapy and hyperbaric oxygen therapy were given to them. The movement disorder of case 1 improved slightly during the recovery stage, while the movement disorder of case 2 worsened significantly. In case 1, the function of supplementary motor area decreased first and then increased, and the function of pallidum increased first and then decreased. Case 2 showed a reduction in the supplementary motor area and small changes in the pallidum after DNS, but both were reduced during recovery stage. The cognitive ability of case 1 remained poor, while that of case 2 improved during the recovery stage. FMRI showed damage to the right and bilateral hippocampus in case 1 and partial damage to the left hippocampus in case 2. Taken together, fMRI can be a useful method to study functional connectivity abnormalities corresponding to different prognoses.
Collapse
Affiliation(s)
- Ran Li
- Department of Rehabilitation Center, Fuxing Hospital, Capital Medical University, Beijing, China
| | - Yong Wang
- Department of Rehabilitation Center, Fuxing Hospital, Capital Medical University, Beijing, China
| | - Haidong Li
- Department of Rehabilitation Center, Fuxing Hospital, Capital Medical University, Beijing, China
| | - Jie Liu
- Department of Rehabilitation Center, Fuxing Hospital, Capital Medical University, Beijing, China
| | - Sujuan Liu
- Department of Rehabilitation Center, Fuxing Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Lin S, Wang D, Sang H, Xiao H, Yan K, Wang D, Zhang Y, Yi L, Shao G, Shao Z, Yang A, Zhang L, Sun J. Predicting poststroke dyskinesia with resting-state functional connectivity in the motor network. NEUROPHOTONICS 2023; 10:025001. [PMID: 37025568 PMCID: PMC10072005 DOI: 10.1117/1.nph.10.2.025001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
SIGNIFICANCE Motor function evaluation is essential for poststroke dyskinesia rehabilitation. Neuroimaging techniques combined with machine learning help decode a patient's functional status. However, more research is needed to investigate how individual brain function information predicts the dyskinesia degree of stroke patients. AIM We investigated stroke patients' motor network reorganization and proposed a machine learning-based method to predict the patients' motor dysfunction. APPROACH Near-infrared spectroscopy (NIRS) was used to measure hemodynamic signals of the motor cortex in the resting state (RS) from 11 healthy subjects and 31 stroke patients, 15 with mild dyskinesia (Mild), and 16 with moderate-to-severe dyskinesia (MtS). The graph theory was used to analyze the motor network characteristics. RESULTS The small-world properties of the motor network were significantly different between groups: (1) clustering coefficient, local efficiency, and transitivity: MtS > Mild > Healthy and (2) global efficiency: MtS < Mild < Healthy. These four properties linearly correlated with patients' Fugl-Meyer Assessment scores. Using the small-world properties as features, we constructed support vector machine (SVM) models that classified the three groups of subjects with an accuracy of 85.7%. CONCLUSIONS Our results show that NIRS, RS functional connectivity, and SVM together constitute an effective method for assessing the poststroke dyskinesia degree at the individual level.
Collapse
Affiliation(s)
- Shuoshu Lin
- Foshan University, School of Mechatronic Engineering and Automation, Foshan, China
| | - Dan Wang
- Beijing Rehabilitation Hospital of Capital Medical University, Department of Traditional Chinese Medicine, Beijing, China
| | - Haojun Sang
- Chinese Institute for Brain Research, Beijing, China
| | - Hongjun Xiao
- Foshan University, School of Mechatronic Engineering and Automation, Foshan, China
| | - Kecheng Yan
- Foshan University, School of Mechatronic Engineering and Automation, Foshan, China
| | - Dongyang Wang
- Foshan University, School of Mechatronic Engineering and Automation, Foshan, China
| | - Yizheng Zhang
- Foshan University, School of Mechatronic Engineering and Automation, Foshan, China
| | - Li Yi
- Foshan University, School of Mechatronic Engineering and Automation, Foshan, China
| | - Guangjian Shao
- Foshan University, School of Mechatronic Engineering and Automation, Foshan, China
| | - Zhiyong Shao
- Foshan University, School of Mechatronic Engineering and Automation, Foshan, China
| | - Aoran Yang
- Beijing Rehabilitation Hospital of Capital Medical University, Department of Traditional Chinese Medicine, Beijing, China
| | - Lei Zhang
- Chinese Institute for Brain Research, Beijing, China
- Capital Medical University, School of Biomedical Engineering, Beijing, China
| | - Jinyan Sun
- Foshan University, School of Medicine, Foshan, China
| |
Collapse
|
15
|
Zhao TT, Pei LX, Guo J, Liu YK, Wang YH, Song YF, Zhou JL, Chen H, Chen L, Sun JH. Acupuncture-Neuroimaging Research Trends over Past Two Decades: A Bibliometric Analysis. Chin J Integr Med 2023; 29:258-267. [PMID: 35508861 DOI: 10.1007/s11655-022-3672-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2021] [Indexed: 01/20/2023]
Abstract
