1
|
Mahdizade AH, Yousefi M, Sarkarian M, Saberi A. Quantitative Investigation of MicroRNA-32 in the Urine of Prostate Cancer Patients and Its Relationship With Clinicopathological Characteristics. Clin Genitourin Cancer 2024; 22:102195. [PMID: 39270621 DOI: 10.1016/j.clgc.2024.102195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024]
Abstract
INTRODUCTION Prostate cancer (PCa) is one of the most common cancers worldwide. PCa diagnosis is mostly based on solid biopsy and prostate-specific antigen (PSA), which have the disadvantages of being invasive and insensitive, respectively. Recently, the detection of microRNAs (miRNAs) in expressed prostatic secretions (EPS) has been a promising approach for PCa diagnosis. The aim of this study is to quantify transcriptional levels of miRNA-32 in the urine of prostate cancer patients. MATERIALS AND METHODS In this study, we evaluated the expression of miRNA-32 in the urine of 27 PCa patients, 48 benign prostatic hyperplasia (BPH) and 20 healthy controls, using quantitative real-time PCR (qPCR). The expression levels were then compared with the clinicopathological characteristics of patients. RESULTS The expression level of miRNA-32 in PCa patients was significantly higher than the control group (P < .01) and BPH cases (P < .01), and was associated with advanced tumor stage (P < .05). In addition, the expression of miRNA-32 had significant correlation with patients' age (r = 0.39, P = .043). Area under ROC curve (AUC) for the discrimination of PCa samples from control and BPH samples were 0.93 (P < .0001) and 0.78 (P < .0001), respectively. We also used logistic regression analysis to integrate the results of PSA, prostate volume and miRNA-32, and presented a predictive model for distinguishing PCa from BPH, highlighting the clinical utility of miRNA-32 in cancer diagnosis and risk assessment. CONCLUSIONS Measurement of miRNA-32 expression in urine may have significance for the detection of PCa. Inclusion of miRNA-32 in logistic regression along with PSA and prostate volume increases the accuracy of cancer diagnosis.
Collapse
Affiliation(s)
- Amir Hossein Mahdizade
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Meysam Yousefi
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohsen Sarkarian
- Department of Urology, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alihossein Saberi
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
2
|
Diamantopoulos MA, Adamopoulos PG, Scorilas A. Small non-coding RNAs as diagnostic, prognostic and predictive biomarkers of gynecological cancers: an update. Expert Rev Mol Diagn 2024; 24:979-995. [PMID: 39390687 DOI: 10.1080/14737159.2024.2408740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Non-coding RNAs (ncRNAs) comprise a heterogeneous cluster of RNA molecules. Emerging evidence suggests their involvement in various aspects of tumorigenesis, particularly in gynecological malignancies. Notably, ncRNAs have been implicated as mediators within tumor signaling pathways, exerting their influence through interactions with RNA or proteins. These findings further highlight the hypothesis that ncRNAs constitute therapeutic targets and point out their clinical potential as stratification biomarkers. AREAS COVERED The review outlines the use of small ncRNAs, including miRNAs, tRNA-derived small RNAs, PIWI-interacting RNAs and circular RNAs, for diagnostic, prognostic, and predictive purposes in gynecological cancers. It aims to increase our knowledge of their functions in tumor biology and their translation into clinical practice. EXPERT OPINION By leveraging interdisciplinary collaborations, scientists can decipher the riddle of small ncRNA biomarkers as diagnostic, prognostic and predictive biomarkers of gynecological tumors. Integrating small ncRNA-based assays into clinical practice will allow clinicians to provide cure plans for each patient, reducing the likelihood of adverse responses. Nevertheless, addressing challenges such as standardizing experimental methodologies and refining diagnostic assays is imperative for advancing small ncRNA research in gynecological cancer.
