1
|
Cao S, Han P. The Effect of Ulinastatin on Sepsis Outcomes: An Umbrella Review of Meta-Analysis. Clin Ther 2025; 47:377-383. [PMID: 40055068 DOI: 10.1016/j.clinthera.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 04/13/2025]
Abstract
OBJECTIVES Sepsis, a multifaceted disorder, emerges from dysregulated host response to infection, culminating in organ dysfunction and heightened risk of mortality. Present umbrella systematic review was conducted to impart accurate data regarding the effect of urinary trypsin inhibitor (UTI) alone, UTI in combination with thymosin α1, and UTI in combination with Xuebijing on sepsis and inflammation, 28-day mortality rate survival day, time of mechanical ventilation, length of intensive care unit stay, and acute physiology and chronic health evaluation (APACHE II) score. METHODS Relevant studies were searched in international databases, including PubMed, Scopus, EMBASE, Web of Science, and Cochrane Central Library up to March 2024. Our study included meta-analyses that evaluated the effects of ulinastatin (UTI) alone, or in combination with thymosin α1 or Xuebijing, on sepsis and inflammatory biomarkers. RESULTS Nine studies were deemed relevant and subsequently included in the study. The age of the study's participants was between 42.3 and 55.7 years. In total, the dose varied between 166 and 570 KIU/12 h. Moreover, the duration varied between 3 and 8.5 days. CONCLUSION A comprehensive assessment of ulinastatin's overall efficacy necessitates a careful consideration of the combined effects of ulinastatin with other interventions. Future research is warranted to disentangle the specific contributions of ulinastatin in combination therapies and to enhance our understanding of its independent effects in clinical settings.
Collapse
Affiliation(s)
- Sheng Cao
- Department of Pharmacy, Wuhan Hankou Hospital, Wuhan, China
| | - Ping Han
- Department of Pharmacy, Wuhan Hankou Hospital, Wuhan, China.
| |
Collapse
|
2
|
Zhao W, Liu Y, Hu Y, Zhang G. SOX4 accelerates intervertebral disc degeneration via EZH2/NRF2 pathway in response to mitochondrial ROS-dependent NLRP3 inflammasome activation in nucleus pulposus cells. J Transl Med 2025; 23:395. [PMID: 40181390 PMCID: PMC11969779 DOI: 10.1186/s12967-024-05913-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 11/22/2024] [Indexed: 04/05/2025] Open
Abstract
OBJECTIVE The transcription factor SRY-related HMG-box 4 (SOX4) has been implicated in intervertebral disc diseases. This study aimed to investigate the role of SOX4 in intervertebral disc degeneration (IDD) and explore the underlying molecular mechanisms. METHODS We established an IDD rat model via surgery and analyzed SOX4 expression using qRT-PCR and Western blotting. Histological evaluation, immunohistochemistry, and Safranin O staining assessed IDD progression. In vitro, an IDD cellular model was constructed using IL-1β-stimulated nucleus pulposus (NP) cells. SOX4 knockdown and overexpression experiments in NP cells examined SOX4 effects on ECM degradation, NLRP3-mediated pyroptosis, and mitochondrial ROS-dependent NLRP3 inflammasome activation. The involvement of the EZH2/NRF2 pathway in SOX4-mediated NLRP3 activation was also examined. RESULTS SOX4 expression was significantly increased in IDD rats and promoted IDD progression. Knockdown of SOX4 inhibited ECM degradation and NLRP3-mediated pyroptosis in NP cells. In vitro experiments showed that SOX4 promoted ECM degradation by upregulating MMPs and ADAMTS-5 expression, and suppressed collagen II and aggrecan synthesis. SOX4 knockdown inhibited NLRP3-mediated pyroptosis, while overexpression accelerated it in NP cells. Additionally, SOX4 was found to exacerbate mitochondrial ROS-dependent NLRP3 inflammasome activation in NP cells. Further investigation revealed that SOX4 enhanced NLRP3 inflammasome activation by upregulating EZH2 expression and modulating the EZH2/NRF2 pathway, with EZH2 inhibition attenuating SOX4-induced NLRP3 activation. CONCLUSION Our findings suggest that SOX4 accelerates IDD progression by promoting NLRP3 inflammasome activation via modulating the EZH2/NRF2 pathway, leading to NP cell pyroptosis and ECM degradation. Targeting SOX4 may represent a potential therapeutic strategy for treating IDD.
Collapse
Affiliation(s)
- Wenzhi Zhao
- Department of Traumatic Orthopedics, The Second Affiliated Hospital, Dalian Medical University, Dalian, 116011, China
| | - Yadong Liu
- Department of Spinal Surgery, Dalian Municipal Central Hospital, Dalian, 116033, China
| | - Yunxiang Hu
- Department of Spinal Surgery, Dalian Municipal Central Hospital, Dalian, 116033, China
| | - Guiqi Zhang
- Department of Spinal Surgery, Dalian Municipal Central Hospital, Dalian, 116033, China.
| |
Collapse
|
3
|
Han L, Li F, Wu H, Wang W, Chen P, Xia W, Liu Y, Sun K, Lin W. Targeting FABP4 to Inhibit AGEs-RAGE/NF-κB Signalling Effectively Ameliorates Nucleus Pulposus Dysfunction and Angiogenesis in Obesity-Related Intervertebral Disc Degeneration. Cell Prolif 2025:e70021. [PMID: 40090836 DOI: 10.1111/cpr.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/16/2025] [Accepted: 02/28/2025] [Indexed: 03/18/2025] Open
Abstract
Intervertebral disc degeneration (IVDD) is a primary contributor to low back pain, posing significant social and economic burdens. Increasing evidence shows that obesity contributes to IVDD, yet the underlying mechanisms remain elusive. Here, we firstly revealed a causal correlation between obesity and IVDD via a two-sample mendelian randomization analysis and identified fatty acid-binding protein 4 (FABP4) as the potential regulator to associate IVDD and obesity. Elevated FABP4 expression promoted extracellular matrix (ECM) disequilibrium and angiogenesis to exacerbate IVDD progression. Genetically knocking out or pharmacologically inhibiting FABP4 in high-fat diet-induced mice alleviated IVDD. Mechanistically, obesity activated the mammalian target of rapamycin complex 1 (mTORC1), which upregulated FABP4 expression, leading to the accumulation of advanced glycation end-products (AGEs) in intervertebral disc tissue. AGEs further activated the NF-κB signalling pathway, exacerbating ECM degradation and neovascularization. Conversely, rapamycin-mediated inhibition of mTORC1 suppressed FABP4 expression in nucleus pulposus cells (NPCs), alleviating IVDD in vivo. Collectively, our findings reveal a critical role of the obesity-induced mTORC1-FABP4 axis in ECM degradation and angiogenesis during IVDD progression. Targeting FABP4 may represent a promising therapeutic strategy for IVDD in obese individuals.