OBJECTIVE To identify topics attracting growing research attention as well as frontier trends of acupuncture-neuroimaging research over the past two decades. METHODS This paper reviewed data in the published literature on acupuncture neuroimaging from 2000 to 2020, which was retrieved from the Web of Science database. CiteSpace was used to analyze the publication years, countries, institutions, authors, keywords, co-citation of authors, journals, and references. RESULTS A total of 981 publications were included in the final review. The number of publications has increased in the recent 20 years accompanied by some fluctuations. Notably, the most productive country was China, while Harvard University ranked first among institutions in this field. The most productive author was Tian J with the highest number of articles (50), whereas the most co-cited author was Hui KKS (325). Evidence-Based Complementary and Alternative Medicine (92) was the most prolific journal, while Neuroimage was the most co-cited journal (538). An article written by Hui KKS (2005) exhibited the highest co-citation number (112). The keywords "acupuncture" (475) and "electroacupuncture" (0.10) had the highest frequency and centrality, respectively. Functional magnetic resonance imaging (fMRI) ranked first with the highest citation burst (6.76). CONCLUSION The most active research topics in the field of acupuncture-neuroimaging over the past two decades included research type, acupoint specificity, neuroimaging methods, brain regions, acupuncture modality, acupoint specificity, diseases and symptoms treated, and research type. Whilst research frontier topics were "nerve regeneration", "functional connectivity", "neural regeneration", "brain network", "fMRI" and "manual acupuncture".
Collapse
Affiliation(s)
- Ting-Ting Zhao
- Department of Acupuncture Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Li-Xia Pei
- Department of Acupuncture Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.,Acupuncture and Moxibustion Disease Project Group of China Evidence-Based Medicine Center of Traditional Chinese Medicine, Nanjing, 210029, China
| | - Jing Guo
- Department of Acupuncture Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yong-Kang Liu
- Department of Radiology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yu-Hang Wang
- Department of Acupuncture Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Ya-Fang Song
- Acupuncture and Massage College, Health and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jun-Ling Zhou
- Department of Acupuncture Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Hao Chen
- Acupuncture and Massage College, Health and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lu Chen
- Acupuncture and Moxibustion Disease Project Group of China Evidence-Based Medicine Center of Traditional Chinese Medicine, Nanjing, 210029, China
| | - Jian-Hua Sun
- Department of Acupuncture Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China. .,Acupuncture and Moxibustion Disease Project Group of China Evidence-Based Medicine Center of Traditional Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
16
|
Xu M, Gao Y, Zhang H, Zhang B, Lyu T, Tan Z, Li C, Li X, Huang X, Kong Q, Xiao J, Kranz GS, Li S, Chang J. Modulations of static and dynamic functional connectivity among brain networks by electroacupuncture in post-stroke aphasia. Front Neurol 2022; 13:956931. [PMID: 36530615 PMCID: PMC9751703 DOI: 10.3389/fneur.2022.956931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/10/2022] [Indexed: 12/05/2022] Open
Abstract
Introduction Post-stroke aphasia (PSA) is a language disorder caused by left hemisphere stroke. Electroacupuncture (EA) is a minimally invasive therapeutic option for PSA treatment. Tongli (HT5) and Xuanzhong (GB39), two important language-associated acupoints, are frequently used in the rehabilitation of patients with PSA. Preliminary evidence indicated functional activation in distributed cortical areas upon HT5 and GB39 stimulation. However, research on the modulation of dynamic and static functional connectivity (FC) in the brain by EA in PSA is lacking. Method This study aimed to investigate the PSA-related effects of EA stimulation at HT5 and GB39 on neural processing. Thirty-five participants were recruited, including 19 patients with PSA and 16 healthy controls (HCs). The BOLD signal was analyzed by static independent component analysis, generalized psychophysiological interactions, and dynamic independent component analysis, considering variables such as age, sex, and years of education. Results The results revealed that PSA showed activated clusters in the left putamen, left postcentral gyrus (PostCG), and left angular gyrus in the salience network (SN) compared to the HC group. The interaction effect on temporal properties of networks showed higher variability of SN (F = 2.23, positive false discovery rate [pFDR] = 0.017). The interaction effect on static FC showed increased functional coupling between the right calcarine and right lingual gyrus (F = 3.16, pFDR = 0.043). For the dynamic FC, at the region level, the interaction effect showed lower variability and higher frequencies of circuit 3, with the strongest connections between the supramarginal gyrus and posterior cingulum (F = 5.42, pFDR = 0.03), middle cingulum and PostCG (F = 5.27, pFDR = 0.036), and triangle inferior frontal and lingual gyrus (F = 5.57, pFDR = 0.026). At the network level, the interaction effect showed higher variability in occipital network-language network (LN) and cerebellar network (CN) coupling, with stronger connections between the LN and CN (F = 4.29, pFDR = 0.042). Dynamic FC values between the triangle inferior frontal and lingual gyri were anticorrelated with transcribing, describing, and dictating scores in the Chinese Rehabilitation Research Center for Chinese Standard Aphasia Examination. Discussion These findings suggest that EA stimulation may improve language function, as it significantly modulated the nodes of regions/networks involved in the LN, SN, CN, occipital cortex, somatosensory regions, and cerebral limbic system.