Collapse
Affiliation(s)
- Marios A Diamantopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Salmaninejad A, Layeghi SM, Falakian Z, Golestani S, Kobravi S, Talebi S, Yousefi M. An update to experimental and clinical aspects of tumor-associated macrophages in cancer development: hopes and pitfalls. Clin Exp Med 2024; 24:156. [PMID: 39003350 PMCID: PMC11246281 DOI: 10.1007/s10238-024-01417-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
Tumor-associated macrophages (TAMs) represent one of the most abundant tumor-infiltrating stromal cells, and their normal function in tumor microenvironment (TME) is to suppress tumor cells by producing cytokines which trigger both direct cell cytotoxicity and antibody-mediated immune response. However, upon prolonged exposure to TME, the classical function of these so-called M1-type TAMs can be converted to another type, "M2-type," which are recruited by tumor cells so that they promote tumor growth and metastasis. This is the reason why the accumulation of TAMs in TME is correlated with poor prognosis in cancer patients. Both M1- and M2-types have high degree of plasticity, and M2-type cells can be reprogrammed to M1-type for therapeutic purposes. This characteristic introduces TAMs as promising target for developing novel cancer treatments. In addition, inhibition of M2-type cells and blocking their recruitment in TME, as well as their depletion by inducing apoptosis, are other approaches for effective immunotherapy of cancer. In this review, we summarize the potential of TAMs to be targeted for cancer immunotherapy and provide an up-to-date about novel strategies for targeting TAMs.
Collapse
Affiliation(s)
- Arash Salmaninejad
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Pediatric Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| | - Sepideh Mehrpour Layeghi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Falakian
- Department of Laboratory Science, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Shahin Golestani
- Department of Ophthalmology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepehr Kobravi
- Department of Oral and Maxillofacial Surgery, Tehran Azad University, Tehran, Iran
| | - Samaneh Talebi
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Yousefi
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
4
|
Pal R, Choudhury T, Ghosh M, Vernakar M, Nath P, Nasare VD. A signature of circulating miRNAs predicts the prognosis and therapeutic outcome of taxane/platinum regimen in advanced ovarian carcinoma patients. Clin Transl Oncol 2024; 26:1716-1724. [PMID: 38472557 DOI: 10.1007/s12094-024-03394-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/19/2024] [Indexed: 03/14/2024]
Abstract
PURPOSE Ovarian carcinoma (OC) is ranked as the eighth most lethal gynecological cancer due to late diagnosis and high recurrence. Existing biomarkers are lacking to predict the recurrence and stratify patients who are likely to benefit from chemotherapy. MicroRNAs (miRNAs/miRs) are persistently present in humans and are capable of predicting treatment outcomes. Thus, the purpose of the study was to assess the potential of circulatory miRNAs to predict the efficacy of OC. METHODS Newly diagnosed n = 208 OC patients were administrated neoadjuvant/adjuvant chemotherapy (taxane + platinum) after surgery. Their demographic, gynecologic, clinical parameters, response, and survival were recorded. MiR-27a, miR-182, miR-199a, miR-214, and miR-591 were taken and the expression were analyzed using real-time PCR at different treatment intervals. Further, its prognostic value (Kaplan-Meier, and Cox regression analysis) and diagnostic importance (receiver operating characteristic curve) were validated. RESULT The mean age of patients with poorly differentiated (45.2%) serous OC was 48.69 ± 10.38. The majority experienced menarche at ≥ 12 (62.2%) with poor menstrual hygiene (81.8%) and were post-menopausal (69.4%), some were associated with high risk of survival (HR = > 1). MiRNA signature showed three over-expression and two under-expression (miR-27a, miR-182, and miR-214; miR-199a and miR-591) in advanced OC compared to the control (P= < 0.05). Also, a significant difference was detected at each time interval of treatment with the response (P = ≤ 0.001) associated with resistance and overall survival (P = ≤ 0.001) with risk (HR = > 1). ROC analysis showed enhanced the diagnostics accuracy (< 0.001). CONCLUSION Our findings indicate that circulating miRNAs might be a potential minimally invasive diagnostic marker for treatment outcome and recurrence in ovarian carcinoma.
Collapse
Affiliation(s)
- Ranita Pal
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700026, India
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Rd, Kolkata, 700019, India
| | - Trisha Choudhury
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700026, India
| | - Madhurima Ghosh
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700026, India
| | - Manisha Vernakar
- Department of Gynaecological Oncology, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700026, India
| | - Partha Nath
- Department of Medical Oncology, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700026, India
| | - Vilas Deorao Nasare
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700026, India.