Collapse
Affiliation(s)
- Lin Han
- Department of Orthopedic Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- Department of Orthopedic Surgery, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Fudong Li
- Department of Orthopedic Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Huiqiao Wu
- Department of Orthopedic Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Weiheng Wang
- Department of Orthopedic Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Peiwen Chen
- Department of Orthopedic Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Weicheng Xia
- Department of Orthopedic Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yang Liu
- Department of Orthopedic Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Kaiqiang Sun
- Department of Orthopedic Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wenbo Lin
- Department of Orthopedic Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
4
|
Gu HY, Liu N. Mechanism of effect and therapeutic potential of NLRP3 inflammasome in spinal cord injury. Exp Neurol 2025; 384:115059. [PMID: 39571746 DOI: 10.1016/j.expneurol.2024.115059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
Spinal cord injury (SCI) is a serious and disabling central nervous system injury that can trigger various neuropathological conditions, resulting in neuronal damage and release of various pro-inflammatory mediators, leading to neurological dysfunction. Currently, surgical decompression, drugs and rehabilitation are primarily used to relieve symptoms and improve endogenous repair mechanisms; however, they cannot directly promote nerve regeneration and functional recovery. SCI can be divided into primary and secondary injuries. Secondary injury is key to determining the severity of injury, whereas inflammation and cell death are important pathological mechanisms in the process of secondary SCI. The activation of the inflammasome complex is thought to be a necessary step in neuro-inflammation and a key trigger for neuronal death. The NLRP3 inflammasome is a cytoplasmic multiprotein complex that is considered an important factor in the development of SCI. Once the NLRP3 inflammasome is activated after SCI, NLRP3 nucleates the assembly of an inflammasome, leading to caspase 1-mediated proteolytic activation of the interleukin-1β (IL-1β) family of cytokines, and induces an inflammatory, pyroptotic cell death. Inhibition of inflammasomes can effectively inhibit inflammation and cell death in the body and promote the recovery of nerve function after SCI. Therefore, inhibition of NLRP3 inflammasome activation may be a promising approach for the treatment of SCI. In this review, we describe the current understanding of NLRP3 inflammasome activation in SCI pathogenesis and its subsequent impact on SCI and summarize drugs and other potential inhibitors based on NLRP3 inflammasome regulation. The objective of this study was to emphasize the role of the NLRP3 inflammasome in SCI, and provide a new therapeutic strategy and theoretical basis for targeting the NLRP3 inflammasome as a therapy for SCI.
Collapse
Affiliation(s)
- Hou-Yun Gu
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital), Southern Medical University, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| | - Ning Liu
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital), Southern Medical University, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| |
Collapse
|
5
|
Chen S, Huang Y, Lei L, Yang C, Ran D, Zhou E, Wang H, Ning X. Daphnetin ameliorates intervertebral disc degeneration via the Keap1/Nrf2/NF-κB axis in vitro and in vivo. Int Immunopharmacol 2025; 145:113785. [PMID: 39672027 DOI: 10.1016/j.intimp.2024.113785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
Intervertebral disc degeneration (IVDD) is the primary cause of low back pain (LBP). Enhanced inflammation and reactive oxygen species (ROS) levels can cause apoptosis, which is one of the initial factors of IVDD. Our previous study showed that daphnetin (DAP) alleviates IVDD; however, the underlying mechanisms remain unknown. An IVDD mouse model was established by lumbar disc puncture to investigate the mechanisms of DAP regulation, and DAP was injected intraperitoneally. Moreover, nucleus pulposus cells (NPCs) were challenged with tumor necrosis factor-alpha (TNF-α)/H2O2 to mimic IVDD. Additionally, NPC apoptosis, ROS, and the expression of proinflammatory cytokines were comprehensively assessed. We found that DAP can reverse H2O2-induced ROS and play an anti-inflammatory role by inhibiting Nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. Moreover, we found that DAP inhibits the apoptosis of NPCs induced by H2O2/TNF-α. DAP may regulate ROS production and apoptosis via the Kelch-like ECH-associated protein 1/NF-E2-related factor 2/heme oxygenase-1 (Keap1/Nrf2/HO-1) pathway. These findings were confirmed by in vivo results. The comprehensive nature of our research provides a strong foundation for the potential use of DAP as a therapeutic agent to alleviate IVDD.
Collapse
Affiliation(s)
- Shunlun Chen
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, PR China
| | - Yuming Huang
- Department of Spinal Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, PR China
| | - Linchuan Lei
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China
| | - Cheng Yang
- Beijing Jishuitan Hospital Guizhou Hospital
| | - Dongcheng Ran
- School of Clinical Medicine, Guizhou Medical University, Guiyang 550004, PR China
| | - Enyu Zhou
- School of Clinical Medicine, Guizhou Medical University, Guiyang 550004, PR China
| | - Hua Wang
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Xu Ning
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, PR China.
| |
Collapse
|
6
|
Qiu B, Xie X, Xi Y. Mitochondrial quality control: the real dawn of intervertebral disc degeneration? J Transl Med 2024; 22:1126. [PMID: 39707402 DOI: 10.1186/s12967-024-05943-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 12/05/2024] [Indexed: 12/23/2024] Open
Abstract
Intervertebral disc degeneration is the most common disease in chronic musculoskeletal diseases and the main cause of low back pain, which seriously endangers social health level and increases people's economic burden. Disc degeneration is characterized by NP cell apoptosis, extracellular matrix degradation and disc structure changes. It progresses with age and under the influence of mechanical overload, oxidative stress and genetics. Mitochondria are not only the energy factories of cells, but also participate in a variety of cellular functions such as calcium homeostasis, regulation of cell proliferation, and control of apoptosis. The mitochondrial quality control system involves many mechanisms such as mitochondrial gene regulation, mitochondrial protein import, mitophagy, and mitochondrial dynamics. A large number of studies have confirmed that mitochondrial dysfunction is a key factor in the pathological mechanism of aging and intervertebral disc degeneration, and balancing mitochondrial quality control is extremely important for delaying and treating intervertebral disc degeneration. In this paper, we first demonstrate the molecular mechanism of mitochondrial quality control in detail by describing mitochondrial biogenesis and mitophagy. Then, we describe the ways in which mitochondrial dysfunction leads to disc degeneration, and review in detail the current research on targeting mitochondria for the treatment of disc degeneration, hoping to draw inspiration from the current research to provide innovative perspectives for the treatment of disc degeneration.