Collapse
Affiliation(s)
- Minjie Xu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China,Key Laboratory of Chinese Internal Medicine Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Gao
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China,Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China,Ying Gao
| | - Hua Zhang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Binlong Zhang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tianli Lyu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhongjian Tan
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Changming Li
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaolin Li
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xing Huang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qiao Kong
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Juan Xiao
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Georg S. Kranz
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China,The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China,Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Shuren Li
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Jingling Chang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China,Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China,*Correspondence: Jingling Chang
| |
Collapse
|
17
|
Yang X, Shi L, Ran D, Li M, Qin C, An Z. The treatment of post-stroke dysarthria with a combination of different acupuncture types and language rehabilitation training: a systematic review and network meta-analysis. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1281. [PMID: 36618810 PMCID: PMC9816828 DOI: 10.21037/atm-22-5583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Background This study used a network meta-analysis to evaluate the efficacy of various different acupuncture types and language rehabilitation training on post-stroke dysarthria (PSD), and examined the possible mechanisms involved. There are often clinical studies comparing the effects of different acupuncture methods on dysarthria after stroke. The efficacy of these methods can be ranked by network meta-analysis. This is necessary for clinical acupoints selection. The results of this study illustrated the comparison of the therapeutic effects of 6 different acupuncture types, which can provide some reference for clinical acupoints selection and research. Methods A comprehensive search for clinical studies related to the use of acupuncture to treat PSD was conducted in eight English and Chinese databases. Patients were divided into six groups based on the acupoints selected, namely, tongue, neck, scalp, body, combination, and traditional acupuncture. The recovery of neurological function in the patients was assessed based on the curative impact and the National Institutes of Health Stroke Scale (NIHSS) score. The quality of the included studies was evaluated using the Cochrane risk bias assessment tool and the STandards for Reporting Interventions in Clinical Trials of Acupuncture (STRICTA) criteria. A network meta-analysis was performed using the network-meta package of Stata 15.1 software based on frequency. The heterogeneity test, consistency test, head-to-head mixed comparison, efficacy ranking, and publication bias study were all performed. Results A total of 47 studies were finally included. There was a total of 4,197 patients in the eligible studies. The model for network meta-analysis proved robust, with minimal heterogeneity and high consistency. Combined acupuncture combined with language rehabilitation training was the most effective in treating dysarthria symptoms, followed by tongue acupuncture (TA) and nape acupuncture (NA). In addition, the combined effect of acupuncture and language training was superior to that of acupuncture alone. In terms of recovery of nerve function, traditional acupuncture and body acupuncture were more effective. To facilitate the recovery of nerve function, increasing the frequency of acupoints is necessary. Conclusions Combined acupuncture may have the most beneficial healing effect on PSD, followed by acupuncture of the tongue and the nape of the neck. In terms of recovery of nerve function, traditional acupuncture and body acupuncture may have more effective.