| |
Collapse
|
5
|
Alam S, Giri PK. Novel players in the development of chemoresistance in ovarian cancer: ovarian cancer stem cells, non-coding RNA and nuclear receptors. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:6. [PMID: 38434767 PMCID: PMC10905178 DOI: 10.20517/cdr.2023.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/03/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
Ovarian cancer (OC) ranks as the fifth leading factor for female mortality globally, with a substantial burden of new cases and mortality recorded annually. Survival rates vary significantly based on the stage of diagnosis, with advanced stages posing significant challenges to treatment. OC is primarily categorized as epithelial, constituting approximately 90% of cases, and correct staging is essential for tailored treatment. The debulking followed by chemotherapy is the prevailing treatment, involving platinum-based drugs in combination with taxanes. However, the efficacy of chemotherapy is hindered by the development of chemoresistance, both acquired during treatment (acquired chemoresistance) and intrinsic to the patient (intrinsic chemoresistance). The emergence of chemoresistance leads to increased mortality rates, with many advanced patients experiencing disease relapse shortly after initial treatment. This review delves into the multifactorial nature of chemoresistance in OC, addressing mechanisms involving transport systems, apoptosis, DNA repair, and ovarian cancer stem cells (OCSCs). While previous research has identified genes associated with these mechanisms, the regulatory roles of non-coding RNA (ncRNA) and nuclear receptors in modulating gene expression to confer chemoresistance have remained poorly understood and underexplored. This comprehensive review aims to shed light on the genes linked to different chemoresistance mechanisms in OC and their intricate regulation by ncRNA and nuclear receptors. Specifically, we examine how these molecular players influence the chemoresistance mechanism. By exploring the interplay between these factors and gene expression regulation, this review seeks to provide a comprehensive mechanism driving chemoresistance in OC.
Collapse
Affiliation(s)
| | - Pankaj Kumar Giri
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110068, India
| |
Collapse
|
6
|
Chen X, Li Y, He J. Ovarian cancer classification and prognosis assessment model based on prognostic target genes in key microRNA-target gene networks. J Gene Med 2024; 26:e3575. [PMID: 37548130 DOI: 10.1002/jgm.3575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/09/2023] [Accepted: 07/14/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND The present study was designed to screen key microRNA (miRNA)-target gene networks for ovarian cancer (OC) and to classify and construct a risk assessment system for OC based on the target genes. METHODS OC sample data of The Cancer Genome Atlas dataset and GSE26193, GSE30161, GSE63885 and GSE9891 datasets were retrospectively collected. Pearson correlation analysis and targeted analysis of miRNA and target gene were performed to screen key miRNA-target gene networks. Target genes associated with the prognosis of OC were screened from key miRNA-target gene networks for consensus clustering and least absolute shrinkage and selection operator-based regression machine learning analysis of OC samples. RESULTS Twenty target genes of 2651 key miRNA-target gene pairs had significant prognostic correlation in each OC cohort, and OC was divided into three clusters. There were differences in prognostic outcome, biological pathways, immune cell abundance and susceptibility to immune checkpoint blockade (ICB) therapy and anti-tumor drugs among the three molecular clusters. S2 exhibited the least advantage in prognosis and immunotherapy response rate in the three molecular clusters, and the pathways regulating immunity, hypoxia, metabolism and promoting malignant progression of cancer, as well as infiltrating immune and stromal cell population abundance, were the highest in this cluster. An eight-target gene prognostic model was created, and the risk index obtained by using this model not only significantly distinguished the immune characteristics of the sample, but also predicted the response of the sample to ICB treatment, and helped to screen 36 potential anti-OC drugs. CONCLUSIONS The present study provides a classification strategy for OC based on prognostic target genes in key miRNA-target gene networks, and creates a risk assessment system for predicting prognosis and response to ICB therapy in OC patients, providing molecular basis for prognosis and precise treatment of OC.
Collapse
Affiliation(s)
- Xuelian Chen
- Third Ward, Chunliu Maternity Hospital District of Dalian Women and Children Medical Center, Dalian, China
| | - Yibing Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Junjian He
- Department of Gynecology, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
7
|
Niemira M, Erol A, Bielska A, Zeller A, Skwarska A, Chwialkowska K, Kuzmicki M, Szamatowicz J, Reszec J, Knapp P, Moniuszko M, Kretowski A. Identification of serum miR-1246 and miR-150-5p as novel diagnostic biomarkers for high-grade serous ovarian cancer. Sci Rep 2023; 13:19287. [PMID: 37935712 PMCID: PMC10630404 DOI: 10.1038/s41598-023-45317-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/18/2023] [Indexed: 11/09/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the leading cancers in women, with high-grade serous ovarian cancer (HGSOC) being the most common and lethal subtype of this disease. A vast majority of HGSOC are diagnosed at the late stage of the disease when the treatment and total recovery chances are low. Thus, there is an urgent need for novel, more sensitive and specific methods for early and routine HGSOC clinical diagnosis. In this study, we performed miRNA expression profiling using the NanoString miRNA assay in 34 serum samples from patients with HGSOC and 36 healthy women. We identified 13 miRNAs that were differentially expressed (DE). For additional exploration of expression patterns correlated with HGSOC, we performed weighted gene co-expression network analysis (WGCNA). As a result, we showed that the module most correlated with tumour size, nodule and metastasis contained 8 DE miRNAs. The panel including miR-1246 and miR-150-5p was identified as a signature that could discriminate HGSOC patients with AUCs of 0.98 and 1 for the training and test sets, respectively. Furthermore, the above two-miRNA panel had an AUC = 0.946 in the verification cohorts of RT-qPCR data and an AUC = 0.895 using external data from the GEO public database. Thus, the model we developed has the potential to markedly improve the diagnosis of ovarian cancer.
