1
|
Zhao Q, Li W, Li W, Yang H, Wang X, Ding Z, Liu Z, Wang Z. Porphyromonas gingivalis-induced autophagy exacerbates abnormal lung homeostasis: An in vivo and in vitro study. Arch Oral Biol 2025; 169:106122. [PMID: 39486274 DOI: 10.1016/j.archoralbio.2024.106122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
OBJECTIVE The aim of this study was to evaluate the effect of periodontal Porphyromonas gingivalis (P. gingivalis) infection on lung homeostasis and to explore the underlying mechanism. DESIGNS In in vivo experiments, twelve mice were divided into two groups. The P. gingivalis infection group received P. gingivalis around the maxillary second molar, and the control group was left untreated. After 12 weeks, the histopathological changes of the lung tissue and the autophagy and apoptosis in the lung tissue cells were detected. In in vitro experiments, alveolar epithelial cell A549 was co cultured with P. gingivalis and treated with autophagy inhibitor chloroquine (CQ). Western blot was then used to detect autophagic markers LC3 and P62, and mRFP-GFP-LC3 was used to observe autophagic flux. Cell viability and apoptosis were also detected. RESULTS For the in vivo experiments, pathological changes were observed in the lung tissue of the P. gingivalis infection group at 12 weeks, along with higher levels of autophagy and apoptosis in the lung tissue cells. For the in vitro experiments, infection of alveolar epithelial cells with P. gingivalis inhibited cell viability and promoted cell autophagy and apoptosis. Interestingly, we found that inhibiting P. gingivalis-activated autophagy significantly improved cell apoptosis and viability damage induced by P. gingivalis. CONCLUSION Periodontal P. gingivalis infection can cause pathological changes and abnormal homeostasis in lung tissue, and the up-regulation of autophagy induced by P. gingivalis may play a synergistic role in this process.
Collapse
Affiliation(s)
- Qian Zhao
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Wenyue Li
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Wei Li
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hongjia Yang
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xueyuan Wang
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhaoyue Ding
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhiqiang Liu
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| | - Zuomin Wang
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Murray PE, Coffman JA, Garcia-Godoy F. Oral Pathogens' Substantial Burden on Cancer, Cardiovascular Diseases, Alzheimer's, Diabetes, and Other Systemic Diseases: A Public Health Crisis-A Comprehensive Review. Pathogens 2024; 13:1084. [PMID: 39770344 PMCID: PMC11677847 DOI: 10.3390/pathogens13121084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 11/28/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
This review synthesizes the findings from 252 studies to explore the relationship between the oral pathogens associated with periodontitis, dental caries, and systemic diseases. Individuals with oral diseases, such as periodontitis, are between 1.7 and 7.5 times (average 3.3 times) more likely to develop systemic diseases or suffer adverse pregnancy outcomes, underscoring the critical connection between dental and overall health. Oral conditions such as periodontitis and dental caries represent a significant health burden, affecting 26-47% of Americans. The most important oral pathogens, ranked by publication frequency, include the herpes virus, C. albicans, S. mutans, P. gingivalis, F. nucleatum, A. actinomycetemcomitans, P. intermedia, T. denticola, and T. forsythia. The systemic diseases and disorders linked to oral infections, ranked similarly, include cancer, respiratory, liver, bowel, fever, kidney, complications in pregnancy, cardiovascular bacteremia, diabetes, arthritis, autoimmune, bladder, dementia, lupus, and Alzheimer's diseases. Evidence supports the efficacy of dental and periodontal treatments in eliminating oral infections and reducing the severity of systemic diseases. The substantial burden that oral pathogens have on cancer, cardiovascular diseases, Alzheimer's, diabetes, and other systemic diseases poses a significant public health crisis.