Collapse
Affiliation(s)
- Xinming Yang
- Clinical Department of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Lei Shi
- Clinical Department of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Dawei Ran
- Clinical Department of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Menghan Li
- Clinical Department of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Chenyang Qin
- Clinical Department of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zimeng An
- Clinical Department of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
18
|
Jiang H, Zhang Q, Zhao Q, Chen H, Nan X, Liu M, Yin C, Liu W, Fan X, Meng Z, Du Y. Manual Acupuncture or Combination of Rehabilitation Therapy to Treat Poststroke Dysphagia: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:8803507. [PMID: 36285156 PMCID: PMC9588332 DOI: 10.1155/2022/8803507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 09/13/2022] [Accepted: 09/29/2022] [Indexed: 01/24/2023]
Abstract
Backgroundand Objective. Poststroke dysphagia is one of the most common stroke complications with high morbidity and long course, while acupuncture treatment is easily accepted by patients due to its reliability, feasibility, simple operation, low price, and quick effect. Our objective was to evaluate the efficacy of manual acupuncture in poststroke dysphagia patients. Methods. Databases including Medline, Web of Science, PubMed, Cochrane Library databases, EMBASE, CNKI (China National Knowledge Infrastructure), WanFang (WanFang Database), and VIP (Chongqing VIP) were searched from inception until Aug 19, 2022. Data were analyzed using Revman 5.3, Stata 14.0, and TSA 0.9.5.10 Beta software. Evidence quality evaluation was performed by using GRADE profiler 3.6. Results. A total of 33 randomized control trials (RCTs) enrolled 2680 patients. Meta-analysis results revealed that compared to rehabilitation, acupuncture decreased water swallow test (WST) and standard swallowing assessment (SSA) scores. Meanwhile, in contrast to rehabilitation alone, integration of acupuncture with rehabilitation effectively decreased WST and SSA scores; improved swallowing scores of videofluoroscopic swallowing study (VFSS), swallowing scores of Fujishima Ichiro, Barthel index (BI), and swallowing quality of life questionnaire (SWAL-QOL); reduced the aspiration rates as well as aspiration pneumonia; and shortened the duration of empty swallowing and the duration of 5 mL water swallowing. Pooled analysis did not reveal any significant differences in dysphagia outcome severity scores (DOSS) (p=0.15 > 0.05p) between the acupuncture group combined with rehabilitation group and the rehabilitation group alone. After the risk-of-bias assessment, these studies were not of low quality, except in terms of allocation concealment and blindness. Evidence quality evaluation showed that allocation concealment and blindness led to a downgrade and primary outcomes' evaluation of acupuncture combined with rehabilitation were ranked as moderate-quality evidence while acupuncture alone was ranked as low-quality. Conclusion. This meta-analysis provided positive pieces of evidences that acupuncture and acupuncture combined with rehabilitation were better than using rehabilitation alone in the treatment of poststroke dysphagia.
Collapse
Affiliation(s)
- Hailun Jiang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Qiang Zhang
- BeiJing Daxing District Hospital of Integrated Chinese and Western Medicine, Beijing 102600, China
| | - Qi Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Hao Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xi Nan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Miao Liu
- BeiJing Daxing District Hospital of Integrated Chinese and Western Medicine, Beijing 102600, China
| | - Chunsheng Yin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Wei Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xiaonong Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Zhihong Meng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yuzheng Du
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| |
Collapse
|
19
|
Li SS, Xing XX, Hua XY, Zhang YW, Wu JJ, Shan CL, Zheng MX, Wang H, Xu JG. Alteration of brain functional networks induced by electroacupuncture stimulation in rats with ischemia-reperfusion: An independent component analysis. Front Neurosci 2022; 16:958804. [PMID: 35992929 PMCID: PMC9382119 DOI: 10.3389/fnins.2022.958804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022] Open
Abstract
Motor dysfunction is the major sequela of ischemic stroke. Motor recovery after stroke has been shown to be associated with remodeling of large-scale brain networks, both functionally and structurally. Electroacupuncture (EA) is a traditional Chinese medicine application that has frequently been recommended as an alternative therapy for ischemic stroke and is reportedly effective for alleviating motor symptoms in patients. In the present study, the effect of EA on the alterations of functional resting state networks (RSNs) was explored after middle cerebral artery occlusion/reperfusion (MCAO/R) injury using resting-state functional MRI. Rats were randomly assigned to three groups, including the sham group, MCAO/R group and MCAO/R+EA group. The ladder rung walking test was conducted prior to and after modeling to assess behavioral changes. RSNs were identified based on the independent component analysis (ICA) performed on the fMRI data from groups. EA treatment effectively reduced the occurrence of contralateral forelimb foot faults. Furthermore, our results suggested the disrupted function of the whole-brain network following ischemic stroke and the modulatory effect of acupuncture. The sensorimotor network (SMN), interoceptive network (IN), default mode network (DMN) and salience network (SN) were related to the therapeutic effect of EA on stroke recovery. Collectively, our findings confirmed the effect of EA on motor function recovery after cerebral ischemia reperfusion and shed light on the assessment of EA intervention-induced effects on brain networks. This study provides neuroimaging evidence to explain the therapeutic effects of EA in ischemic stroke and will lay the groundwork for further studies.
