1
|
Hu P, Tao Y, Chen Y, Yang Y, Wang B, Mei W, Wang K, Wu Y. Therapeutic Evaluation of Wumei Pill (WP) for Nocturnal Asthma in Bmal1 Gene Knockout Mice. J Asthma 2025:1-12. [PMID: 39976370 DOI: 10.1080/02770903.2025.2469317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/29/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
OBJECTIVE Previous clinical studies have demonstrated that Wumei Pill (WP), a traditional Chinese medicine formula, can effectively alleviate nocturnal asthma-related anxiety and improve nighttime symptoms. The therapeutic mechanism of WP may involve regulation of inflammatory chemokines in peripheral blood. This mechanism is potentially linked to modulation of the circadian clock gene ARNT-like protein-1 (Bmal1), but precise pathways underlying this interaction remain unclear, requiring further investigation. METHODS Bmal1 knockout and wild-type mice were utilized to establish asthma models. Techniques such as flow cytometry, RT-PCR, and ELISA were employed to measure the levels of serum inflammatory mediators, specifically IFN-γ, CXCL16, I-TAC, and PARC. Furthermore, the pathological alterations in airway thickness were assessed. Additionally, we investigated the regulation of the Bmal1 gene and its influence on the circadian rhythm-related recruitment of leukocytes, as well as the expression patterns of downstream mediators. RESULTS Compared to the wild-type (WT) group, the model group showed significantly higher levels of CXCL16, I-TAC, and PARC (p < 0.05), as well as a notable decrease in IFN-γ expression. WP treatment effectively normalized the levels of these inflammatory factors in the model group, indicating a regulatory effect of WP on inflammatory chemokines. CONCLUSION The knockout of the Bmal1 gene, a crucial regulator of circadian rhythms, disrupts the circadian expression of inflammatory chemokines. Treatment with WP modulated Bmal1 expression, influencing the release of these mediators, offering a promising strategy for managing nocturnal asthma. Notably, wild-type nocturnal asthma mice exhibited significantly better control of airway inflammation compared to their Bmal1-deficient counterparts, highlighting the importance of circadian regulation in the pathophysiology of asthma.
Collapse
Affiliation(s)
- Po Hu
- Department of Pulmonary Diseases, Changzhou Traditional Chinese Medicine Hospital, Jiangsu, 213000, China
| | - Yili Tao
- Department of Pulmonary Diseases, Changzhou Traditional Chinese Medicine Hospital, Jiangsu, 213000, China
| | - Yunwei Chen
- Department of Pulmonary Diseases, Changzhou Traditional Chinese Medicine Hospital, Jiangsu, 213000, China
| | - Ying Yang
- Department of Pulmonary Diseases, Changzhou Traditional Chinese Medicine Hospital, Jiangsu, 213000, China
| | - Bohan Wang
- Department of Pulmonary Diseases, Changzhou Traditional Chinese Medicine Hospital, Jiangsu, 213000, China
| | - Wenxing Mei
- Department of Pulmonary Diseases, Changzhou Traditional Chinese Medicine Hospital, Jiangsu, 213000, China
| | - Kejian Wang
- Department of Pulmonary Diseases, Changzhou Traditional Chinese Medicine Hospital, Jiangsu, 213000, China
| | - Ye Wu
- Department of Pulmonary Diseases, Changzhou Traditional Chinese Medicine Hospital, Jiangsu, 213000, China
| |
Collapse
|
2
|
Tang X, He M, Ren Y, Ji M, Yan X, Zeng W, Lv Y, Li Y, He Y. Traditional Chinese Medicine formulas-based interventions on colorectal carcinoma prevention: The efficacies, mechanisms and advantages. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:119008. [PMID: 39471879 DOI: 10.1016/j.jep.2024.119008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/08/2024] [Accepted: 10/26/2024] [Indexed: 11/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Traditional Chinese Medicine Formulas (TCMFs) represent a distinctive medical approach to disease treatment and have been utilized in clinical practice for treating intestinal diseases for thousands of years. Recently, TCMFs have received increasing attention due to their advantages of high efficiency, safety, as well as low toxicity, providing promising strategies for preventing colorectal carcinoma (CRC). Nonetheless, the potential mechanism of TCMFs in preventing CRC has not been fully elucidated. AIM OF THE STUDY The literature from the past three years was reviewed to highlight the therapeutic effects and underlying mechanisms of TCMFs in preventing CRC. MATERIALS AND METHODS The keywords have been searched, including "traditional Chinese medicine formulas," "herb pairs," "Herbal plant-derived nanoparticles," et al. in "PubMed" and "China National Knowledge Infrastructure (CNKI)," and screened published articles related to the treatment of intestinal precancerous lesions. This review primarily examined the effectiveness and mechanisms of TCMFs in treating intestinal precancerous lesions, highlighting their significant potential in preventing CRC. RESULTS Gegen Qinlian decoction, Shaoyao decoction, Wu Wei Wan, etc., exert substantial therapeutic effects on intestinal precancerous lesions. These therapeutic effects are demonstrated by a reduction in disease activity index scores, suppression of intestinal inflammation, and preservation of body weight and intestinal function, all of which contribute to the effective prevention of CRC. Besides, the classic Chinese herbal pairs and the extracellular vesicle-like nanoparticles of herbaceous plants have demonstrated superior efficacy in the treatment of intestinal precancerous lesions. Mechanistically, protecting the epithelial barrier, regulating gut microbiota as well as related metabolism, modulating macrophage polarization, and maintaining immune balance contribute to the role of TCMFs in CRC prevention. CONCLUSIONS This review demonstrates the great potential and mechanism of TCMFs in CRC prevention and provides a scientific basis for their utilization in CRC prevention.