Collapse
Affiliation(s)
| | - Jonathan A Coffman
- College of Pharmacy, American University of Health Sciences, Signal Hill, CA 90755, USA
| | - Franklin Garcia-Godoy
- College of Dentistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
3
|
Ashford JR. Impaired oral health: a required companion of bacterial aspiration pneumonia. FRONTIERS IN REHABILITATION SCIENCES 2024; 5:1337920. [PMID: 38894716 PMCID: PMC11183832 DOI: 10.3389/fresc.2024.1337920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
Laryngotracheal aspiration has a widely-held reputation as a primary cause of lower respiratory infections, such as pneumonia, and is a major concern of care providers of the seriously ill orelderly frail patient. Laryngeal mechanical inefficiency resulting in aspiration into the lower respiratory tract, by itself, is not the cause of pneumonia. It is but one of several factors that must be present simultaneously for pneumonia to develop. Aspiration of oral and gastric contentsoccurs often in healthy people of all ages and without significant pulmonary consequences. Inthe seriously ill or elderly frail patient, higher concentrations of pathogens in the contents of theaspirate are the primary catalyst for pulmonary infection development if in an immunocompromised lower respiratory system. The oral cavity is a complex and ever changing eco-environment striving to maintain homogeneity among the numerous microbial communities inhabiting its surfaces. Poor maintenance of these surfaces to prevent infection can result inpathogenic changes to these microbial communities and, with subsequent proliferation, can altermicrobial communities in the tracheal and bronchial passages. Higher bacterial pathogen concentrations mixing with oral secretions, or with foods, when aspirated into an immunecompromised lower respiratory complex, may result in bacterial aspiration pneumonia development, or other respiratory or systemic diseases. A large volume of clinical evidence makes it clear that oral cleaning regimens, when used in caring for ill or frail patients in hospitals and long-term care facilities, drastically reduce the incidence of respiratory infection and death. The purpose of this narrative review is to examine oral health as a required causative companionin bacterial aspiration pneumonia development, and the effectiveness of oral infection control inthe prevention of this disease.
Collapse
|
4
|
Garmendia J, Cebollero‐Rivas P. Environmental exposures, the oral-lung axis and respiratory health: The airway microbiome goes on stage for the personalized management of human lung function. Microb Biotechnol 2024; 17:e14506. [PMID: 38881505 PMCID: PMC11180993 DOI: 10.1111/1751-7915.14506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/19/2024] [Accepted: 05/24/2024] [Indexed: 06/18/2024] Open
Abstract
The human respiratory system is constantly exposed to environmental stimuli, sometimes including toxicants, which can trigger dysregulated lung immune responses that lead to respiratory symptoms, impaired lung function and airway diseases. Evidence supports that the microbiome in the lungs has an indispensable role in respiratory health and disease, acting as a local gatekeeper that mediates the interaction between the environmental cues and respiratory health. Moreover, the microbiome in the lungs is intimately intertwined with the oral microbiome through the oral-lung axis. Here, we discuss the intricate three-way relationship between (i) cigarette smoking, which has strong effects on the microbial community structure of the lung; (ii) microbiome dysbiosis and disease in the oral cavity; and (iii) microbiome dysbiosis in the lung and its causal role in patients suffering chronic obstructive pulmonary disease (COPD), a leading cause of morbidity and mortality worldwide. We highlight exciting outcomes arising from recently established interactions in the airway between environmental exposures, microbiome, metabolites-functional attributes and the host, as well as how these associations have the potential to predict the respiratory health status of the host through an airway microbiome health index. For completion, we argue that incorporating (synthetic) microbial community ecology in our contemporary understanding of lung disease presents challenges and also rises novel opportunities to exploit the oral-lung axis and its microbiome towards innovative airway disease diagnostics, prognostics, patient stratification and microbiota-targeted clinical interventions in the context of current therapies.