Collapse
Affiliation(s)
- Ba Qiu
- Department of Orthopedics, Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Xiaoxing Xie
- Department of Orthopedics, Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Yanhai Xi
- Department of Orthopedics, Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
7
|
Liu W, Li Q, Fang W, Cai L, Wang Z, Kou B, Zhou C, Zhou Y, Yao Z, Wei M, Zhang S. A 2AR regulate inflammation through PKA/NF-κB signaling pathways in intervertebral disc degeneration. Eur J Med Res 2024; 29:433. [PMID: 39192377 DOI: 10.1186/s40001-024-02028-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Reduction of inflammatory damage and inhibition of nucleus pulposus (NP) apoptosis are considered to be the main effective therapy idea to reverse the intervertebral disc degeneration (IDD) and alleviate the chronic low back pain. The adenosine A2A receptor (A2AR), as a member of G protein-coupled receptor families, plays an important role in the anti-inflammation and relieving pain. So far, the impact of A2AR on IDD therapy is unclear. The aim of this study was to explore the role of Adenosine A2A receptor (A2AR) in the intervertebral disc degeneration (IDD) and clarify potential mechanism. MATERIALS AND METHODS IL-1β and acupuncture was used to establish IDD model rats. A2AR agonist CGS-21680 and A2AR antagonist SCH442416 were used to investigate the therapeutical effects for IDD. Histological examination, western blotting analysis and RT-PCR were employed to evaluate the the association between A2AR and cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway. RESULTS A2AR activity of the intervertebral disc tissues was up-regulated in feedback way, and cAMP, PKA and CREB expression were also increased. But in general, IL-1β-induced IDD promoted the significant up-regulation the expression of inflammatory factors. The nucleus pulposus (NP) inflammation was exacerbated in result of MMP3 and Col-II decline through activating NF-κB signaling pathway. A2AR agonist CGS-21680 exhibited a disc protective effect through significantly increasing A2AR activity, then further activated cAMP/PKA signaling pathway with attenuating the release of TNF-α and IL-6 via down-regulating NF-κB. In contrast, SCH442416 inhibited A2AR activation, consistent with lower expression levels of cAMP and PKA, further leading to the acceleration of IDD. CONCLUSIONS The activation of A2AR can prevent inflammatory responses and mitigates degradation of IDD thus suggest a potential novel therapeutic strategy of IDD.
Collapse
Affiliation(s)
- Weijun Liu
- Department of Spine Surgery, Wuhan Fourth Hospital, Hanzheng Street, 473#, QiaoKou District, Wuhan, 430033, China.
| | - Qingbo Li
- Department of Spine Surgery, Wuhan Fourth Hospital, Hanzheng Street, 473#, QiaoKou District, Wuhan, 430033, China
| | - Weizhi Fang
- Department of Spine Surgery, Wuhan Fourth Hospital, Hanzheng Street, 473#, QiaoKou District, Wuhan, 430033, China
| | - Lei Cai
- Department of Spine Surgery, Wuhan Fourth Hospital, Hanzheng Street, 473#, QiaoKou District, Wuhan, 430033, China
| | - Zhengkun Wang
- Department of Spine Surgery, Wuhan Fourth Hospital, Hanzheng Street, 473#, QiaoKou District, Wuhan, 430033, China
| | - Bowen Kou
- Department of Spine Surgery, Wuhan Fourth Hospital, Hanzheng Street, 473#, QiaoKou District, Wuhan, 430033, China
| | - Chuankun Zhou
- Department of Spine Surgery, Wuhan Fourth Hospital, Hanzheng Street, 473#, QiaoKou District, Wuhan, 430033, China
| | - Yichi Zhou
- Department of Spine Surgery, Wuhan Fourth Hospital, Hanzheng Street, 473#, QiaoKou District, Wuhan, 430033, China
| | - Zhi Yao
- Department of Spine Surgery, Wuhan Fourth Hospital, Hanzheng Street, 473#, QiaoKou District, Wuhan, 430033, China
| | - Mengcheng Wei
- Department of Spine Surgery, Wuhan Fourth Hospital, Hanzheng Street, 473#, QiaoKou District, Wuhan, 430033, China
| | - Shishuang Zhang
- Department of Spine Surgery, Wuhan Fourth Hospital, Hanzheng Street, 473#, QiaoKou District, Wuhan, 430033, China
| |
Collapse
|
8
|
Zhang Q, Li J, Liu F, Hu J, Liu F, Zou J, Wang X. Ephrin B2 (EFNB2) potentially protects against intervertebral disc degeneration through inhibiting nucleus pulposus cell apoptosis. Arch Biochem Biophys 2024; 756:109990. [PMID: 38636690 DOI: 10.1016/j.abb.2024.109990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/20/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Nucleus pulposus (NP) cell apoptosis is a significant indication of accelerated intervertebral disc degeneration; however, the precise mechanism is unelucidated as of yet. Ephrin B2 (EFNB2), the only gene down-regulated in the three degraded intervertebral disc tissue microarray groups (GSE70362, GSE147383 and GSE56081), was screened for examination in this study. Subsequently, EFNB2 was verified to be down-regulated in degraded NP tissue samples. Interleukin-1 (IL-1β) treatment of NP cells to simulate the IDD environment indicated that IL-1β treatment decreased EFNB2 expression. In degenerative NP cells stimulated by IL-1β, EFNB2 knockdown significantly increased the rate of apoptosis as well as the apoptosis-related molecules cleaved-caspase-3 and the Bax to Bcl-2 ratio. EFNB2 was found to promote AKT, PI3K, and mTOR phosphorylation; the PI3K/AKT signaling role was investigated using the PI3K inhibitor LY294002. EFNB2 overexpression significantly increased PI3K/AKT pathway activity in IL-1β-stimulated NP cells than the normal control. Moreover, EFNB2 partially alleviated NP cell apoptosis induced by IL-1β, reduced the cleaved-cas3 level, and decreased the Bax/Bcl-2 ratio after the addition of the inhibitor LY294002. Additionally, EFNB2 overexpression inhibited the ERK1/2 phosphorylation; the effects of EFNB2 overexpression on ERK1/2 phosphorylation, degenerative NP cell viability, and cell apoptosis were partially reversed by ERK signaling activator Ceramide C6. EFNB2 comprehensively inhibited the apoptosis of NP cells by activating the PI3K/AKT signaling and inhibiting the ERK signaling, obviating the exacerbation of IDD. EFNB2 could be a potential target to protect against degenerative disc changes.
Collapse
Affiliation(s)
- Qianshi Zhang
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jing Li
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Fubing Liu
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jiarui Hu
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Fusheng Liu
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jianfei Zou
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xiaobin Wang
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
9
|
Xu WN, Zheng HL, Yang RZ, Sun YF, Peng BR, Liu C, Song J, Jiang SD, Zhu LX. The mitochondrial UPR induced by ATF5 attenuates intervertebral disc degeneration via cooperating with mitophagy. Cell Biol Toxicol 2024; 40:16. [PMID: 38472656 PMCID: PMC10933207 DOI: 10.1007/s10565-024-09854-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Intervertebral disc degeneration (IVDD) is an aging disease that results in a low quality of life and heavy socioeconomic burden. The mitochondrial unfolded protein response (UPRmt) take part in various aging-related diseases. Our research intents to explore the role and underlying mechanism of UPRmt in IVDD. Nucleus pulposus (NP) cells were exposed to IL-1β and nicotinamide riboside (NR) served as UPRmt inducer to treat NP cells. Detection of ATP, NAD + and NADH were used to determine the function of mitochondria. MRI, Safranin O-fast green and Immunohistochemical examination were used to determine the degree of IVDD in vivo. In this study, we discovered that UPRmt was increased markedly in the NP cells of human IVDD tissues than in healthy controls. In vitro, UPRmt and mitophagy levels were promoted in NP cells treated with IL-1β. Upregulation of UPRmt by NR and Atf5 overexpression inhibited NP cell apoptosis and further improved mitophagy. Silencing of Pink1 reversed the protective effects of NR and inhibited mitophagy induced by the UPRmt. In vivo, NR might attenuate the degree of IDD by activating the UPRmt in rats. In summary, the UPRmt was involved in IVDD by regulating Pink1-induced mitophagy. Mitophagy induced by the UPRmt might be a latent treated target for IVDD.