Collapse
Affiliation(s)
- Xiaojuan Tang
- School of biomedical sciences, Hunan University, Changsha, 410012, Hunan, China; Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China; Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan, China.
| | - Min He
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Yuan Ren
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Meng Ji
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Xiaoqi Yan
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China
| | - Wen Zeng
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Yuan Lv
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China; Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan, China
| | - Yongmin Li
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China; Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan, China
| | - Yongheng He
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, 410006, Hunan, China; Hunan Academy of Chinese Medicine, Changsha, 410006, Hunan, China; Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
3
|
Gao F, Zhu F, Shuai B, Wu M, Wei C, Yuan Y, Gui Y, Tian Y, Fan H, Wu H. Quercetin ameliorates ulcerative colitis by restoring the balance of M2/M1 and repairing the intestinal barrier via downregulating cGAS‒STING pathway. Front Pharmacol 2024; 15:1351538. [PMID: 38774206 PMCID: PMC11106451 DOI: 10.3389/fphar.2024.1351538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/16/2024] [Indexed: 05/24/2024] Open
Abstract
Macrophage polarization is closely associated with the pathogenesis of ulcerative colitis (UC). Quercetin, a flavonoid, has shown promise as a treatment for inflammatory diseases, but its specific mechanism of action remains unclear. This study investigates whether quercetin can regulate intestinal macrophage polarization and promote intestinal tissue repair via the cGAS-STING pathway for the treatment of UC. In vivo, mice with 3% DSS-induced UC were intraperitoneally injected with quercetin and RU.521 for 7 days, following which their general conditions and corresponding therapeutic effects were assessed. The impact of interferon-stimulated DNA (ISD) and quercetin on macrophage polarization and the cGAS-STING pathway was investigated using RAW264.7 cells and bone marrow-derived macrophages (BMDMs) in vitro. The results demonstrated that ISD induced M1 macrophage polarization and activated the cGAS-STING pathway in vitro, while quercetin reversed ISD's inflammatory effects. In vivo, quercetin suppressed the cGAS-STING pathway in the intestinal macrophages of DSS-induced UC mice, which reduced M1 macrophage polarization, increased M2 polarization, and facilitated intestinal barrier repair in UC. Taken together, these findings provide new insights into the mechanisms via which quercetin could be used to treat UC.
Collapse
Affiliation(s)
- Fei Gao
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Shuai
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Wu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunzhu Wei
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuyi Yuan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Gui
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yushi Tian
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Wu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Zhang Y, Xie J, Fu E, Cai W, Xu W. Artificial intelligence in cardiology: a bibliometric study. Am J Transl Res 2024; 16:1029-1035. [PMID: 38586089 PMCID: PMC10994793 DOI: 10.62347/hsfe6936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 11/28/2023] [Indexed: 04/09/2024]
Abstract
OBJECTIVES To perform a comprehensive bibliometric analysis of global publications on the applications of artificial intelligence (AI) in cardiology. METHODS Documents related to AI in cardiology published between 2002 and 2022 were retrieved from Web of Science Core Collection. R package "bibliometrix", VOSviewers and Microsoft Excel were applied to perform the bibliometric analysis. RESULTS A total of 4332 articles were included. United States topped the list of countries publishing articles, followed by China and United Kingdom. The Harvard University was the institution that contributed the most to this field, followed by University of California System and University of London. Disease risk prediction, diagnosis, treatment, disease detection, and prognosis assessment were the research hotspots for AI in cardiology. CONCLUSIONS Enhancing cooperation between different countries and institutions is a critical step in leading to breakthroughs in the application of AI in cardiology. It is foreseeable that the application of machine learning and deep learning in various areas of cardiology will be a research priority in the coming years.