Collapse
Affiliation(s)
- Junkal Garmendia
- Instituto de AgrobiotecnologíaConsejo Superior de Investigaciones Científicas (IdAB‐CSIC)‐Gobierno de NavarraMutilvaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES)MadridSpain
| | - Pilar Cebollero‐Rivas
- Servicio de NeumologíaHospital Universitario de NavarraNavarraSpain
- Universidad Pública de Navarra (UPNa)NavarraSpain
| |
Collapse
|
5
|
MohanaSundaram A, Gohil NV, Etekochay MO, Patel P, Gurajala S, Sathanantham ST, Nsengiyumva M, Kumar S, Emran TB. Mycobacterium tuberculosis : a new hitchhiker in the etiopathogenesis of periodontitis. Int J Surg 2024; 110:3606-3616. [PMID: 38231241 PMCID: PMC11175725 DOI: 10.1097/js9.0000000000001122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/09/2024] [Indexed: 01/18/2024]
Abstract
Periodontitis, a chronic inflammatory disease of the gums affects both the ligament and alveolar bone. A severe form of periodontal disease affects a strikingly high number of one billion adults globally. The disease permutes both the soft and hard tissues of the oral cavity leading to localized and systemic diseases. Periodontitis has a deleterious impact on systemic health causing diabetes, cardiovascular diseases (CVD), and other disease. The cause of the enhanced inflammatory process is due to dysbiosis and an unregulated immune response. Innate immune response and T cells trigger uninhibited cytokine release causing an unwarranted inflammatory response. The RANK- RANKL interaction between osteoblasts, immune cells, and progenitor osteoclasts results in the maturation of osteoclasts, which promote bone resorption. It is well established that dysbiosis of the oral cavity has been implicated in periodontitis. But emerging reports suggest that the pulmonary pathogen, Mycobacterium tuberculosis (Mtb), causes extrapulmonary diseases such as periodontitis. Many clinical case reports advocate the involvement of Mtb in periodontitis, which poses a threat with the surge of tuberculosis in HIV and other immunocompromised individuals. Fostering a better understanding of the mechanism, causative agents and control on inflammatory response is imperative in the prevention and treatment of periodontitis.
Collapse
Affiliation(s)
| | | | | | | | - Swathi Gurajala
- College of Applied Medical Sciences in Jubail, Imam Abdulrahman bin Faisal University, Saudi Arabia
| | | | | | - Santosh Kumar
- Karnavati School of Dentistry Karnavati University Gandhinagar Gujarat, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
6
|
Zhang Z, Wen S, Liu J, Ouyang Y, Su Z, Chen D, Liang Z, Wang Y, Luo T, Jiang Q, Guo L. Advances in the relationship between periodontopathogens and respiratory diseases (Review). Mol Med Rep 2024; 29:42. [PMID: 38240101 PMCID: PMC10828996 DOI: 10.3892/mmr.2024.13166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/04/2023] [Indexed: 01/23/2024] Open
Abstract
Periodontitis is a common chronic inflammatory and destructive disease in the mouth and is considered to be associated with systemic diseases. Accumulating evidence has suggested that periodontitis is a risk factor for pulmonary diseases such as pneumonia, chronic obstructive pulmonary disease (COPD), asthma, coronavirus disease 2019 (COVID‑19) and lung cancer. The presence of common periodontal pathogens has been detected in samples from a variety of pulmonary diseases. Periodontal pathogens can be involved in lung diseases by promoting the adhesion and invasion of respiratory pathogens, regulating the apoptosis of respiratory epithelium and inducing overexpression of mucin and disrupting the balance of immune systemin respiratory epithelium cells. Additionally, measures to control plaque and maintain the health of periodontal tissue can decrease the incidence of respiratory adverse events. This evidence suggests a close association between periodontitis and pulmonary diseases. The present study aimed to review the clinical association between periodontitis and pneumonia, COPD, asthma, COVID‑19 and lung cancer, and propose a possible mechanism and potential role of periodontal pathogens in linking periodontal disease and lung disease. This could provide a direction for further research on the association between periodontitis and lung disease and provide novel ideas for the clinical diagnosis and treatment management of these two diseases.
Collapse
Affiliation(s)
- Zhiyi Zhang
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, P.R. China
| | - Siyi Wen
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, P.R. China
| | - Jiaohong Liu
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, P.R. China
| | - Yuanting Ouyang
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, P.R. China
| | - Zhikang Su
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, P.R. China
| | - Ding Chen
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, P.R. China
| | - Zitian Liang
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, P.R. China
| | - Yan Wang
- Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, State Key Laboratory of Respiratory Diseases, Guangzhou, Guangdong 510182, P.R. China
| | - Tao Luo
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, P.R. China
| | - Qianzhou Jiang
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, P.R. China
| | - Lvhua Guo
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, P.R. China
| |
Collapse
|
7
|
Tamiya H, Mitani A, Abe M, Nagase T. Putative Bidirectionality of Chronic Obstructive Pulmonary Disease and Periodontal Disease: A Review of the Literature. J Clin Med 2023; 12:5935. [PMID: 37762876 PMCID: PMC10531527 DOI: 10.3390/jcm12185935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/24/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
The prevalence of chronic obstructive pulmonary disease (COPD) is increasing worldwide and is currently the third leading cause of death globally. The long-term inhalation of toxic substances, mainly cigarette smoke, deteriorates pulmonary function over time, resulting in the development of COPD in adulthood. Periodontal disease is an inflammatory condition that affects most adults and is caused by the bacteria within dental plaque. These bacteria dissolve the gums around the teeth and the bone that supports them, ultimately leading to tooth loss. Periodontal disease and COPD share common risk factors, such as aging and smoking. Other similarities include local chronic inflammation and links with the onset and progression of systemic diseases such as ischemic heart disease and diabetes mellitus. Understanding whether interventions for periodontal disease improve the disease trajectory of COPD (and vice versa) is important, given our rapidly aging society. This review focuses on the putative relationship between COPD and periodontal disease while exploring current evidence and future research directions.