Collapse
Affiliation(s)
- Wen-Ning Xu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200082, China
| | - Huo-Liang Zheng
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200082, China
| | - Run-Ze Yang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan-Fang Sun
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Bi-Rong Peng
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Chun Liu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jian Song
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200082, China.
- Department of Orthopedics, Huashan Hospital Fudan University, Shanghai, 200040, China.
| | - Sheng-Dan Jiang
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200082, China.
| | - Li-Xin Zhu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
10
|
Huang C, Zou K, Wang Y, Tang K, Wu Y. Esculetin Alleviates IL-1β-Evoked Nucleus Pulposus Cell Death, Extracellular Matrix Remodeling, and Inflammation by Activating Nrf2/HO-1/NF-kb. ACS OMEGA 2024; 9:817-827. [PMID: 38222570 PMCID: PMC10785627 DOI: 10.1021/acsomega.3c06771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 01/16/2024]
Abstract
Inflammation, extracellular matrix metabolic dysfunction, and oxidative stress are key pathogenic characteristics of intervertebral disk degeneration (IVDD), a major pathogenic cause of low back pain. Esculetin possesses anti-injury, anti-inflammation, and antinociceptive properties. This study aimed to explore its role in IVDD. In this research, esculetin exhibited little cytotoxicity to human nucleus pulposus cells (NPCs). Moreover, esculetin increased cell viability under IL-1β stimulation but attenuated IL-1β-induced cell apoptosis and caspase-3 activity. Furthermore, IL-1β-evoked increases in intracellular reactive oxygen species and malondialdehyde (MDA) levels, and decreases in superoxide dismutase (SOD) activity were reversed after esculetin treatment, indicating the antioxidative stress efficacy of esculetin. Esculetin alleviated the inhibitory effects of IL-1β on the transcription and protein expression of anabolic biomarkers (collagen II and aggrecan), accompanied by decreases in expression and release of catabolic biomarkers MMP-3 and MMP-13 from NPCs. Moreover, IL-1β exposure enhanced the expression levels of the inflammatory mediator nitric oxide and inflammatory cytokine IL-6 and TNF-α, which were overturned after esculetin treatment. Additionally, esculetin activated the nuclear factor-erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) to inhibit the activation of nuclear factor κB (NF-κB) signaling in NPCs. Importantly, suppression of Nrf2 signaling reversed the protective efficacy of esculetin against IL-1β-mediated oxidative injury, matrix metabolism disruption, and inflammatory response in NPCs. Together, esculetin may alleviate IL-1β-induced dysfunction in NPCs by regulating the Nrf2/HO-1/NF-kb signaling, indicating its potential as a promising therapeutic agent against IVDD.
Collapse
Affiliation(s)
- Chunhui Huang
- Department
of Spinal Surgery, Longyan First Affiliated
Hospital of Fujian Medical University, No. 105, Jiuyi North Road, Xin
Luo District, Longyan 364000, P. R. China
| | - Kaiwei Zou
- Department
of Spinal Surgery, Longyan First Affiliated
Hospital of Fujian Medical University, No. 105, Jiuyi North Road, Xin
Luo District, Longyan 364000, P. R. China
| | - Yizhang Wang
- Department
of Cardiology, Longyan First Affiliated
Hospital of Fujian Medical University, No. 105, Jiuyi North Road, Xin
Luo District, Longyan 364000, P. R. China
| | - Kai Tang
- Department
of Spinal Surgery, Longyan First Affiliated
Hospital of Fujian Medical University, No. 105, Jiuyi North Road, Xin
Luo District, Longyan 364000, P. R. China
| | - Yiqi Wu
- Department
of Spinal Surgery, Longyan First Affiliated
Hospital of Fujian Medical University, No. 105, Jiuyi North Road, Xin
Luo District, Longyan 364000, P. R. China
| |
Collapse
|
11
|
Dian D, Zhang W, Lu M, Zhong Y, Huang Y, Chen G, Chen Z, Yu L, Sun J. Clinical Efficacy of Ulinastatin Combined with Azithromycin in the Treatment of Severe Pneumonia in Children and the Effects on Inflammatory Cytokines and Oxidative Stress: A Retrospective Cohort Study. Infect Drug Resist 2023; 16:7165-7174. [PMID: 38023407 PMCID: PMC10640813 DOI: 10.2147/idr.s428900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose This retrospective cohort study aimed to evaluate the clinical efficacy of ulinastatin (UTI) and azithromycin (AZM) combination therapy in treating severe pneumonia in children and its impact on inflammatory cytokines and oxidative stress. Patients and Methods This retrospective cohort study was conducted from January 1, 2019, to January 1, 2021, involving pediatric patients diagnosed with severe mycoplasma pneumonia (SMPP). The pediatric patients were divided into two groups: those receiving UTI and AZM combination therapy (treatment group) and those receiving azithromycin alone (control group). We compared the two groups regarding clinical data, disease outcomes, inflammatory cytokines, and oxidative stress levels. Results Baseline characteristics did not significantly differ between the two groups. UTI, in combination with AZM, significantly improved blood oxygen levels, inflammatory infection markers, and relevant clinical symptoms in patients with SMPP on the 3rd day of treatment. Additionally, it significantly reduced the levels of inflammatory cytokines TNF-a, IL-6, IL-1β, and IL-10, as well as oxidative stress markers GSH and SOD. Conclusion Combining UTI and AZM can rapidly alleviate clinical symptoms and effectively control the progression of patients with SMPP. Therefore, this treatment approach deserves consideration for clinical promotion and utilization.