Collapse
Affiliation(s)
- Si-Si Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiang-Xin Xing
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-Wen Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Jia-Jia Wu
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chun-Lei Shan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Mou-Xiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| |
Collapse
|
20
|
Ning Y, Zheng S, Feng S, Yao H, Feng Z, Liu X, Dong L, Jia H. The altered intrinsic functional connectivity after acupuncture at shenmen (HT7) in acute sleep deprivation. Front Neurol 2022; 13:947379. [PMID: 35959405 PMCID: PMC9360611 DOI: 10.3389/fneur.2022.947379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Accumulating evidence has shown that acupuncture could significantly improve the sleep quality and cognitive function of individuals suffering from insufficient sleep. Numerous animal studies have confirmed the effects and mechanisms of acupuncture on acute sleep deprivation (SD). However, the role of acupuncture on individuals after acute SD remains unclear. Methods In the current study, we recruited 30 healthy subjects with regular sleep. All subjects received resting-state fMRI scans during the rested wakefulness (RW) state and after 24 h of total SD. The scan after 24 h of total SD included two resting-state fMRI sessions before and after needling at Shenmen (HT7). Both edge-based and large-scale network FCs were calculated. Results The edge-based results showed the suprathreshold edges with abnormal between-network FC involving all paired networks except somatosensory motor network (SMN)-SCN between the SD and RW state, while both decreased and increased between-network FC of edges involving all paired networks except frontoparietal network (FPN)-subcortical network (SCN) between before and after acupuncture at HT7. Compared with the RW state, the large-scale brain network results showed decreased between-network FC in SMN-Default Mode Network (DMN), SMN-FPN, and SMN-ventral attention network (VAN), and increased between-network FC in Dorsal Attention Network (DAN)-VAN, DAN-SMN between the RW state and after 24 h of total SD. After acupuncture at HT7, the large-scale brain network results showed decreased between-network FC in DAN-VAN and increased between-network FC in SMN-VAN. Conclusion Acupuncture could widely modulate extensive brain networks and reverse the specific between-network FC. The altered FC after acupuncture at HT7 may provide new evidence to interpret neuroimaging mechanisms of the acupuncture effect on acute SD.
Collapse
Affiliation(s)
- Yanzhe Ning
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Sisi Zheng
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Sitong Feng
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Hao Yao
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Zhengtian Feng
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xinzi Liu
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Linrui Dong
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Hongxiao Jia
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- *Correspondence: Hongxiao Jia
| |
Collapse
|
21
|
Lv Q, Zhang J, Pan Y, Liu X, Miao L, Peng J, Song L, Zou Y, Chen X. Somatosensory Deficits After Stroke: Insights From MRI Studies. Front Neurol 2022; 13:891283. [PMID: 35911919 PMCID: PMC9328992 DOI: 10.3389/fneur.2022.891283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022] Open
Abstract
Somatosensory deficits after stroke are a major health problem, which can impair patients' health status and quality of life. With the developments in human brain mapping techniques, particularly magnetic resonance imaging (MRI), many studies have applied those techniques to unravel neural substrates linked to apoplexy sequelae. Multi-parametric MRI is a vital method for the measurement of stroke and has been applied to diagnose stroke severity, predict outcome and visualize changes in activation patterns during stroke recovery. However, relatively little is known about the somatosensory deficits after stroke and their recovery. This review aims to highlight the utility and importance of MRI techniques in the field of somatosensory deficits and synthesizes corresponding articles to elucidate the mechanisms underlying the occurrence and recovery of somatosensory symptoms. Here, we start by reviewing the anatomic and functional features of the somatosensory system. And then, we provide a discussion of MRI techniques and analysis methods. Meanwhile, we present the application of those techniques and methods in clinical studies, focusing on recent research advances and the potential for clinical translation. Finally, we identify some limitations and open questions of current imaging studies that need to be addressed in future research.