Collapse
Affiliation(s)
- Hiroyuki Tamiya
- Division for Health Service Promotion, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- The Department of Respiratory Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Akihisa Mitani
- The Department of Respiratory Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Masanobu Abe
- Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Takahide Nagase
- The Department of Respiratory Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
8
|
Xiong K, Yang P, Cui Y, Li J, Li Y, Tang B. Research on the Association Between Periodontitis and COPD. Int J Chron Obstruct Pulmon Dis 2023; 18:1937-1948. [PMID: 37675198 PMCID: PMC10479604 DOI: 10.2147/copd.s425172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023] Open
Abstract
Periodontitis is a common chronic bacteria-initiated inflammatory disease that is closely associated with various systemic diseases, including chronic obstructive pulmonary disease (COPD). Periodontitis and COPD share similar risk factors, pathology and microorganisms. Epidemiological and clinical research have shown positive correlation between the two diseases. Individuals with severe periodontitis had a higher risk of developing COPD. Moreover, the relative risk of COPD in severe periodontitis was much higher compared to people without periodontal disease and patients with mild to moderate periodontitis. COPD patients with periodontitis had a higher frequency of COPD exacerbation and periodontal treatment demonstrated some control of COPD. However, the nature of periodontitis affecting COPD still needs further exploration. Periodontitis caused microbial and immune imbalances of the lung through several aspects: (I) under periodontitis status, periodontal pathogens directly caused the lung inflammatory reaction after inhalation and colonization on the lung, (II) periodontitis status promoted the oral colonization of pneumonia-associated pathogens, (III) periodontitis status affected the respiratory epithelium structure and (IV) periodontitis status caused imbalances in neutrophils, macrophages and inflammatory cytokines. In this review, we conclude the association between periodontitis and COPD through several aspects and further discuss the potential mechanism by which periodontitis affects COPD.
Collapse
Affiliation(s)
- Kaixin Xiong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
| | - Peng Yang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Yujia Cui
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
| | - Jia Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
| | - Yan Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
| | - Boyu Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases & Department of Conservation Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
9
|
Shi T, Wang J, Dong J, Hu P, Guo Q. Periodontopathogens Porphyromonas gingivalis and Fusobacterium nucleatum and Their Roles in the Progression of Respiratory Diseases. Pathogens 2023; 12:1110. [PMID: 37764918 PMCID: PMC10535846 DOI: 10.3390/pathogens12091110] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
The intricate interplay between oral microbiota and the human host extends beyond the confines of the oral cavity, profoundly impacting the general health status. Both periodontal diseases and respiratory diseases show high prevalence worldwide and have a marked influence on the quality of life for the patients. Accumulating studies are establishing a compelling association between periodontal diseases and respiratory diseases. Here, in this review, we specifically focus on the key periodontal pathogenic bacteria Porphyromonas gingivalis and Fusobacterium nucleatum and dissect their roles in the onset and course of respiratory diseases, mainly pneumonia, chronic obstructive pulmonary disease, lung cancer, and asthma. The mechanistic underpinnings and molecular processes on how P. gingivalis and F. nucleatum contribute to the progression of related respiratory diseases are further summarized and analyzed, including: induction of mucus hypersecretion and chronic airway inflammation; cytotoxic effects to disrupt the morphology and function of respiratory epithelial cells; synergistic pathogenic effects with respiratory pathogens like Streptococcus pneumoniae and Pseudomonas aeruginosa. By delving into the complex relationship to periodontal diseases and periodontopathogens, this review helps unearth novel insights into the etiopathogenesis of respiratory diseases and inspires the development of potential therapeutic avenues and preventive strategies.