Collapse
Affiliation(s)
- Dongchun Dian
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Guangdong, 523000, People’s Republic of China
| | - Weilong Zhang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Guangdong, 523000, People’s Republic of China
| | - Minjun Lu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Guangdong, 523000, People’s Republic of China
| | - Yong Zhong
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Guangdong, 523000, People’s Republic of China
| | - Yurong Huang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Guangdong, 523000, People’s Republic of China
| | - Guiling Chen
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Guangdong, 523000, People’s Republic of China
| | - Zhangquan Chen
- Guangdong Medical University, Guangdong, 510000, People’s Republic of China
| | - Luxin Yu
- Guangdong Medical University, Guangdong, 510000, People’s Republic of China
| | - Jianbo Sun
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Guangdong, 523000, People’s Republic of China
| |
Collapse
|
12
|
Xu G, Lu X, Liu S, Zhang Y, Xu S, Ma X, Xia X, Lu F, Zou F, Wang H, Song J, Jiang J. MSC-Derived Exosomes Ameliorate Intervertebral Disc Degeneration By Regulating the Keap1/Nrf2 Axis. Stem Cell Rev Rep 2023; 19:2465-2480. [PMID: 37528254 DOI: 10.1007/s12015-023-10570-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 08/03/2023]
Abstract
Bone marrow mesenchymal stem cell derived exosomes (BMSC-exos) are a crucial means of intercellular communication and can regulate a range of biological processes by reducing inflammation, decreasing apoptosis and promoting tissue repair. The process of intervertebral disc degeneration (IVDD) is accompanied by increased reactive oxygen species (ROS) because of a decrease in the expression of Nrf2, a critical transcription factor that resists excessive ROS. Our study demonstrated that BMSC-exos decreased ROS production by inhibiting Keap1 and promoting Nrf2 expression, attenuating the apoptosis, inflammation, and degeneration of nucelus pulposus (NP) cells. BMSC-exos promoted an increase in Nrf2 and nuclear translocation, while NF-κB expression was downregulated during this process. Additionally, the expression of antioxidative proteins was elevated after treatment with BMSC-exos. In vivo, we found more NP tissue retention in the BMSC-exos-treated group, along with more expression of Nrf2 and antioxidant-related proteins. Our findings demonstrated for the first time that BMSC-exos could restore the down-regulated antioxidant response system in degenerating NP cells by modulating the Keap1/Nrf2 axis. BMSC-exos could be used as an immediate ROS modulator in the treatment of intervertebral disc degeneration. When BMSC-exos were uptaken by NPCs, the expression of Keap1 decreased and this led to increased expression of Nrf2. Nuclear translocation of Nrf2 then promoted the synthesis of antioxidants against ROS and inhibited NF-kB signalling. Cellular inflammation, apoptosis, and ECM-related indicators were further reduced. Together, the process of IVDD was alleviated.
Collapse
Affiliation(s)
- Guangyu Xu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xiao Lu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Siyang Liu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yuxuan Zhang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Shun Xu
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Xiaosheng Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xinlei Xia
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Feizhou Lu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Fei Zou
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Hongli Wang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jian Song
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Jianyuan Jiang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
13
|
Li Y, Tian X, He W, Jin C, Yang C, Pan Z, Xu Y, Yang H, Liu H, Liu T, He F. Fucoidan-functionalized gelatin methacryloyl microspheres ameliorate intervertebral disc degeneration by restoring redox and matrix homeostasis of nucleus pulposus. Int J Biol Macromol 2023; 250:126166. [PMID: 37553034 DOI: 10.1016/j.ijbiomac.2023.126166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/19/2023] [Accepted: 08/04/2023] [Indexed: 08/10/2023]
Abstract
Loss of extracellular matrix (ECM) and dehydration of the nucleus pulposus (NP) are major pathological characteristics of intervertebral disc degeneration (IVDD), the leading cause of low back pain. Excessive reactive oxygen species (ROS) induced by proinflammatory cytokines substantially contribute to IVDD pathogenesis. This study aimed to examine the potential of fucoidan in protecting the matrix metabolism of NP cells and its therapeutic efficacy in the prevention of IVDD. In an inflammatory environment induced by interleukin (IL)-1β, fucoidan treatments demonstrated a dose-dependent enhancement of ECM production in NP cells, while concurrently reducing the expression of matrix degradation enzymes. The protective effect of fucoidan was mediated through the activation of nuclear factor erythroid 2-related factor 2 (NRF2) and subsequent induction of antioxidant enzymes, whereas silencing Nrf2 abrogated the protection of fucoidan on NP cells against IL-1β-induced oxidative stress. Moreover, a novel fucoidan-functionalized gelatin methacryloyl microsphere (Fu@GelMA-MS) was synthesized. The in vivo application of Fu@GelMA-MS via in situ injection in a rat caudal IVD model effectively conserved the ECM components and maintained the hydration of the NP tissue, thereby preventing IVDD caused by puncture. Collectively, fucoidan-functionalized hydrogel microspheres represent a promising strategy for the regeneration of NP and the treatment of IVDD.
Collapse
Affiliation(s)
- Yangfeng Li
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Xin Tian
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Wei He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Chenyang Jin
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China; Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Chunju Yang
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China; Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Zejun Pan
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Yong Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Hao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China.
| | - Tao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China.
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China.
| |
Collapse
|
14
|
Li H, Pan H, Xiao C, Li H, Long L, Wang X, Luo S, Lyu K, Chen Y, Jiang L, Lu J, Shen H, Li S. IL-1β-mediated inflammatory responses in intervertebral disc degeneration: Mechanisms, signaling pathways, and therapeutic potential. Heliyon 2023; 9:e19951. [PMID: 37809657 PMCID: PMC10559578 DOI: 10.1016/j.heliyon.2023.e19951] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/22/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Intervertebral disc degeneration (IDD) has been widely recognized as the primary cause of low back pain and is one of the major chronic diseases imposing a severe socioeconomic burden worldwide. IDD is a degenerative process characterized by inflammatory responses, and its underlying pathological mechanisms remain complex. Genetic, developmental, biochemical, and biomechanical factors contribute to the development of IDD. There is a pressing need for an effective non-surgical treatment, mainly due to the lack of comprehensive understanding of the specific mechanisms involved and the effective therapeutic targets for IDD. Recently, interleukin (IL)-1β has been recognized as an essential inflammatory factor and a key mediator of the inflammatory process in IDD. Current studies have found that IL-1β is mainly involved in IDD by affecting the metabolism of the extracellular matrix and regulating cell death (RCD), such as apoptosis, pyroptosis, and ferroptosis (a new form of RCD). Although analysis of clinical samples from different laboratories confirmed how IL-1β is induced in IDD, its specific signal transduction pathway, and the inflammatory role mediated in IDD remains unclear. This review describes the molecules and mechanisms involved in IL-1β-mediated inflammatory responses, and their roles in resolving the inflammatory process in IDD. Understanding the signaling pathways involved in IL-1β may lead to a new class of targets that promote remission for IDD patients. This review aims to provide a framework for the treatment of IDD by analyzing the signaling mechanism and function related to IL-1β, especially in terms of inflammation, matrix metabolism, and cell death regulation.