Collapse
Affiliation(s)
- Qiuyi Lv
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Junning Zhang
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, China
| | - Yuxing Pan
- Institute of Neuroscience, Chinese Academy of Science, Shanghai, China
| | - Xiaodong Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | | | - Jing Peng
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Lei Song
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yihuai Zou
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Xing Chen
- Department of Neurology and Stroke Center, Dongzhimen Hospital, The First Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
22
|
Lu CY, Lee SR, Chang CJ, Chen PC. Adjuvant therapy with traditional Chinese medicine and long-term mortality in patients with stroke: A nationwide population-based cohort study in Taiwan. Maturitas 2022; 158:47-54. [DOI: 10.1016/j.maturitas.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 10/01/2021] [Accepted: 12/08/2021] [Indexed: 11/29/2022]
|
23
|
Tseng CY, Hsu PS, Lee CT, Huang HF, Lan CC, Hsieh TH, Liu GT, Kuo CY, Wang MC, Hsieh PC. Acupuncture and Traditional Chinese Herbal Medicine Integrated With Conventional Rehabilitation for Post-stroke Functional Recovery: A Retrospective Cohort Study. Front Neurosci 2022; 16:851333. [PMID: 35368268 PMCID: PMC8966540 DOI: 10.3389/fnins.2022.851333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/10/2022] [Indexed: 12/25/2022] Open
Abstract
Background Stroke leads to tremendous impacts on patients and the healthcare system. It is crucial to explore the potential management of rehabilitation. Acupuncture and traditional Chinese herbal medicine (TCHM) integrated with conventional rehabilitation benefit post-stroke functional recovery. Methods We retrospectively reviewed the medical records of all patients included in the Integrated Traditional Chinese-Western Medicine care program for stroke (ITCWM-stroke care program) in 2019 in Taipei Tzu Chi Hospital to investigate the effects of acupuncture and TCHM integrated with conventional rehabilitation on National Institutes of Health Stroke Scale (NIHSS) and Barthel Index (BI) scores before and after the program. Results A total of 255 stroke inpatients were retrieved and divided into acupuncture and acupuncture + TCHM group by hemorrhagic and ischemic stroke types, respectively. All the patients were recruited in the program at the early subacute phase after stroke onset. Of the hemorrhagic and ischemic stroke subjects, the NIHSS and BI total scores were significantly improved in the acupuncture and acupuncture + TCHM groups. The subgroup analysis results showed that in subjects with a baseline BI score ≤ 40, the acupuncture + TCHM group significantly improved BI total score better than the acupuncture group in both hemorrhagic (p < 0.05) and ischemic (p < 0.05) stroke subjects. Conclusion Acupuncture and TCHM integrated with conventional rehabilitation significantly improve stroke patients’ functional recovery at the early subacute phase. Acupuncture + TCHM contributes to better activities of daily living (ADL) improvements in stroke patients with a baseline BI score ≤ 40. We suggest integrating acupuncture and TCHM into the post-stroke rehabilitation strategy, especially for stroke patients with poor ADL function.
Collapse
Affiliation(s)
- Cheng-Yu Tseng
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Pei-Shan Hsu
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Chang-Ti Lee
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Hui-Fen Huang
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chou-Chin Lan
- Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Tsung-Han Hsieh
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Guan-Ting Liu
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Ming-Chieh Wang
- Department of Pharmacy, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Po-Chun Hsieh
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- *Correspondence: Po-Chun Hsieh,
| |
Collapse
|
24
|
Jin C, Qi S, Teng Y, Li C, Yao Y, Ruan X, Wei X. Altered Degree Centrality of Brain Networks in Parkinson's Disease With Freezing of Gait: A Resting-State Functional MRI Study. Front Neurol 2021; 12:743135. [PMID: 34707559 PMCID: PMC8542685 DOI: 10.3389/fneur.2021.743135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Freezing of gait (FOG) in Parkinson's disease (PD) leads to devastating consequences; however, little is known about its functional brain network. We explored the differences in degree centrality (DC) of functional networks among PD with FOG (PD FOG+), PD without FOG (PD FOG–), and healthy control (HC) groups. In all, 24 PD FOG+, 37 PD FOG–, and 22 HCs were recruited and their resting-state functional magnetic imaging images were acquired. The whole brain network was analyzed using graph theory analysis. DC was compared among groups using the two-sample t-test. The DC values of disrupted brain regions were correlated with the FOG Questionnaire (FOGQ) scores. Receiver operating characteristic curve analysis was performed. We found significant differences in DC among groups. Compared with HCs, PD FOG+ patients showed decreased DC in the middle frontal gyrus (MFG), superior temporal gyrus (STG), parahippocampal gyrus (PhG), inferior temporal gyrus (ITG), and middle temporal gyrus (MTG). Compared with HC, PD FOG– presented with decreased DC in the MFG, STG, PhG, and ITG. Compared with PD FOG–, PD FOG+ showed decreased DC in the MFG and ITG. A negative correlation existed between the DC of ITG and FOGQ scores; the DC in ITG could distinguish PD FOG+ from PD FOG– and HC. The calculated AUCs were 81.3, 89.5, and 77.7% for PD FOG+ vs. HC, PD FOG– vs. HC, and PD FOG+ vs. PD FOG–, respectively. In conclusion, decreased DC of ITG in PD FOG+ patients compared to PD FOG– patients and HCs may be a unique feature for PD FOG+ and can likely distinguish PD FOG+ from PD FOG– and HC groups.
