1
|
Jia M, Yue H, Wang X, Zong A, Xu T, Xu YJ, Liu Y. Medium-chain triglyceride attenuates obesity by activating brown adipose tissue via upregulating the AMPK signaling pathway. J Nutr Biochem 2025; 141:109914. [PMID: 40179992 DOI: 10.1016/j.jnutbio.2025.109914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 03/13/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Medium-chain triacylglycerol (MCT) is a healthy lipid mainly composed of medium-chain fatty acids (MCFA), which has been proven to have physiological activities in improving metabolic disorders, reducing blood cholesterol, and controlling weight. Brown adipose tissue (BAT) has been regarded as a potential organ to fight obesity due to the function of thermogenesis and energy dissipation. Previous reports found that a diet rich in MCT contributed to the activation of BAT. However, the potential mechanism between MCT and BAT remains unknown. In the current study, MCFA was applied on C3H/10T1/2 cells differentiated brown adipocytes, and MCT was applied on high-fat diet (HFD) induced obese mice. The results showed that MCFA and MCT induced browning of adipocytes and activation of BAT, significantly increased the enrichment of mitochondria, and significantly reduced intracellular lipid accumulation and body weights in vivo and in vitro. Mechanically, MCT significantly increased the level of UCP1, AMPK, and the downstream signaling factors of Pgc1α and Ulk1, further significantly elevated the brown differentiation factor of Pparγ. Moreover, The AMPK inhibitor dorsomorphin partially impaired the beneficial effects caused by MCT. In conclusion, this study proved that AMPK is the potential target of MCT to induce BAT activation and provided theoretical evidence for the application of MCT in the future.
Collapse
Affiliation(s)
- Min Jia
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China; Shandong Engineering Research Center of Food for Special Medical Purpose, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Hao Yue
- Shandong Engineering Research Center of Food for Special Medical Purpose, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Xiuxiu Wang
- Shandong Engineering Research Center of Food for Special Medical Purpose, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Aizhen Zong
- Shandong Engineering Research Center of Food for Special Medical Purpose, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Tongcheng Xu
- Shandong Engineering Research Center of Food for Special Medical Purpose, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Yong-Jiang Xu
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Yuanfa Liu
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
2
|
Espinosa-Andrews H, Haro-González JN, Barbosa-Nuñez JA, Aguirre-Mandujano E, Calleros CL. Physicochemical and rheological characteristics of commercial Greek-style yogurt enriched with Polygonum cuspidatum roots or the P. Cuspidatum β-cyclodextrin inclusion complex. Food Res Int 2025; 203:115854. [PMID: 40022373 DOI: 10.1016/j.foodres.2025.115854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/15/2025] [Accepted: 01/23/2025] [Indexed: 03/03/2025]
Abstract
In this work, the effects of enriching commercial Greek-style yogurt with β-cyclodextrin-encapsulated Polygonum cuspidatum hydroalcoholic extract powder (YE) or P. cuspidatum root powder (YR) on the physicochemical properties of yogurt were compared. Greek-style yogurt was used as a control (YC). The yogurt samples were characterized by their pH, color, water content, water activity, droplet size, small amplitude oscillation shear (SAOS), and large amplitude oscillation shear (LAOS) viscoelastic properties, thixotropy, and syneresis. The pH, water content and water activity did not significantly differ among the yogurt samples. The YR and YE had yellowish-green colors, displaying values of 79.8, -5.39 and 23.42 and 68.29, -3.45 and 25.45 for L*, a* and b*, respectively. The average particle size of YE (30.3 µm) was larger than those of YR (26.8 µm) or YC (25.2 µm), displaying bimodal distributions. The yogurts predominantly exhibited elastic behavior, with slight frequency dependence, characteristic of weak gel structures. The SAOS and LAOS results showed that YE presented the highest viscoelastic properties, probably due to the greater degree of structuration provided by the free hydroxyl groups of the encapsulated polyphenols and the yogurt proteins. The thixotropy results revealed that YE (-501 ±29 Pa) and YR (-468 ± 31 Pa) exhibited greater restructuring after deformation than did YC (-1022 ± 68 Pa). However, compared with YC, YE resulted in gels with a greater degree of syneresis (∼7% more). These results suggest that Greek-style yogurt could be an effective route for incorporating beneficial antioxidant compounds. However, more studies are needed to demonstrate its efficacy and acceptance by consumers.