Collapse
Affiliation(s)
- Magdalena Niemira
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland.
| | - Anna Erol
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Agnieszka Bielska
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Anna Zeller
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Anna Skwarska
- Cancer Center, Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Karolina Chwialkowska
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Bialystok, Poland
| | - Mariusz Kuzmicki
- Department of Gynecology and Gynecological Oncology, Medical University of Bialystok, Bialystok, Poland
| | - Jacek Szamatowicz
- Department of Gynecology and Gynecological Oncology, Medical University of Bialystok, Bialystok, Poland
| | - Joanna Reszec
- Department of Medical Pathomorphology, Medical University of Bialystok, Bialystok, Poland
| | - Pawel Knapp
- University Oncology Centre, University Clinical Hospital in Bialystok, Bialystok, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
8
|
Kim T, Croce CM. MicroRNA: trends in clinical trials of cancer diagnosis and therapy strategies. Exp Mol Med 2023; 55:1314-1321. [PMID: 37430087 PMCID: PMC10394030 DOI: 10.1038/s12276-023-01050-9] [Citation(s) in RCA: 151] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 07/12/2023] Open
Abstract
As a type of short noncoding RNAs, microRNA (miRNA) undoubtedly plays a crucial role in cancer development. Since the discovery of the identity and clinical functions of miRNAs, over the past few decades, the roles of miRNAs in cancer have been actively investigated. Numerous pieces of evidence indicate that miRNAs are pivotal factors in most types of cancer. Recent cancer research focused on miRNAs has identified and characterized a large cohort of miRNAs commonly dysregulated in cancer or exclusively dysregulated in specific types of cancer. These studies have suggested the potential of miRNAs as biomarkers in the diagnosis and prognostication of cancer. Moreover, many of these miRNAs have oncogenic or tumor-suppressive functions. MiRNAs have been the focus of research given their potential clinical applications as therapeutic targets. Currently, various oncology clinical trials using miRNAs in screening, diagnosis, and drug testing are underway. Although clinical trials studying miRNAs in various diseases have been reviewed before, there have been fewer clinical trials related to miRNAs in cancer. Furthermore, updated results of recent preclinical studies and clinical trials of miRNA biomarkers and drugs in cancer are needed. Therefore, this review aims to provide up-to-date information on miRNAs as biomarkers and cancer drugs in clinical trials.
Collapse
Affiliation(s)
- Taewan Kim
- Department of Anatomy, Histology & Developmental Biology, International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, China.
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
9
|
Thibonnier M, Ghosh S. Strategy for Pre-Clinical Development of Active Targeting MicroRNA Oligonucleotide Therapeutics for Unmet Medical Needs. Int J Mol Sci 2023; 24:ijms24087126. [PMID: 37108289 PMCID: PMC10138879 DOI: 10.3390/ijms24087126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
We present here an innovative modular and outsourced model of drug research and development for microRNA oligonucleotide therapeutics (miRNA ONTs). This model is being implemented by a biotechnology company, namely AptamiR Therapeutics, in collaboration with Centers of Excellence in Academic Institutions. Our aim is to develop safe, effective and convenient active targeting miRNA ONT agents for the metabolic pandemic of obesity and metabolic-associated fatty liver disease (MAFLD), as well as deadly ovarian cancer.