Collapse
Affiliation(s)
- Yalan Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical UniversityQuanzhou, Fujian, China
| | - Jingwen Xie
- Guangzhou University of Chinese MedicineGuangzhou, Guangdong, China
| | - Enlong Fu
- Guangzhou University of Chinese MedicineGuangzhou, Guangdong, China
| | - Wan Cai
- Shanghai University of Traditional Chinese MedicineShanghai, China
| | - Wentan Xu
- Department of Pharmacy, Jinjiang Municipal HospitalJinjiang, Fujian, China
| |
Collapse
|
5
|
Li X, Ji LJ, Feng KD, Huang H, Liang MR, Cheng SJ, Meng XD. Emerging role of exosomes in ulcerative colitis: Targeting NOD-like receptor family pyrin domain containing 3 inflammasome. World J Gastroenterol 2024; 30:527-541. [PMID: 38463022 PMCID: PMC10921143 DOI: 10.3748/wjg.v30.i6.527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/21/2023] [Accepted: 01/09/2024] [Indexed: 02/05/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic recurrent inflammatory bowel disease. Despite ongoing advances in our understanding of UC, its pathogenesis is yet unelucidated, underscoring the urgent need for novel treatment strategies for patients with UC. Exosomes are nanoscale membrane particles that mediate intercellular communication by carrying various bioactive molecules, such as proteins, RNAs, DNA, and metabolites. The NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is a cytosolic tripartite protein complex whose activation induces the maturation and secretion of proinflammatory cytokines interleukin-1β (IL-1β) and IL-18, triggering the inflammatory response to a pathogenic agent or injury. Growing evidence suggests that exosomes are new modulators of the NLRP3 inflammasome, with vital roles in the pathological process of UC. Here, recent evidence is reviewed on the role of exosomes and NLRP3 inflammasome in UC. First, the dual role of exosomes on NLRP3 inflammasome and the effect of NLRP3 inflammasome on exosome secretion are summarized. Finally, an outlook on the directions of exosome-NLRP3 inflammasome crosstalk research in the context of UC is proposed and areas of further research on this topic are highlighted.
Collapse
Affiliation(s)
- Xin Li
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou Province, China
| | - Li-Jiang Ji
- Department of Anorectal Surgery, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu Province, China
| | - Kai-Di Feng
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hua Huang
- Department of Anorectal Surgery, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu Province, China
| | - Mei-Rou Liang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shi-Jin Cheng
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiu-Dong Meng
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou Province, China
| |
Collapse
|
6
|
Sun C, Xiao K, He Y, Li X. Common mechanisms of Wumei pills in treating ulcerative colitis and type 2 diabetes: Exploring an integrative approach through network pharmacology. Medicine (Baltimore) 2024; 103:e37094. [PMID: 38277529 PMCID: PMC10817042 DOI: 10.1097/md.0000000000037094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/05/2024] [Indexed: 01/28/2024] Open
Abstract
Wumei pills (WMP), a classical Chinese herbal formula, have shown efficacy in the treatment of ulcerative colitis (UC) and type 2 diabetes (T2DM). However, the underlying mechanisms by which WMP simultaneously targets these distinct diseases remain unclear. In this study, a network pharmacology approach was employed to unravel the potential molecular mechanisms of WMP in UC and T2DM treatment. This analysis provides a bioinformatics foundation for the traditional Chinese medicine concept of "treating different diseases with the same treatment." WMP was found to contain 65 active components, including flavonoids, sterols, and alkaloids, that act on 228 shared targets for UC and T2DM. Network analysis identified 5 core compounds (Quercetin, Kaempferol, beta-Sitosterol, Isocorypalmine, Stigmasterol) and 8 core proteins (AKT1, ESR1, TP53, IL6, JUN, MYC, TNF, EGFR) that play pivotal roles in the treatment of UC and T2DM by WMP. WMP exerts its therapeutic effects by modulating signaling pathways, including the NF-κB pathway, PI3K-Akt pathway, and p53 pathway. Molecular docking results indicate a strong binding affinity between core compounds and core genes. This study bridges the understanding of 2 diseases using network pharmacology and provides insights into shared therapeutic mechanisms, opening doors for further research in modern Chinese herbal formulations.