Collapse
Affiliation(s)
- Hugo Espinosa-Andrews
- Unidad de Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Cam. Arenero 1227, El Bajío, 45019 Zapopan, Jal, México.
| | - José Nabor Haro-González
- Unidad de Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Cam. Arenero 1227, El Bajío, 45019 Zapopan, Jal, México
| | - Jorge Alejandro Barbosa-Nuñez
- Unidad de Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Cam. Arenero 1227, El Bajío, 45019 Zapopan, Jal, México
| | - Eleazar Aguirre-Mandujano
- Departamento de Preparatoria Agrícola y Posgrado en Ciencia y Tecnología Agroalimentaria, Universidad Autónoma Chapingo, km. 38.5 Carretera México Texcoco, Edo. México 56230, México
| | - Consuelo Lobato Calleros
- Departamento de Preparatoria Agrícola y Posgrado en Ciencia y Tecnología Agroalimentaria, Universidad Autónoma Chapingo, km. 38.5 Carretera México Texcoco, Edo. México 56230, México
| |
Collapse
|
3
|
Zhe L, ChunLi Y. Hyperlipidaemia treatment and gut microbiology. Front Microbiol 2025; 15:1520252. [PMID: 39867495 PMCID: PMC11758981 DOI: 10.3389/fmicb.2024.1520252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/17/2024] [Indexed: 01/28/2025] Open
Abstract
Numerous studies have shown that hyperlipidaemia is closely related to the gut microbiota, and the study of microbiota in the treatment of hyperlipidaemia is undoubtedly a new target for the treatment and prevention of hyperlipidaemia. The efficacy of regulating the gut microecology and changing the structure of gut flora has been demonstrated by both western and traditional medication, biological therapy, and dietary exercise, so it is particularly important to study the relationship between gut microbiota and the treatment of hyperlipidaemia. In this review, we summarize the mechanism and relationship between the pathogenesis of hyperlipidaemia and gut microbiota, and the mechanism of hyperlipidaemia treatment by influencing the gut microbiota in various treatment modalities, which provides diversified therapeutic ideas and scientific basis for clinical treatment. It also triggers us to think about the relationship between gut microbiota and other diseases, and to explore the influence of gut microbiota is a goal that we still need to explore.
Collapse
Affiliation(s)
- Liu Zhe
- Shaanxi Provincial Nuclear Industry 215 Hospital, Xianyang, Shaanxi, China
- The First Clinical College, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yu ChunLi
- Shaanxi Provincial Nuclear Industry 215 Hospital, Xianyang, Shaanxi, China
| |
Collapse
|
4
|
Chen T, Wang T, Shi Y, Deng J, Yan X, Zhang C, Yin X, Liu W. Integrated network pharmacology, metabolomics and molecular docking analysis to reveal the mechanisms of quercetin in the treatment of hyperlipidemia. J Pharm Biomed Anal 2025; 252:116507. [PMID: 39383544 DOI: 10.1016/j.jpba.2024.116507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/23/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Hyperlipidemia (HLP) is a significant contributor to cardiovascular diseases. Quercetin (QUE), a naturally occurring flavonoid with diverse bioactivities, has garnered attention due to its potential therapeutic effects. However, the precise mechanisms underlying the effects of QUE on HLP remain unclear. In this study, an ultra-high-performance liquid chromatography-quadrupole/electrostatic field Orbitrap high-resolution mass spectrometry (UPLC-Q-Exactive-MS) metabolomics strategy was employed to obtain metabolite profiles, and potential biomarkers were identified following data analysis. Network pharmacology and Drug Affinity Responsive Target Stability (DARTS) assays were utilized to explore the potential targets of QUE for HLP treatment. The results of metabolomics and network pharmacology were then integrated to identify the key targets and metabolic pathways involved in the therapeutic action of the QUE against HLP. Molecular docking and experimental validation were performed to confirm these key targets. A comprehensive database search identified 138 QUE-HLP-related targets. A protein-protein interaction (PPI) network was constructed using STRING, and the shared targets were filtered with Cytoscape. Among these, AKT1, TNF, VEGFA, mTOR, SREBP1, and SCD emerged as potential therapeutic targets. These findings were validated using in vitro cell experiments. Additionally, the mechanism of action of QUE against HLP was evaluated by integrating network pharmacology with metabolomics, identifying two metabolomic pathways crucial to HLP treatment. DARTS experiments confirmed the stable binding of QUE to FASN, p-mTOR, SREBP1, and p-AKT. In HepG2 cells treated with palmitic acid (PA), QUE significantly reduced the mRNA expression of ACLY, ACACA, FASN, and SCD (p < 0.05). Western blot analysis revealed that PA significantly increased protein expression of p-mTOR, SREBP1, FASN, and p-AKT (p < 0.05). In summary, our study provides novel insights into the protective mechanisms of QUE against HLP and offers valuable information regarding its potential benefits in clinical treatment.