Collapse
Affiliation(s)
- Hongtao Li
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Sichuan, China
| | - Hongyu Pan
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Sichuan, China
| | - Changming Xiao
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Sichuan, China
| | - Hanyue Li
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Longhai Long
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Sichuan, China
| | - Xiaoqiang Wang
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Sichuan, China
| | - Shengyu Luo
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Kexin Lyu
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Yixuan Chen
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Li Jiang
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Jingwei Lu
- School of Physical Education, Southwest Medical University, Luzhou, China
| | - Huarui Shen
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Sichuan, China
| | - Sen Li
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
| |
Collapse
|
15
|
Bai X, Yao M, Zhu X, Lian Y, Zhang M. Baicalin suppresses interleukin-1β-induced apoptosis, inflammatory response, oxidative stress, and extracellular matrix degradation in human nucleus pulposus cells. Immunopharmacol Immunotoxicol 2023:1-10. [PMID: 36617937 DOI: 10.1080/08923973.2023.2165942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To explore the effect of baicalin on human nucleus pulposus cells (NPCs) in response to interleukin (IL)-1β stimulation. METHODS Viability of NPCs was measured by cell counting kit-8 (CCK-8) assay. TUNEL staining assay and flow cytometry were performed to detect apoptotic cell death of NPCs. Western blot analysis was conducted to detect the expression levels of proteins. Enzyme-linked immunosorbent assay (ELISA) was applied for the determination of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor alpha (TNF-α), and IL-6. Oxidative stress indicators including reactive oxygen species (ROS) production, malondialdehyde (MDA) level, and superoxide dismutase (SOD) activity were measured. RESULTS Baicalin attenuated IL-1β-caused cell viability reduction and apoptosis in NPCs. IL-1β-induced increase in Bax expression and decrease in Bcl-2 expression were attenuated by baicalin treatment. IL-1β-induced production of iNOS, COX-2, IL-6, and TNF-α in NPCs was inhibited by baicalin treatment. Baicalin treatment reversed IL-1β-induced increase in ROS production and MDA level, as well as decrease in SOD activity. Furthermore, baicalin treatment elevated the expression levels of Col II and Aggrecan and downregulated the expression levels of MMP3, MMP13, and ADAMTS5 in IL-1β-induced NPCs. A total of 402 related targets of baicalin and 134 related targets of intervertebral disk degeneration were found, and nine intersection targets were screened out. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that mitogen-activated protein kinase (MAPK) pathway was found to be involved in the effects of baicalin. CONCLUSIONS Baicalin exhibited protective effects on IL-1β-caused cell viability reduction, apoptosis, oxidative stress, inflammation, and extracellular matrix degradation in NPCs. In addition, we found c-Jun N-terminal kinase (JNK) and p38 MAPK pathways as targets of baicalin through bioinformatic analysis.
Collapse
Affiliation(s)
- Xiaoliang Bai
- The Fifth Department of Orthopedics, Baoding No.1 Central Hospital, Baoding, China
| | - Mingyan Yao
- Department of Endocrinology, Baoding No.1 Central Hospital, Baoding, China
| | - Xiaojuan Zhu
- Department of Geriatrics, Baoding No.1 Central Hospital, Baoding, China
| | - Yong Lian
- The Fifth Department of Orthopedics, Baoding No.1 Central Hospital, Baoding, China
| | - Mingyuan Zhang
- Department of Rehabilitation, Laishui County TCM Hospital, Baoding, China
| |
Collapse
|
16
|
Xu WN, Liu C, Zheng HL, Xu HX, Yang RZ, Jiang SD, Zhu LX. Sesn2 Serves as a Regulator between Mitochondrial Unfolded Protein Response and Mitophagy in Intervertebral Disc Degeneration. Int J Biol Sci 2023; 19:571-592. [PMID: 36632468 PMCID: PMC9830501 DOI: 10.7150/ijbs.70211] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 10/30/2022] [Indexed: 01/04/2023] Open
Abstract
Mitochondrial unfold protein response (UPRmt) can induce mitophagy to protect cell from unfold protein. However, how UPRmt induces mitophagy to protect cell is not yet clear. Herein, Sesn2 was considered to be a key molecule that communicated UPRmt and mitophagy in the intervertebral disc. Silencing of Sesn2 was able to reverse the protective effects of Nicotinamide riboside (NR) on nucleus pulposus (NP) cells and inhibit mitophagy induced by UPRmt. UPRmt upregulated Sesn2 through Eif2ak4/eIF2α/Atf4, and further induced mitophagy. Sesn2 promoted the translocation of cytosolic Parkin and Sqstm1 to the defective mitochondria respectively, thereby enhancing mitophagy. The translocation of cytosolic Sqstm1 to the defective mitochondria was dependent on Parkin. The two functional domains of Sesn2 were necessary for the interaction of Sesn2 with Parkin and Sqstm1. The cytosolic interaction of Sesn2 between Parkin and Sqstm1 was independent on Pink1 (named as PINK1 in human) but the mitochondrial translocation was dependent on Pink1. Sesn2-/- mice showed a more severe degeneration and NR did not completely alleviate the intervertebral disc degeneration (IVDD) of Sesn2-/- mice. In conclusion, UPRmt could attenuate IVDD by upregulation of Sesn2-induced mitophagy. This study will help to further reveal the mechanism of Sesn2 regulating mitophagy, and open up new ideas for the prevention and treatment of IVDD.
Collapse
Affiliation(s)
- Wen-Ning Xu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.,Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200082, China
| | - Chun Liu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Huo-Liang Zheng
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200082, China
| | - Hai-Xia Xu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Run-Ze Yang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University
| | - Sheng-Dan Jiang
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200082, China.,✉ Corresponding authors: Sheng-Dan Jiang () and Li-Xin Zhu (); Tel: 13917924984; Postal Address: 510280
| | - Li-Xin Zhu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.,✉ Corresponding authors: Sheng-Dan Jiang () and Li-Xin Zhu (); Tel: 13917924984; Postal Address: 510280
| |
Collapse
|
17
|
Li W, Zhou P, Yan B, Qi M, Chen Y, Shang L, Guan J, Zhang L, Mao Y. Disc regeneration by injectable fucoidan-methacrylated dextran hydrogels through mechanical transduction and macrophage immunomodulation. J Tissue Eng 2023; 14:20417314231180050. [PMID: 37427012 PMCID: PMC10328174 DOI: 10.1177/20417314231180050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/19/2023] [Indexed: 07/11/2023] Open
Abstract
Modulating a favorable inflammatory microenvironment that facilitates the recovery of degenerated discs is a key strategy in the treatment of intervertebral disc (IVD) degeneration (IDD). More interestingly, well-mechanized tissue-engineered scaffolds have been proven in recent years to be capable of sensing mechanical transduction to enhance the proliferation and activation of nucleus pulposus cells (NPC) and have demonstrated an increased potential in the treatment and recovery of degenerative discs. Additionally, existing surgical procedures may not be suitable for IDD treatment, warranting the requirement of new regenerative therapies for the restoration of disc structure and function. In this study, a light-sensitive injectable polysaccharide composite hydrogel with excellent mechanical properties was prepared using dextrose methacrylate (DexMA) and fucoidan with inflammation-modulating properties. Through numerous in vivo experiments, it was shown that the co-culture of this composite hydrogel with interleukin-1β-stimulated NPCs was able to promote cell proliferation whilst preventing inflammation. Additionally, activation of the caveolin1-yes-associated protein (CAV1-YAP) mechanotransduction axis promoted extracellular matrix (ECM) metabolism and thus jointly promoted IVD regeneration. After injection into an IDD rat model, the composite hydrogel inhibited the local inflammatory response by inducing macrophage M2 polarization and gradually reducing the ECM degradation. In this study, we propose a fucoidan-DexMA composite hydrogel, which provides an attractive approach for IVD regeneration.