Collapse
Affiliation(s)
- Chang Sun
- Department of United Front Work, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Keyuan Xiao
- Changzhi People’s Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Yinxiong He
- Graduate school, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xinghua Li
- Changzhi People’s Hospital Affiliated to Changzhi Medical College, Changzhi, China
| |
Collapse
|
7
|
Zhang D, Fan B, Lv L, Li D, Yang H, Jiang P, Jin F. Research hotspots and trends of artificial intelligence in rheumatoid arthritis: A bibliometric and visualized study. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:20405-20421. [PMID: 38124558 DOI: 10.3934/mbe.2023902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Artificial intelligence (AI) applications on rheumatoid arthritis (RA) are becoming increasingly popular. In this bibliometric study, we aimed to analyze the characteristics of publications relevant to the research of AI in RA, thereby developing a thorough overview of this research topic. Web of Science was used to retrieve publications on the application of AI in RA from 2003 to 2022. Bibliometric analysis and visualization were performed using Microsoft Excel (2019), R software (4.2.2) and VOSviewer (1.6.18). The overall distribution of yearly outputs, leading countries, top institutions and authors, active journals, co-cited references and keywords were analyzed. A total of 859 relevant articles were identified in the Web of Science with an increasing trend. USA and China were the leading countries in this field, accounting for 71.59% of publications in total. Harvard University was the most influential institution. Arthritis Research & Therapy was the most active journal. Primary topics in this field focused on estimating the risk of developing RA, diagnosing RA using sensor, clinical, imaging and omics data, identifying the phenotype of RA patients using electronic health records, predicting treatment response, tracking the progression of the disease and predicting prognosis and developing new drugs. Machine learning and deep learning algorithms were the recent research hotspots and trends in this field. AI has potential applications in various fields of RA, including the risk assessment, screening, early diagnosis, monitoring, prognosis determination, achieving optimal therapeutic outcomes and new drug development for RA patients. Incorporating machine learning and deep learning algorithms into real-world clinical practice will be a future research hotspot and trend for AI in RA. Extensive collaboration to improve model maturity and robustness will be a critical step in the advancement of AI in healthcare.
Collapse
Affiliation(s)
- Di Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Bing Fan
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Liu Lv
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Da Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Huijun Yang
- Gansu Provincial Hospital of TCM, Lanzhou 730050, China
| | - Ping Jiang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Fangmei Jin
- Gansu Provincial Hospital of TCM, Lanzhou 730050, China
| |
Collapse
|
8
|
Zheng S, Xue T, Wang B, Guo H, Liu Q. Application of network pharmacology in the study of mechanism of Chinese medicine in the treatment of ulcerative colitis: A review. FRONTIERS IN BIOINFORMATICS 2022; 2:928116. [PMID: 36304327 PMCID: PMC9580908 DOI: 10.3389/fbinf.2022.928116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Network pharmacology is a research method based on a multidisciplinary holistic analysis of biological systems, which coincides with the idea of the holistic view of traditional Chinese medicine. In this review, we summarized the use of network pharmacology technology through studying Chinese medicine single medicine or Chinese medicine compound research ideas and methods for the treatment of ulcerative colitis, based on the application of the current network pharmacology in Chinese medicine research, including the important role in the mechanism of the prediction and verification, to search for new ideas for disease diagnosis and treatment, this study summarizes the application of network pharmacology in the treatment of ulcerative colitis in traditional Chinese medicine, including monotherapy and compound therapy, and considers that relevant research studies have fully demonstrated the function characteristics of the multi-component, multi-target, and multi-pathway of traditional Chinese medicine, and can also explain the connotation of “selecting appropriate treatment methods according to the differences and similarities of pathogenesis” of traditional Chinese medicine. Finally, we raised important questions about the prospects and limitations of network pharmacology, such as differences caused by different data collection methods, a considerable lag, and so on.