Collapse
Affiliation(s)
- Tao Chen
- Department of Pharmacy, Hunan Provincial People's Hospital (The First Affiliate Hospital of Hunan Normal University), Changsha 410000, China
| | - Tongtong Wang
- Department of Pharmacy, Hunan Provincial People's Hospital (The First Affiliate Hospital of Hunan Normal University), Changsha 410000, China
| | - Yuanxiang Shi
- Institute of Clinical Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, PR China
| | - Jun Deng
- Department of Pharmacy, Hunan Provincial People's Hospital (The First Affiliate Hospital of Hunan Normal University), Changsha 410000, China
| | - Xiao Yan
- Department of Pharmacy, Hunan Provincial People's Hospital (The First Affiliate Hospital of Hunan Normal University), Changsha 410000, China
| | - Chenbin Zhang
- Department of Pharmacy, Hunan Provincial People's Hospital (The First Affiliate Hospital of Hunan Normal University), Changsha 410000, China
| | - Xin Yin
- Department of Pharmacy, Hunan Provincial People's Hospital (The First Affiliate Hospital of Hunan Normal University), Changsha 410000, China
| | - Wen Liu
- Department of Pharmacy, Hunan Provincial People's Hospital (The First Affiliate Hospital of Hunan Normal University), Changsha 410000, China.
| |
Collapse
|
5
|
Li J, Ma M, Zhang Z, Xu L, Yang B, Diao Q, Ma P, Song D. A novel carboxylesterase 2-targeted fluorescent probe with cholic acid as a recognition group for early diagnosis of drug- and environment-related liver diseases. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135966. [PMID: 39342850 DOI: 10.1016/j.jhazmat.2024.135966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Due to the detrimental effects of various harmful substances-such as carcinogens, drug toxicity, and environmental pollutants-on the liver, which can trigger or exacerbate conditions like hepatocellular carcinoma (HCC), drug-induced liver injury (DILI), and non-alcoholic fatty liver disease (NAFLD), accurate detection and monitoring of these diseases are crucial for effective treatment. Carboxylesterase 2 (CES2) is primarily found in the liver and, as a potential biomarker, its accurate detection can enhance the early diagnosis and treatment efficacy of liver diseases. Traditional fluorescence probes for CES2 detection suffer from non-specific recognition groups, leading to poor targeting specificity. To address this limitation, we propose a novel CES2-responsive fluorescent probe utilizing cholic acid (CA) as a recognition group. The probe, LAN-CA, was synthesized by esterifying CA with a near-infrared fluorophore, LAN-OH. This novel fluorescent probe leverages the unique affinity of CA for hepatocytes, ensuring that LAN-CA remains and accumulates specifically within the hepatoenteric circulation. In vitro experiments showed that the probe exhibits superior optical performance compared to traditional benzoate-based probe (LAN-PH), with a detection limit of 0.015 μg/mL. Examination of 56 common biological interferents demonstrated that using CA as a recognition group offers high selectivity. Cell experiments confirmed that LAN-CA is an effective tool for monitoring endogenous CES2 in live cells. Comprehensive evaluations of fluorescence imaging in various mouse models of liver diseases, such as HCC, DILI, and NAFLD, demonstrated that LAN-CA provides exceptional imaging accuracy and therapeutic monitoring capabilities. In conclusion, this probe not only can be a promising tool for accurate liver disease diagnosis, but also can provide valuable insights into treatment efficacy.
Collapse
Affiliation(s)
- Jingkang Li
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Mo Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China; School of Pharmacy, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Zhimin Zhang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Lanlan Xu
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Bin Yang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Quanping Diao
- Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, School of Chemistry and Life Science, Anshan Normal University, Anshan, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China.
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China; Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, School of Chemistry and Life Science, Anshan Normal University, Anshan, China.
| |
Collapse
|
6
|
Li C, Li C, Wang Y, You S, Man KY, Fan Z, Yu Q, Zhang M, Cheng KKY, Mok DKW, Chan SW, Zhang H. Polygoni Cuspidati Rhizoma et Radix extract activates TFEB and alleviates hepatic steatosis by promoting autophagy. Life Sci 2024; 359:123158. [PMID: 39454991 DOI: 10.1016/j.lfs.2024.123158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/23/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Hepatic steatosis, characterized by excessive lipid accumulation in the liver, can be ameliorated by autophagy activation. Polygoni Cuspidati rhizome et Radix (PCRR), traditionally used to treat atherosclerosis, hepatitis, and gallstones, has recently demonstrated anti-steatotic effects in the liver. However, the active compounds and underlying mechanisms remain unclear. This study investigated whether PCRR water extract improves steatosis by modulating hepatic autophagic flux. We found that PCRR water extract promoted autophagic flux, enhanced lysosomal biogenesis, and alleviated lipid accumulation in the liver cell lines as well as in the livers of rats with steatosis. Mechanistically, PCRR water extract inhibited mechanistic target of rapamycin complex 1 (mTORC1) activity, leading to dephosphorylation and subsequent nuclear translocation of transcription factor EB (TFEB), a key regulator of lipophagy. TFEB knockdown attenuated PCRR-mediated lipophagy promotion in the liver cell lines. Furthermore, chloroquine (CQ)-mediated autophagy blockage abrogated the therapeutic effect of PCRR against hepatic steatosis in high-fat diet (HFD)-fed rats. These findings suggest that PCRR water extract acts as a novel autophagy enhancer and holds therapeutic potential for hepatic steatosis.