Collapse
Affiliation(s)
- Chaoyang Jin
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Shouliang Qi
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.,Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China
| | - Yueyang Teng
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Chen Li
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Yudong Yao
- Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken, NJ, United States
| | - Xiuhang Ruan
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xinhua Wei
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
25
|
Electroacupuncture Promotes the Survival of the Grafted Human MGE Neural Progenitors in Rats with Cerebral Ischemia by Promoting Angiogenesis and Inhibiting Inflammation. Neural Plast 2021; 2021:4894881. [PMID: 34659396 PMCID: PMC8516583 DOI: 10.1155/2021/4894881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/11/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Stem cells have the potential as a regenerative therapy for cerebral ischemia by improving functional outcomes. However, cell transplantation has some limitations, including a low rate of the grafted cell survival. There is still a major challenge of promoting the harmonious symbiosis between grafted cells and the host. Acupuncture can effectively improve the functional outcome after cerebral ischemia. The present study evaluated the therapeutic effects and explored the mechanism of combined medial ganglionic eminence (MGE) neural progenitors differentiated from human embryonic stem cells (hESCs) with electroacupuncture (EA) in a bilateral common carotid artery occlusion (2VO) rat model. The results showed that EA could promote the survival of the grafted MGE neural progenitors differentiated from hESCs and alleviate learning and memory impairment in rats with cerebral ischemia. This may have partially resulted from inhibited expression of TNF-α and IL-1β and increased vascular endothelial growth factor (VEGF) expression and blood vessel density in the hippocampus. Our findings indicated that EA could promote the survival of the grafted MGE neural progenitors and enhance transplantation therapy's efficacy by promoting angiogenesis and inhibiting inflammation.
Collapse
|
26
|
Sun J, Wang D, Chen S, Pang R, Liu H, Wang J, Zhang Y, Wang C, Yang A. The behavioral significance of resting state network after stroke: A study via graph theory analysis with near-infrared spectroscopy. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2021. [DOI: 10.1016/j.medntd.2021.100083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
27
|
Neuroplasticity of Acupuncture for Stroke: An Evidence-Based Review of MRI. Neural Plast 2021; 2021:2662585. [PMID: 34456996 PMCID: PMC8397547 DOI: 10.1155/2021/2662585] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/06/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
Acupuncture is widely recognized as a potentially effective treatment for stroke rehabilitation. Researchers in this area are actively investigating its therapeutic mechanisms. Magnetic resonance imaging (MRI), as a noninvasive, high anatomical resolution technique, has been employed to investigate neuroplasticity on acupuncture in stroke patients from a system level. However, there is no review on the mechanism of acupuncture treatment for stroke based on MRI. Therefore, we aim to summarize the current evidence about this aspect and provide useful information for future research. After searching PubMed, Web of Science, and Embase databases, 24 human and five animal studies were identified. This review focuses on the evidence on the possible mechanisms underlying mechanisms of acupuncture therapy in treating stroke by regulating brain plasticity. We found that acupuncture reorganizes not only motor-related network, including primary motor cortex (M1), premotor cortex, supplementary motor area (SMA), frontoparietal network (LFPN and RFPN), and sensorimotor network (SMN), as well as default mode network (aDMN and pDMN), but also language-related brain areas including inferior frontal gyrus frontal, temporal, parietal, and occipital lobes, as well as cognition-related brain regions. In addition, acupuncture therapy can modulate the function and structural plasticity of post-stroke, which may be linked to the mechanism effect of acupuncture.