Collapse
Affiliation(s)
- Weifeng Li
- Department of Orthopaedics and
Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical
College, Bengbu, China
- Anhui Province Key Laboratory of Tissue
Transplantation, Bengbu Medical College, Bengbu, China
- Department of Orthopedics, Lixin County
People’s Hospital, Bozhou, China
| | - Pinghui Zhou
- Department of Orthopaedics and
Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical
College, Bengbu, China
- Anhui Province Key Laboratory of Tissue
Transplantation, Bengbu Medical College, Bengbu, China
| | - Bomin Yan
- Department of Orthopaedics and
Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical
College, Bengbu, China
- Anhui Province Key Laboratory of Tissue
Transplantation, Bengbu Medical College, Bengbu, China
| | - Meiyao Qi
- Department of Orthopaedics and
Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical
College, Bengbu, China
- Anhui Province Key Laboratory of Tissue
Transplantation, Bengbu Medical College, Bengbu, China
| | - Yedan Chen
- Department of Orthopaedics and
Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical
College, Bengbu, China
| | - Lijun Shang
- School of Life Sciences, Bengbu Medical
College, Bengbu, China
| | - Jianzhong Guan
- Department of Orthopaedics and
Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical
College, Bengbu, China
- Anhui Province Key Laboratory of Tissue
Transplantation, Bengbu Medical College, Bengbu, China
| | - Li Zhang
- Department of Orthopaedics and
Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical
College, Bengbu, China
- Anhui Province Key Laboratory of Tissue
Transplantation, Bengbu Medical College, Bengbu, China
| | - Yingji Mao
- Department of Orthopaedics and
Department of Plastic Surgery, The First Affiliated Hospital of Bengbu Medical
College, Bengbu, China
- Anhui Province Key Laboratory of Tissue
Transplantation, Bengbu Medical College, Bengbu, China
- School of Life Sciences, Bengbu Medical
College, Bengbu, China
| |
Collapse
|
18
|
Wang Z, Liu B, Ma X, Wang Y, Han W, Xiang L. lncRNA ZFAS1 promotes intervertebral disc degeneration by upregulating AAK1. Open Med (Wars) 2022; 17:1973-1986. [PMID: 36561842 PMCID: PMC9743196 DOI: 10.1515/med-2022-0530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 12/13/2022] Open
Abstract
We investigated the function of lncRNA zinc finger antisense 1 (ZFAS1) in intervertebral disc degeneration (IDD) progression in vitro and in vivo. Nucleus pulposus (NP) tissues were obtained from 20 patients with IDD. IL-1β was used to stimulate primary NP cells to establish the IDD models in vitro. Gene expression was determined by RT-qPCR. 5-Ethynyl-2'-deoxyuridine and flow cytometry were performed to determine cell proliferation and apoptosis, and western blotting was conducted to measure the apoptosis- and extracellular matrix (ECM)-related protein expression. Luciferase reporter assay was used to examine the interactions between the genes. We also investigated the effect of ZFAS1 in a mouse model of IDD induced by needle punctures. Our results showed that ZFAS1 expression was elevated in degenerative NP tissues and IL-1β-treated NP cells. ZFAS1 knockdown inhibited NP cell apoptosis and ECM degradation induced by IL-1β. Mechanically, ZFAS1 sponged miR-4711-5p and adaptor-associated kinase 1 (AAK1) was targeted by miR-4711-5p. Furthermore, AAK1 overexpression partially eliminated the impact of ZFAS1 depletion on NP cell proliferation, apoptosis, and ECM degradation. More importantly, the results of the in vivo studies confirmed the effect of silencing ZFAS1 on alleviating the symptoms of IDD mice. Overall, silencing ZFAS1 inhibits IDD progression by reducing NP cell apoptosis and ECM degradation through the miR-4711-5p/AAK1 axis.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Orthopedics, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| | - Bin Liu
- Department of Orthopedics, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| | - Xiangyu Ma
- Department of Orthopedics, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| | - Yu Wang
- Department of Orthopedics, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| | - Wenfeng Han
- Department of Orthopedics, General Hospital of Northern Theater Command, No. 83 Wenhua
Road, Shenyang 110016, Liaoning, China
| | - Liangbi Xiang
- Department of Orthopedics, General Hospital of Northern Theater Command, No. 83 Wenhua
Road, Shenyang 110016, Liaoning, China
| |
Collapse
|
19
|
Guo R, Gao S, Feng Y, Mao C, Sheng W. Ulinastatin attenuates spinal cord injury by targeting AMPK/NLRP3 signaling pathway. J Chem Neuroanat 2022; 125:102145. [PMID: 35998795 DOI: 10.1016/j.jchemneu.2022.102145] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 10/31/2022]
Abstract
The AMPK and NLRP3 inflammasome signaling pathways are reported to participant in the inflammatory responses following spinal cord injury (SCI). Ulinastatin (ULI) is a urinary trypsin inhibitor with excellent anti-inflammatory effects, but the functions of ULI on SCI are rarely reported. Hence, this study was designed to investigate whether ULI could modulate SCI through regulating the AMPK/NLRP3 signaling pathway. Cell Counting Kit-8 (CCK-8) assays were used to investigate whether ULI had cytotoxic effects on BV-2 cells. Basso-Beattie-Bresnahan (BBB) scale, spinal cord water content detection, hematoxylin-eosin (HE) and Nissl stainings were used to investigate the protective effects of ULI on rat SCI. The expressions of inflammatory cytokines were detected by ELISA and RT-qPCR. The expressions of key proteins of AMPK and NLRP3 inflammasome were analyzed by western blot. The CCK-8 assays indicated that ULI did not significantly influence the viability of BV-2 cells at various concentrations below 10,000 U/ml. It was witnessed that ULI could dramatically inhibit the activation of NLRP3 inflammasome via activating the AMPK signaling pathway, thus relieving inflammatory responses. Besides, the in vivo experiment suggested that treatment with ULI remarkably relieve spinal cord edema, ameliorated spinal cord tissue architecture, and improved neurological function following SCI. The findings indicate that ULI significantly ameliorates neurological function following SCI by regulating the AMPK/NLRP3 inflammasome signaling pathway.