Collapse
Affiliation(s)
- Chang Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chenyu Li
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yi Wang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Sikun You
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200030, China
| | - Ka Yi Man
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zhunming Fan
- Institute of High Energy Physics, CAS, Beijing 100000, China; Spallation Neutron Source Science Center, CAS, Dongguan, Guangdong 523000, China
| | - Qian Yu
- Tumor Immunology and Cytotherapy of Medical Research Center, Center for GI Cancer Diagnosis and Treatment, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Meng Zhang
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Hong Kong, China
| | - Kenneth King-Yip Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; Shenzhen Research Institute, The Hong Kong Polytechnic University, Hong Kong, China; Research Centre for Chinese Medicine Innovation (RCMI), The Hong Kong Polytechnic University, Hong Kong, China
| | - Daniel Kam-Wah Mok
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China; Shenzhen Research Institute, The Hong Kong Polytechnic University, Hong Kong, China; Research Centre for Chinese Medicine Innovation (RCMI), The Hong Kong Polytechnic University, Hong Kong, China
| | - Shun-Wan Chan
- Department of Food and Health Sciences, Technological and Higher Education Institute of Hong Kong, Hong Kong, China
| | - Huan Zhang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China; Shenzhen Research Institute, The Hong Kong Polytechnic University, Hong Kong, China; Research Centre for Chinese Medicine Innovation (RCMI), The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
7
|
Liu SS, Yu T, Qiao YF, Gu SX, Chai XL. Research on Hepatocyte Regulation of PCSK9-LDLR and Its Related Drug Targets. Chin J Integr Med 2024; 30:664-672. [PMID: 36913119 DOI: 10.1007/s11655-023-3545-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2022] [Indexed: 03/14/2023]
Abstract
The prevalence of hyperlipidemia has increased significantly due to genetic, dietary, nutritional and pharmacological factors, and has become one of the most common pathological conditions in humans. Hyperlipidemia can lead to a range of diseases such as atherosclerosis, stroke, coronary heart disease, myocardial infarction, diabetes, and kidney failure, etc. High circulating low-density lipoprotein cholesterol (LDL-C) is one of the causes of hyperlipidemia. LDL-C in the blood binds to LDL receptor (LDLR) and regulates cholesterol homeostasis through endocytosis. In contrast, proprotein convertase subtilisin/kexin type 9 (PCSK9) mediates LDLR degradation via the intracellular and extracellular pathways, leading to hyperlipidemia. Targeting PCSK9-synthesizing transcription factors and downstream molecules are important for development of new lipid-lowering drugs. Clinical trials regarding PCSK9 inhibitors have demonstrated a reduction in atherosclerotic cardiovascular disease events. The purpose of this review was to explore the target and mechanism of intracellular and extracellular pathways in degradation of LDLR and related drugs by PCSK9 in order to open up a new pathway for the development of new lipid-lowering drugs.
Collapse
Affiliation(s)
- Su-Su Liu
- School of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, 102401, China
| | - Tong Yu
- School of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, 102401, China
| | - Yan-Fang Qiao
- School of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, 102401, China
| | - Shu-Xiao Gu
- School of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, 102401, China
| | - Xin-Lou Chai
- School of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, 102401, China.
| |
Collapse
|
8
|
Ding G, Guo X, Li X, An L, Shi H. Study of active components and mechanisms mediating the hypolipidemic effect of Inonotus obliquus polysaccharides. Food Sci Nutr 2024; 12:2833-2845. [PMID: 38628208 PMCID: PMC11016437 DOI: 10.1002/fsn3.3964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 04/19/2024] Open
Abstract
Hyperlipidemia is a multifaceted metabolic disease, which is the major risk factor for atherosclerosis and cardiovascular diseases. Traditional Chinese medicine provides valuable therapeutic strategies in the treatment of hyperlipidemia. Inonotus obliquus has been used in traditional medicine to treat numerous diseases for a long time. To screen and isolate the fractions of I. obliquus polysaccharides (IOP) that can reduce blood lipid in the hyperlipemia animals and cell models, and investigate its mechanisms. The active component IOP-A2 was isolated, purified, and identified. In vivo, rats were randomly divided into blank control group (NG), the high-fat treatment group (MG), lovastatin group (PG), and IOP-A group. Compared with MG, the hyperlipidemic rats treated with IOP-A2 had decreased body weight and organ indexes, with the level of serum total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) significantly decreased (p < .05), and level of serum high-density lipoprotein cholesterol (HDL-C) significantly increased (p < .05). Hepatocyte steatosis in hepatic lobules was significantly reduced. In vitro, the accumulation of lipid droplets in the model of fatty degeneration of HepG2 cells was significantly alleviated, and cellular TC and TG content was significantly decreased (p < .01). Moreover, the expression of recombinant cytochrome P450 7A1 (CYP7A1) and Liver X Receptor α (LXRα) were up-regulated (p < .05) both in vivo and in vitro. The results showed that IOP-A2 may exert its hypolipidemic activity by promoting cholesterol metabolism and regulating the expression of the cholesterol metabolism-related proteins CYP7A1, LXRα, SR-B1, and ABCA1.