Collapse
|
28
|
Zhang J, Li Z, Li Z, Li J, Hu Q, Xu J, Yu H. Progress of Acupuncture Therapy in Diseases Based on Magnetic Resonance Image Studies: A Literature Review. Front Hum Neurosci 2021; 15:694919. [PMID: 34489662 PMCID: PMC8417610 DOI: 10.3389/fnhum.2021.694919] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/21/2021] [Indexed: 01/18/2023] Open
Abstract
The neural mechanisms of acupuncture are not well-understood. Over the past decades, an increasing number of studies have used MRI to investigate the response of the brain to acupuncture. The current review aims to provide an update on acupuncture therapy in disease. The PubMed, Embase, Web of Science, and Cochrane Library databases were searched from inception to January 31, 2021. Article selection and data extraction were conducted by two review authors. A total of 107 publications about MRI in acupuncture were included, the collective findings of which were as follows: (1) stroke and GB34 (Yanglingquan) are the most studied disease and acupoint. Related studies suggested that the mechanism of acupuncture treatment for stroke may associate with structural and functional plasticity, left and right hemispheres balance, and activation of brain areas related to movement and cognition. GB34 is mainly used in stroke and Parkinson's disease, which mainly activates brain response in the premotor cortex, the supplementary motor area, and the supramarginal gyrus; (2) resting-state functional MRI (rs-fMRI) and functional connectivity (FC) analysis are the most frequently used approaches; (3) estimates of efficacy and brain response to acupuncture depend on the type of sham acupuncture (SA) used for comparison. Brain processing after acupuncture differs between patients and health controls (HC) and occurs mainly in disorder-related areas. Factors that influence the effect of acupuncture include depth of needling, number and locations of acupoints, and deqi and expectation effect, each contributing to the brain response. While studies using MRI have increased understanding of the mechanism underlying the effects of acupuncture, there is scope for development in this field. Due to the small sample sizes, heterogeneous study designs, and analytical methods, the results were inconsistent. Further studies with larger sample sizes, careful experimental design, multimodal neuroimaging techniques, and standardized methods should be conducted to better explain the efficacy and specificity of acupuncture, and to prepare for accurate efficacy prediction in the future.
Collapse
Affiliation(s)
- Jinhuan Zhang
- Department of Acupuncture, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zihan Li
- Department of Acupuncture, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zhixian Li
- Department of Acupuncture, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jiaying Li
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qingmao Hu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Jinping Xu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Haibo Yu
- Department of Acupuncture, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
29
|
Wanni Arachchige PR, Karunarathna S, Meidian AC, Ueda R, Uchida W, Senoo A. Structural connectivity changes in the motor execution network after stroke rehabilitation. Restor Neurol Neurosci 2021; 39:237-245. [PMID: 34275914 PMCID: PMC8543268 DOI: 10.3233/rnn-211148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Background: Although quite a very few studies have tested structural connectivity changes following an intervention, it reflects only selected key brain regions in the motor network. Thus, the understanding of structural connectivity changes related to the motor recovery process remains unclear. Objective: This study investigated structural connectivity changes of the motor execution network following a combined intervention of low-frequency repetitive transcranial magnetic stimulation (LF-rTMS) and intensive occupational therapy (OT) after a stroke using graph theory approach. Methods: Fifty-six stroke patients underwent Fugl-Meyer Assessment (FMA), Wolf Motor Function Test-Functional Ability Scale (WMFT-FAS), diffusion tensor imaging (DTI), and T1 weighted imaging before and after the intervention. We examined graph theory measures related to twenty brain regions using structural connectomes. Results: The ipsilesional and contralesional hemisphere showed structural connectivity changes post-intervention after stroke. We found significantly increased regional centralities and nodal efficiency within the frontal pole and decreased degree centrality and nodal efficiency in the ipsilesional thalamus. Correlations were found between network measures and clinical assessments in the cuneus, postcentral gyrus, precentral gyrus, and putamen of the ipsilesional hemisphere. The contralesional areas such as the caudate, cerebellum, and frontal pole also showed significant correlations. Conclusions: This study was helpful to expand the understanding of structural connectivity changes in both hemispheric networks during the motor recovery process following LF-rTMS and intensive OT after stroke.
Collapse
Affiliation(s)
| | - Sadhani Karunarathna
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan.,Department of Radiography/Radiotherapy, Faculty of Allied Health Sciences, University of Peradeniya
| | - Abdul Chalik Meidian
- Department of Physical Therapy, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Ryo Ueda
- Office of Radiation Technology, Keio University Hospital, Tokyo, Japan
| | - Wataru Uchida
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Atsushi Senoo
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|