Collapse
Affiliation(s)
| | - Sujoy Ghosh
- Duke-NUS Medical School, Singapore and Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| |
Collapse
|
10
|
Punzón-Jiménez P, Lago V, Domingo S, Simón C, Mas A. Molecular Management of High-Grade Serous Ovarian Carcinoma. Int J Mol Sci 2022; 23:13777. [PMID: 36430255 PMCID: PMC9692799 DOI: 10.3390/ijms232213777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) represents the most common form of epithelial ovarian carcinoma. The absence of specific symptoms leads to late-stage diagnosis, making HGSOC one of the gynecological cancers with the worst prognosis. The cellular origin of HGSOC and the role of reproductive hormones, genetic traits (such as alterations in P53 and DNA-repair mechanisms), chromosomal instability, or dysregulation of crucial signaling pathways have been considered when evaluating prognosis and response to therapy in HGSOC patients. However, the detection of HGSOC is still based on traditional methods such as carbohydrate antigen 125 (CA125) detection and ultrasound, and the combined use of these methods has yet to support significant reductions in overall mortality rates. The current paradigm for HGSOC management has moved towards early diagnosis via the non-invasive detection of molecular markers through liquid biopsies. This review presents an integrated view of the relevant cellular and molecular aspects involved in the etiopathogenesis of HGSOC and brings together studies that consider new horizons for the possible early detection of this gynecological cancer.
Collapse
Affiliation(s)
- Paula Punzón-Jiménez
- Carlos Simon Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
| | - Victor Lago
- Department of Gynecologic Oncology, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
- Department of Obstetrics and Gynecology, CEU Cardenal Herrera University, 46115 Valencia, Spain
| | - Santiago Domingo
- Department of Gynecologic Oncology, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Universidad de Valencia, 46010 Valencia, Spain
| | - Carlos Simón
- Carlos Simon Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Universidad de Valencia, 46010 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA 02215, USA
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aymara Mas
- Carlos Simon Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
| |
Collapse
|
11
|
Tang J, Duan G, Wang Y, Wang B, Li W, Zhu Z. Circular RNA_ANKIB1 accelerates chemo-resistance of osteosarcoma via binding microRNA-26b-5p and modulating enhancer of zeste homolog 2. Bioengineered 2022; 13:7351-7366. [PMID: 35264070 PMCID: PMC8974058 DOI: 10.1080/21655979.2022.2037869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Osteosarcoma is a common bone malignancy in children and adolescents. Chemotherapeutic drug resistance is the major factor impacting the surgical outcome and prognosis of patients with osteosarcoma. This investigation assessed the role and mechanism of circular RNA_ANKIB1 in the development of osteosarcoma. The circular RNA (circ) _ANKIB1, microRNA (miR)-26b-5p, enhancer of zeste homolog 2 (EZH2) expression in OS samples was investigated through RT-qPCR. The EZH2, multidrug resistance protein 1 (MRP1), P-gp, and lipoprotein receptor-related protein (LRP) protein expressions were analyzed through western blot. The association between circ_ANKIB1 and the occurrence of clinic-pathological features in OS patients was assessed; the circular features of circ_ANKIB1 were analyzed. The hFOB1.19, KHOS, U2-OS OS cells were used to study the semi-inhibitory concentration IC50 of Doxorubicin (DXR)-resistant cells, clone formation, invasion, and apoptosis. The luciferase assay was used to study the binding of circ-ANKIB1 with miR-26b-5p and the targeting of miR-26b-5p with EZH2. In vivo experiments were performed via subcutaneous tumorigenic experiments. MiR-26b-5p in OS tissues and cells and DXR-resistant OS tissues and cells was silenced while circ_ANKIB1 and EZH2 were elevated. Circ_ANKIB1 silencing elevated miR-26b-5p, repressed EZH2, MRP1, P-gp, LRP, IC50, and elevated OS advancement. Circ_ANKIB1 bind miR-26b-5p. Reduced miR-26b-5p revered the influence of silencing circ_ANKIB1 on DXR resistant OS cells. MiR-26b-5p targeted EZH2, and EZH2 elevation reversed the impact of increasing miR-26b-5p on DXR resistant cells. Circ_ANKIB1 silencing suppressed DXR-resistant OS cells in vivo. In conclusion, Circ_ANKIB1 binds miR-26b-5p and modulates EZH2 to accelerate the chemo-resistance of osteosarcoma.
Collapse
Affiliation(s)
- JinShan Tang
- Department Orthopedics, Huai'an Second People's Hospital, Huai'an City, JiangSu Province, China.,Department Orthopedics, Huaian Hospital Affiliated to Xuzhou Medical University, Huai'an City, Jiangsu, China
| | - Gang Duan
- Department Orthopedics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou City, JiangSu Province, China
| | - YunQing Wang
- Department Orthopedics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou City, JiangSu Province, China
| | - Bin Wang
- Department Orthopedics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou City, JiangSu Province, China
| | - WenBo Li
- Department Orthopedics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou City, JiangSu Province, China
| | - ZiQiang Zhu
- Department Orthopedics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou City, JiangSu Province, China
| |
Collapse
|