Collapse
Affiliation(s)
- Guanwen Ding
- Clinical Medical CollegeHarbin Medical UniversityHarbinChina
| | - Xiao Guo
- School of PharmacyBeihua UniversityJilinChina
| | - Xiao Li
- School of PharmacyBeihua UniversityJilinChina
| | - Liping An
- School of PharmacyBeihua UniversityJilinChina
| | - Huawen Shi
- Harbin Medical University Cancer HospitalHarbinChina
| |
Collapse
|
9
|
Yue J, Xu J, Yin Y, Shu Y, Li Y, Li T, Zou Z, Wang Z, Li F, Zhang M, Liang S, He X, Liu Z, Wang Y. Targeting the PDK/PDH axis to reverse metabolic abnormalities by structure-based virtual screening with in vitro and in vivo experiments. Int J Biol Macromol 2024; 262:129970. [PMID: 38325689 DOI: 10.1016/j.ijbiomac.2024.129970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
In humans and animals, the pyruvate dehydrogenase kinase (PDK) family proteins (PDKs 1-4) are excessively activated in metabolic disorders such as obesity, diabetes, and cancer, inhibiting the activity of pyruvate dehydrogenase (PDH) which plays a crucial role in energy and fatty acid metabolism and impairing its function. Intervention and regulation of PDH activity have become important research approaches for the treatment of various metabolic disorders. In this study, a small molecule (g25) targeting PDKs and activating PDH, was identified through multi-level computational screening methods. In vivo and in vitro experiments have shown that g25 activated the activity of PDH and reduced plasma lactate and triglyceride level. Besides, g25 significantly decreased hepatic fat deposition in a diet-induced obesity mouse model. Furthermore, g25 enhanced the tumor-inhibiting activity of cisplatin when used in combination. Molecular dynamics simulations and in vitro kinase assay also revealed the specificity of g25 towards PDK2. Overall, these findings emphasize the importance of targeting the PDK/PDH axis to regulate PDH enzyme activity in the treatment of metabolic disorders, providing directions for future related research. This study provides a possible lead compound for the PDK/PDH axis related diseases and offers insights into the regulatory mechanisms of this pathway in diseases.
Collapse
Affiliation(s)
- Jianda Yue
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China
| | - Jiawei Xu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China
| | - Yekui Yin
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China
| | - Yuanyuan Shu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China
| | - Yaqi Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China
| | - Tingting Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China
| | - Zirui Zou
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China
| | - Zihan Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China
| | - Fengjiao Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China
| | - Mengqi Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China
| | - Songping Liang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China; New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai 200062, China
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China.
| | - Ying Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
10
|
Kim YS, Han JH, Lim CH, Fang XQ, Jang HS, Lee SY, Yim WJ, Lim JH. Effects of Fermented Polygonum cuspidatum on the Skeletal Muscle Functions. Nutrients 2024; 16:305. [PMID: 38276543 PMCID: PMC10818974 DOI: 10.3390/nu16020305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/01/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Plant extract fermentation is widely employed to enhance the nutritional and pharmaceutical value of functional foods. Polygonum cuspidatum (Pc) contains flavonoids, anthraquinones, and stilbenes, imparting protective effects against inflammatory diseases, cancer, diabetes, and cardiovascular diseases. However, the effects of fermented Pc on skeletal muscle strength remain unexplored. In this study, we generated fermented Pc using a complex of microorganisms containing Lactobacillus spp. (McPc) and assessed its effects on muscle strength and motor function in mice. Compared to unfermented Pc water extract, elevated levels of emodin and resveratrol were noted in McPc. This was identified and quantified using UPLC-QTOF/MS and HPLC techniques. Gene expression profiling through RNA-seq and quantitative RT-PCR revealed that McPc administration upregulated the expression of genes associated with antioxidants, glycolysis, oxidative phosphorylation, fatty acid oxidation, and mitochondrial biogenesis in cultured C2C12 myotubes and the gastrocnemius muscle in mice. McPc significantly improved skeletal muscle strength, motor coordination, and traction force in mice subjected to sciatic neurectomy and high-fat diet (HFD). McPc administration exhibited more pronounced improvement of obesity, hyperglycemia, fatty liver, and hyperlipidemia in HFD mice compared to control group. These findings support the notion that emodin and resveratrol-enriched McPc may offer health benefits for addressing skeletal muscle weakness.
Collapse
Affiliation(s)
- Young-Seon Kim
- Department of Medicinal Biosciences, College of Biomedical & Health Science, Konkuk University, 268, Chungwon-daero, Chungju 27478, Chungbuk, Republic of Korea; (Y.-S.K.); (C.-H.L.); (X.-Q.F.)