Collapse
Affiliation(s)
- Tao Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiale Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiajia Dong
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Pingyue Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qiang Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
10
|
Silva C, Requicha J, Dias I, Bastos E, Viegas C. Genomic Medicine in Canine Periodontal Disease: A Systematic Review. Animals (Basel) 2023; 13:2463. [PMID: 37570272 PMCID: PMC10417655 DOI: 10.3390/ani13152463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Genomic medicine has become a growing reality; however, it is still taking its first steps in veterinary medicine. Through this approach, it will be possible to trace the genetic profile of a given individual and thus know their susceptibility to certain diseases, namely periodontal disease. This condition is one of the most frequently diagnosed in companion animal clinics, especially in dogs. Due to the limited existing information and the lack of comprehensive studies, the objective of the present study was to systematically review the existing scientific literature regarding genomic medicine in canine periodontal disease and determine which genes have already been studied and their probable potential. This study followed the recommendations of the PRISMA 2020 methodology. Canine periodontal disease allied to genomic medicine were the subjects of this systematic review. Only six articles met all of the inclusion criteria, and these were analyzed in detail. These studies described genetic variations in the following genes: interleukin-6, interleukin-10, interleukin-1, lactotransferrin, toll-like receptor 9, and receptor activator of nuclear factor-kappa B. Only in two of them, namely interleukin-1 and toll-like receptor 9 genes, may the identified genetic variations explain the susceptibility that certain individuals have to the development of periodontal disease. It is necessary to expand the studies on the existing polymorphic variations in genes and their relationship with the development of periodontal disease. Only then will it be possible to fully understand the biological mechanisms that are involved in this disease and that determine the susceptibility to its development.
Collapse
Affiliation(s)
- Carolina Silva
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (C.S.); (J.R.); (I.D.)
- CECAV—Centre for Animal Sciences and Veterinary Studies, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - João Requicha
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (C.S.); (J.R.); (I.D.)
- CECAV—Centre for Animal Sciences and Veterinary Studies, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisboa, Portugal
| | - Isabel Dias
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (C.S.); (J.R.); (I.D.)
- CECAV—Centre for Animal Sciences and Veterinary Studies, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisboa, Portugal
- CITAB—Center for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Inov4Agro-Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, 5000-801 Vila Real, Portugal
| | - Estela Bastos
- CITAB—Center for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Inov4Agro-Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, 5000-801 Vila Real, Portugal
- Department of Genetics and Biotechnology, School of Life and Environmental Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Carlos Viegas
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (C.S.); (J.R.); (I.D.)
- CECAV—Centre for Animal Sciences and Veterinary Studies, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisboa, Portugal
- CITAB—Center for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Inov4Agro-Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, 5000-801 Vila Real, Portugal
| |
Collapse
|
11
|
Trukhan DI, Sulimov AF, Trukhan LY. Changes in the organs and tissues of the oral cavity in the new coronavirus infection (COVID-19): A review. CONSILIUM MEDICUM 2022. [DOI: 10.26442/20751753.2022.5.201755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
SARS-CoV-2 infection can cause changes in the organs and tissues of the oral cavity, which is associated with a wide distribution of angiotensin-converting enzyme type 2 in the oral cavity, mainly epithelial cells of the oral mucosa, gums and fibroblasts of the periodontal ligament. Thus, the oral mucosa is susceptible to SARS-CoV-2 infection and may act as a gateway for the virus, as well as a reservoir for SARS-CoV-2. We searched the literature for the period from the beginning of the pandemic until May 30, 2022, devoted to the study of changes in the organs and tissues of the oral cavity with a new coronavirus infection (COVID-19) in the electronic search engines PubMed/MEDLINE and Scopus. A special place in the study of changes in the organs and tissues of the oral cavity with a new coronavirus infection (COVID-19) is occupied by periodontal pathology. A number of reviews and clinical studies conclude the importance of good oral hygiene and periodontal health as an important aspect of COVID-19 prevention and management. Oral probiotics can be considered as a promising direction for correcting changes in organs and tissues of the oral cavity in COVID-19.
Collapse
|