Collapse
Affiliation(s)
- Shihao Zheng
- Graduate School, Hebei University of Traditional Chinese Medicine, Shijiazhuang, China
| | - Tianyu Xue
- Graduate School, Hebei University of Traditional Chinese Medicine, Shijiazhuang, China
| | - Bin Wang
- Graduate School, Hebei University of Traditional Chinese Medicine, Shijiazhuang, China
| | - Haolin Guo
- Graduate School, Hebei University of Traditional Chinese Medicine, Shijiazhuang, China
| | - Qiquan Liu
- Graduate School, Hebei University of Traditional Chinese Medicine, Shijiazhuang, China
- Department of Spleen and Stomach, First Affiliated Hospital of Hebei University of Traditional Chinese Medicine, Shijiazhuang, China
- *Correspondence: Qiquan Liu,
| |
Collapse
|
9
|
Wumei Pill Ameliorates AOM/DSS-Induced Colitis-Associated Colon Cancer through Inhibition of Inflammation and Oxidative Stress by Regulating S-Adenosylhomocysteine Hydrolase- (AHCY-) Mediated Hedgehog Signaling in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4061713. [PMID: 35927991 PMCID: PMC9345734 DOI: 10.1155/2022/4061713] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023]
Abstract
Wumei Pill (WMP) is a traditional Chinese herbal formulation and widely used to treat digestive system diseases in clinical. S-Adenosylhomocysteine hydrolase (AHCY) can catalyze the hydrolysis of S-adenosylhomocysteine to adenosine and homocysteine in living organisms, and its abnormal expression is linked to the pathogenesis of many diseases including colorectal cancer (CRC). A previous study reported that WMP could prevent CRC in mice; however, the underlying mechanisms especially the roles of AHCY in WMP-induced anti-CRC remain largely unknown. Here, we investigated the regulatory roles and potential mechanisms of AHCY in WMP-induced anti-CRC. WMP notably alleviated the azoxymethane/dextran sulfate sodium- (AOM/DSS-) induced colitis-associated colon cancer (CAC) in mice. Besides, WMP inhibited the inflammation and oxidative stress in AOM/DSS-induced CAC mice. AHCY was high expression in clinical samples of colon cancer compared to the adjacent tissues. WMP inhibited the AHCY expression in AOM/DSS-induced CAC mice. An in vitro study found that AHCY overexpression induced cell proliferation, colony formation, invasion, and tumor angiogenesis, whereas its knockdown impaired its oncogenic function. AHCY overexpression enhanced, while its knockdown weakened the inflammation and oxidative stress in colon cancer cells. Interestingly, WMP potently suppressed the hedgehog (Hh) signaling in AOM/DSS-induced CAC mice. A further study showed that AHCY overexpression activated the Hh signaling while AHCY knockdown inactivated the Hh signaling. Moreover, activation of the Hh signaling reversed the effect of AHCY silencing on inflammation and oxidative stress in vitro. In conclusion, WMP alleviated the AOM/DSS-induced CAC through inhibition of inflammation and oxidative stress by regulating AHCY-mediated hedgehog signaling in mice. These findings uncovered a potential molecular mechanism underlying the anti-CAC effect of WMP and suggested WMP as a promising therapeutic candidate for CRC.
Collapse
|
10
|
Molecular Mechanism of the Effect of Zhizhu Pill on Gastroesophageal Reflux Disease Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2996865. [PMID: 35646148 PMCID: PMC9135531 DOI: 10.1155/2022/2996865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/15/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022]
Abstract
Background To investigate the pharmacological mechanism of Zhizhu pill (ZZP) against gastroesophageal reflux disease (GERD), network pharmacology in combination with molecular docking was applied in this study. Methods Active compounds of ZZP and target genes related to GERD were identified through public databases. Subsequently, the obtained data were used as a basis for further network pharmacological analysis to explore the potential key active compounds, core targets, and biological processes involved in ZZP against GERD. Finally, the results predicted by network pharmacology were validated by molecular docking. Results Twenty active components of ZZP were identified to act on 59 targets related to GERD. Enrichment analysis revealed that multiple biological processes including response to oxygen levels, response to oxidative stress, and response to reactive oxygen species were involved in the GERD ZZP treatment with ZZP. ZZP had an impact on the prognosis of GERD mainly through the HIF-1 signaling pathway, PI3K-Akt signaling pathway, and pathways in cancer. Further analysis identified the key components and core targets of ZZP against GERD, of which nobiletin, didymin, luteolin, and naringenin were key components, and PPARG, MMP9, JUN, TP53, PTGS2, EGFR, MAPK3, CASP3, AKT1, and VEGFA were the core targets. Molecular docking verified the stable bonds formed between the key components and the core targets. Conclusions The results of this study predict that the therapeutic effects of ZZP in GERD are mediated at least in part via PPARG, MMP9, JUN, TP53, PTGS2, EGFR, MAPK3, CASP3, AKT1, and VEGFA. These results may be useful in providing an experimental basis and new ideas for further research on ZZP in GERD.
Collapse
|