- BK21 Program, Department of Applied Life Science, Graduate School, Konkuk University, 268, Chungwon-daero, Chungju 27478, Chungbuk, Republic of Korea
- Jung-Ang Microbe Research Institute (JM), 398, Jikji-daero, Heungdeok-gu, Cheongju 28576, Chungbuk, Republic of Korea; (J.-H.H.); (H.-S.J.); (S.-Y.L.); (W.-J.Y.)
| | - Ji-Hye Han
- Jung-Ang Microbe Research Institute (JM), 398, Jikji-daero, Heungdeok-gu, Cheongju 28576, Chungbuk, Republic of Korea; (J.-H.H.); (H.-S.J.); (S.-Y.L.); (W.-J.Y.)
| | - Chang-Hoon Lim
- Department of Medicinal Biosciences, College of Biomedical & Health Science, Konkuk University, 268, Chungwon-daero, Chungju 27478, Chungbuk, Republic of Korea; (Y.-S.K.); (C.-H.L.); (X.-Q.F.)
- BK21 Program, Department of Applied Life Science, Graduate School, Konkuk University, 268, Chungwon-daero, Chungju 27478, Chungbuk, Republic of Korea
- Center for Metabolic Diseases, Konkuk University, 268, Chungwon-daero, Chungju 27478, Chungbuk, Republic of Korea
| | - Xue-Quan Fang
- Department of Medicinal Biosciences, College of Biomedical & Health Science, Konkuk University, 268, Chungwon-daero, Chungju 27478, Chungbuk, Republic of Korea; (Y.-S.K.); (C.-H.L.); (X.-Q.F.)
- BK21 Program, Department of Applied Life Science, Graduate School, Konkuk University, 268, Chungwon-daero, Chungju 27478, Chungbuk, Republic of Korea
- Center for Metabolic Diseases, Konkuk University, 268, Chungwon-daero, Chungju 27478, Chungbuk, Republic of Korea
| | - Hyeock-Soon Jang
- Jung-Ang Microbe Research Institute (JM), 398, Jikji-daero, Heungdeok-gu, Cheongju 28576, Chungbuk, Republic of Korea; (J.-H.H.); (H.-S.J.); (S.-Y.L.); (W.-J.Y.)
| | - Sang-Yun Lee
- Jung-Ang Microbe Research Institute (JM), 398, Jikji-daero, Heungdeok-gu, Cheongju 28576, Chungbuk, Republic of Korea; (J.-H.H.); (H.-S.J.); (S.-Y.L.); (W.-J.Y.)
| | - Woo-Jong Yim
- Jung-Ang Microbe Research Institute (JM), 398, Jikji-daero, Heungdeok-gu, Cheongju 28576, Chungbuk, Republic of Korea; (J.-H.H.); (H.-S.J.); (S.-Y.L.); (W.-J.Y.)
| | - Ji-Hong Lim
- Department of Medicinal Biosciences, College of Biomedical & Health Science, Konkuk University, 268, Chungwon-daero, Chungju 27478, Chungbuk, Republic of Korea; (Y.-S.K.); (C.-H.L.); (X.-Q.F.)
- BK21 Program, Department of Applied Life Science, Graduate School, Konkuk University, 268, Chungwon-daero, Chungju 27478, Chungbuk, Republic of Korea
- Center for Metabolic Diseases, Konkuk University, 268, Chungwon-daero, Chungju 27478, Chungbuk, Republic of Korea
| |
Collapse
|
11
|
Zhang X, Yin T, Wang Y, Du J, Dou J, Zhang X. Effects of scutellarin on the mechanism of cardiovascular diseases: a review. Front Pharmacol 2024; 14:1329969. [PMID: 38259289 PMCID: PMC10800556 DOI: 10.3389/fphar.2023.1329969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Cardiovascular diseases represent a significant worldwide problem, jeopardizing individuals' physical and mental wellbeing as well as their quality of life as a result of their widespread incidence and fatality. With the aging society, the occurrence of Cardiovascular diseases is progressively rising each year. However, although drugs developed for treating Cardiovascular diseases have clear targets and proven efficacy, they still carry certain toxic and side effect risks. Therefore, finding safe, effective, and practical treatment options is crucial. Scutellarin is the primary constituent of Erigeron breviscapus (Vant.) Hand-Mazz. This article aims to establish a theoretical foundation for the creation and use of secure, productive, and logical medications for Scutellarin in curing heart-related illnesses. Additionally, the examination and analysis of the signal pathway and its associated mechanisms with regard to the employment of SCU in treating heart diseases will impart innovative resolving concepts for the treatment and prevention of Cardiovascular diseases.
Collapse
Affiliation(s)
- Xinyu Zhang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tong Yin
- First Clinical Medical School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yincang Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiazhe Du
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jinjin Dou
- Department of Cardiovascular, The First Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiwu Zhang
- Experimental Training Centre, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
12
|
Zhang K, Zhou Y, Xie Z, Liu G. Subcutaneous and Orbital Adipose Tissues: Intrinsic Differences in Carotenoid Contents and Lipidomic Compositions. ACS OMEGA 2023; 8:28052-28059. [PMID: 37576671 PMCID: PMC10413450 DOI: 10.1021/acsomega.2c08013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 07/07/2023] [Indexed: 08/15/2023]
Abstract
The color difference in human subcutaneous fat (SF) and orbital fat (OF) is apparent, but the reasons have been rarely elaborated. We speculate that differences in carotenoid and lipid contents may account for the discrepancy in color. In this study, the intrinsic differences in SF and OF were analyzed using ultrahigh-performance liquid chromatography coupled with Q-Exactive liquid chromatography mass spectrometry/mass spectrometry (UPLC-QE Plus LC-MS/MS). Lipid profiling was performed in an independent batch. The morphology between orbital septum and SF differed statistically in the size of adipocytes and the distribution area of adipocytes. We compared carotenoid contents between two groups (seven samples) and found that lutein was more abundant in SF than that in OF with a p-value of 0.0409, suggesting that lutein could be mainly responsible for the yellow color of adipose tissue. Lipidomic results proved that SF and OF were well differentiated. Totally, 402 lipid features were detected, with 349 features in the positive ion mode and 53 features in the negative ion mode. Features (99.9%) in the positive ion mode and features (98.7%) in the negative ion mode well described various separation patterns in principal component analysis. Thirty-two features selected by variable importance in projection might account for the diversity of compounds in SF and OF. In conclusion, SF and OF differed from each other in carotenoids and lipidome. It is helpful to study the metabolism process of lipid droplets in adipocytes.
Collapse
Affiliation(s)
- Kaili Zhang
- Department
of Plastic and Reconstructive Surgery, Shanghai
Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200040, P. R. China
| | - Yuping Zhou
- Department
of Anesthesiology, Shanghai Skin Disease
Hospital, Tongji University School of Medicine, Shanghai 200040, P. R. China
| | - Ziao Xie
- Department
of Plastic and Reconstructive Surgery, Shanghai
Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200040, P. R. China
| | - Guangpeng Liu
- Department
of Plastic and Reconstructive Surgery, Shanghai
Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200040, P. R. China
| |
Collapse
|
13
|
Song Z, Chen R, Wang C, Pan G, Yan A, Xie G, Yang Z, Feng W, Wang Y. Effect and mechanism of Tangzhiqing in improving cardiac function in mice with hyperlipidaemia complicated with myocardial ischaemia. Heliyon 2023; 9:e15645. [PMID: 37159711 PMCID: PMC10163619 DOI: 10.1016/j.heliyon.2023.e15645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
Purpose Tangzhiqing formula (TZQ) is a traditional Chinese medicine prescribed to treat lipid metabolism disorders, atherosclerosis, diabetes and diabetic cardiomyopathy. However, some challenges and hurdles remain. TZQ showed promising results in treating diabetes and hyperlipidaemia. However, its effect on and mechanism of action in hyperlipidaemia complicated with myocardial ischaemia (HL-MI) remain unknown. Methods In this study, a network pharmacology-based strategy integrating target prediction was adopted to predict the targets of TZQ relevant to the treatment of HL-MI and to further explore the involved pharmacological mechanisms. Results A total of 104 potential therapeutic targets were obtained, including MMP9, Bcl-2, and Bax, which may be related to the apoptosis and PI3K/AKT signalling pathways. Then, we confirmed these potential targets and pathways with animal experimentation. TZQ reduced lipid levels, increased the expression levels of Bcl-2, decreased Bax, caspase-3 and caspase-9 expression levels, and activated the PI3K/AKT signalling pathway. Conclusion In conclusion, this study provides new insights into the protective mechanisms of TZQ against HL-MI through network pharmacology and pharmacological approaches.
Collapse
Affiliation(s)
- Zhihui Song
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Rui Chen
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Caijun Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Guiyun Pan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - An Yan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Guinan Xie
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhihua Yang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wanying Feng
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yi Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Corresponding author. Tianjin University of Traditional Chinese Medicine, #10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China.
| |
Collapse
|
14
|
Xu P, Wang X, Lin T, Shao Q, Peng J, Chu C, Tong S. A Strategy for Pinpointing Natural Bioactive Components Using Two-Dimensional Bioassay Profilings Combined with Comprehensive Two-Dimensional Countercurrent Chromatography × High-Performance Liquid Chromatography. Anal Chem 2022; 94:12715-12722. [PMID: 36076186 DOI: 10.1021/acs.analchem.2c02196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inspired by the interpretation of two-dimensional (2D) nuclear magnetic resonance spectra, an efficient strategy was proposed for pinpointing bioactive components from complex natural products. An off-line comprehensive countercurrent chromatography (CCC) × high-performance liquid chromatography (HPLC) was employed to achieve a 2D chemical chromatogram, and 2D bioassay profilings were obtained from bioassays of the eluent of the first dimension (1D) CCC and the eluent of the second dimension (2D) HPLC. Then 2D chemical chromatograms and 2D bioassay profilings were matched for pinpointing bioactive natural components from complex matrices. Thus, bioactive components in a complex matrix could be efficiently analyzed, separated, and bioactivity-determined. This experimental scheme was successfully demonstrated with a traditional medicinal herb Polygonum cuspidatum Sieb. et Zucc. The feasibility of this 2D strategy was verified with tyrosinase inhibition assay, α-glucosidase inhibition assay, DPPH radical scavenging assay, and ABTS•+ decolorization assay. Eight natural inhibitors were successfully pinpointed and identified from P. cuspidatum. Both pieceid-2″-O-gallate (10) and vanicoside B (20) were screened and identified as natural tyrosinase inhibitors for the first time. Meanwhile, vanicoside B (20) was also found as the strongest α-glucosidase inhibitor among all the isolated components. Most of the compounds exhibited much higher radical scavenging activities. Compared with traditional methodology based on one-dimensional chromatographic separation, the present 2D strategy would be more precise, efficient, and convenient to screen and separate bioactive compounds from complex matrices.
Collapse
Affiliation(s)
- Ping Xu
- College of Pharmaceutical Science, Zhejiang University of Technology, 310032 Hangzhou, China
| | - Xiang Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 210009 Nanjing, China
| | - Tingting Lin
- College of Pharmaceutical Science, Zhejiang University of Technology, 310032 Hangzhou, China
| | - Qingsong Shao
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, 311300 Hangzhou, China
| | - Jianyun Peng
- Department of Nephrology, The Sixth Affiliated Hospital of Wenzhou Medical University Lishui People's Hospital, 323000 Lishui, China
| | - Chu Chu
- College of Pharmaceutical Science, Zhejiang University of Technology, 310032 Hangzhou, China
| | - Shengqiang Tong
- College of Pharmaceutical Science, Zhejiang University of Technology, 310032 Hangzhou, China
| |
Collapse
|
15
|
Zhou L, Tian H, Wang Q, Xiong W, Zhou X, Yan J. Effect of Qingfei Huaxian Decoction combined with prednisone acetate on serum inflammatory factors and pulmonary function of patients with idiopathic pulmonary fibrosis. Am J Transl Res 2022; 14:5905-5914. [PMID: 36105016 PMCID: PMC9452306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To determine the effect of Qingfei Huaxian Decoction combined with prednisone acetate on serum inflammatory factors and pulmonary function in patients with idiopathic pulmonary fibrosis (IPF). METHODS The clinical data of 118 patients with IPF treated in Wuhan Hospital of Traditional Chinese Medicine from June 2019 to August 2021 were retrospectively analyzed. Among the patients, 56 patients treated with prednisone acetate were assigned to the control group, and the remaining 62 patients treated with Qingfei Huaxian Decoction combined with prednisone acetate were assigned to the observation group. The efficacy and incidence of adverse reactions were compared between the two groups, and forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC), FEV1/FVC, interleukin-6 (IL-6), interleukin-12 (IL-12), interleukin-18 (IL-18), hyaluronic acid (HA) and laminin (LN) in the two groups were evaluated before and after therapy. Logistic regression was conducted to analyze the risk factors impacting the treatment efficacy in patients. RESULTS After therapy, the observation group showed significantly higher efficacy than the control group. Compared with the control group, the observation group showed significantly higher levels of FEV1, FVC and FEV1/FVC, significantly lower levels of HA and LN, and a significantly higher IL-12 level (all P < 0.05). Therapeutic regimen, IL-6, IL-12, IL-18 and HA were independent risk factors impacting the efficacy of treatment in patients (P < 0.05). CONCLUSION Qingfei Huaxian Decoction combined with prednisone acetate has greater treatmetn efficacy in patients with IPF by improving the serum inflammatory factors and pulmonary function.
Collapse
Affiliation(s)
- Lei Zhou
- Nephrology Department, Wuhan Hospital of Traditional Chinese MedicineNo. 303 Sixin Avenue, Hanyang District, Wuhan 430050, Hubei, China
| | - Hui Tian
- Department of Pulmonary Diseases, Wuhan Hospital of Traditional Chinese MedicineWuhan 430050, Hubei, China
| | - Qiong Wang
- Endocrine Department, Wuhan Hospital of Traditional Chinese MedicineWuhan 430050, Hubei, China
| | - Wuzhong Xiong
- Endocrine Department, Wuhan Hospital of Traditional Chinese MedicineWuhan 430050, Hubei, China
| | - Xiang Zhou
- Clinical Laboratory, Wuhan Hospital of Traditional Chinese MedicineWuhan 430050, Hubei, China
| | - Jingjing Yan
- Department of Pulmonary Diseases, Wuhan Hospital of Traditional Chinese MedicineWuhan 430050, Hubei, China
| |
Collapse
|