Collapse
Affiliation(s)
- Rui Guo
- Department of Spine Surgery, Xinjiang Medical University Affiliated First Hospital, Urumqi, Xinjiang 830054, China.
| | - Shutao Gao
- Department of Spine Surgery, Xinjiang Medical University Affiliated First Hospital, Urumqi, Xinjiang 830054, China.
| | - Ying Feng
- College of Public Health, Xinjiang Medical University, China.
| | - Chao Mao
- Department of Spine Surgery, Xinjiang Medical University Affiliated First Hospital, Urumqi, Xinjiang 830054, China.
| | - Weibin Sheng
- Department of Spine Surgery, Xinjiang Medical University Affiliated First Hospital, Urumqi, Xinjiang 830054, China.
| |
Collapse
|
20
|
Sun K, Jiang J, Wang Y, Sun X, Zhu J, Xu X, Sun J, Shi J. The role of nerve fibers and their neurotransmitters in regulating intervertebral disc degeneration. Ageing Res Rev 2022; 81:101733. [PMID: 36113765 DOI: 10.1016/j.arr.2022.101733] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/11/2022] [Accepted: 09/11/2022] [Indexed: 01/31/2023]
Abstract
Intervertebral disc degeneration (IVDD) has been the major contributor to chronic lower back pain (LBP). Abnormal apoptosis, senescence, and pyroptosis of IVD cells, extracellular matrix (ECM) degradation, and infiltration of immune cells are the major molecular alternations during IVDD. Changes at tissue level frequently occur at advanced IVD tissue. Ectopic ingrowth of nerves within inner annulus fibrosus (AF) and nucleus pulposus (NP) tissue has been considered as the primary cause for LBP. Innervation at IVD tissue mainly included sensory and sympathetic nerves, and many markers for these two types of nerves have been detected since 1940. In fact, in osteoarthritis (OA), beyond pain transmission, the direct regulation of neuropeptides on functions of chondrocytes have attracted researchers' great attention recently. Many physical and pathological similarities between joint and IVD have shed us the light on the neurogenic mechanism involved in IVDD. Here, an overview of the advances in the nervous system within IVD tissue will be performed, with a discussion on in the role of nerve fibers and their neurotransmitters in regulating IVDD. We hope this review can attract more research interest to address neuromodulation and IVDD itself, which will enhance our understanding of the contribution of neuromodulation to the structural changes within IVD tissue and inflammatory responses and will help identify novel therapeutic targets and enable the effective treatment of IVDD disease.
Collapse
Affiliation(s)
- Kaiqiang Sun
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai 200003, China; Department of Orthopedics, Naval Medical Center of PLA, China
| | - Jialin Jiang
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai 200003, China
| | - Yuan Wang
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai 200003, China
| | - Xiaofei Sun
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai 200003, China
| | - Jian Zhu
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai 200003, China
| | - Ximing Xu
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai 200003, China
| | - Jingchuan Sun
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai 200003, China.
| | - Jiangang Shi
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai 200003, China.
| |
Collapse
|
21
|
Zhang CY, Hu XC, Zhang GZ, Liu MQ, Chen HW, Kang XW. Role of Nrf2 and HO-1 in intervertebral disc degeneration. Connect Tissue Res 2022; 63:559-576. [PMID: 35736364 DOI: 10.1080/03008207.2022.2089565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Intervertebral disc degeneration (IDD) is a common age-related disease with clinical manifestations of lumbar and leg pain and limited mobility. The pathogenesis of IDD is mainly mediated by the death of intervertebral disc (IVD) cells and the imbalance of extracellular matrix (ECM) synthesis and degradation. Oxidative stress and inflammatory reactions are the important factors causing this pathological change. Therefore, the regulation of reactive oxygen species and production of inflammatory factors may be an effective strategy to delay the progression of IDD. In recent years, nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream regulated protein heme oxygenase-1 (HO-1) have received special attention due to their antioxidant, anti-inflammatory and anti-apoptotic protective effects. Recent studies have elucidated the important role of these two proteins in the treatment of IDD disease. However, Nrf2 and HO-1 have not been systematically reported in IDD-related diseases. Therefore, this review describes the biological characteristics of Nrf2 and HO-1, the relationship between Nrf2- and HO-1-regulated oxidative stress and the inflammatory response and IDD, and the progress in research on some extracts targeting Nrf2 and HO-1 to improve IDD. Understanding the role and mechanism of Nrf2 and HO-1 in IDD may provide novel ideas for the clinical treatment and development of Nrf2- and HO-1-targeted drugs.
Collapse
Affiliation(s)
- Cang-Yu Zhang
- The second clinical medical college, Lanzhou University, Lanzhou, Gansu, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, PR China
| | - Xu-Chang Hu
- The second clinical medical college, Lanzhou University, Lanzhou, Gansu, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, PR China
| | - Guang-Zhi Zhang
- The second clinical medical college, Lanzhou University, Lanzhou, Gansu, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, PR China
| | - Ming-Qiang Liu
- The second clinical medical college, Lanzhou University, Lanzhou, Gansu, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, PR China
| | - Hai-Wei Chen
- The second clinical medical college, Lanzhou University, Lanzhou, Gansu, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, PR China
| | - Xue-Wen Kang
- The second clinical medical college, Lanzhou University, Lanzhou, Gansu, PR China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu, PR China
| |
Collapse
|
22
|
The Nrf2 antioxidant defense system in intervertebral disc degeneration: Molecular insights. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1067-1075. [PMID: 35978054 PMCID: PMC9440120 DOI: 10.1038/s12276-022-00829-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 02/07/2023]
Abstract
Intervertebral disc degeneration (IDD) is a common degenerative musculoskeletal disorder and is recognized as a major contributor to discogenic lower back pain. However, the molecular mechanisms underlying IDD remain unclear, and therapeutic strategies for IDD are currently limited. Oxidative stress plays pivotal roles in the pathogenesis and progression of many age-related diseases in humans, including IDD. Nuclear factor E2-related factor 2 (Nrf2) is a master antioxidant transcription factor that protects cells against oxidative stress damage. Nrf2 is negatively modulated by Kelch-like ECH-associated protein 1 (Keap1) and exerts important effects on IDD progression. Accumulating evidence has revealed that Nrf2 can facilitate the transcription of downstream antioxidant genes in disc cells by binding to antioxidant response elements (AREs) in promoter regions, including heme oxygenase-1 (HO-1), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and NADPH quinone dehydrogenase 1 (NQO1). The Nrf2 antioxidant defense system regulates cell apoptosis, senescence, extracellular matrix (ECM) metabolism, the inflammatory response of the nucleus pulposus (NP), and calcification of the cartilaginous endplates (EP) in IDD. In this review, we aim to discuss the current knowledge on the roles of Nrf2 in IDD systematically. Insights into the activity of a protein that regulates gene expression and protects cells against oxidative stress could yield novel treatments for lower back pain. Intervertebral disc degeneration (IDD) is a common cause of lower back pain, but the molecular mechanisms underlying IDD are unclear, meaning treatment options are limited. Oxidative stress is implicated in IDD, and scientists have begun exploring the role of nuclear factor E2-related factor 2 (Nrf2), a master regulator of the body’s antioxidant responses, in regulating IDD progression. In a review of recent research, Weishi Li at Peking University Third Hospital, Beijing, China, and co-workers point out that boosting the activity of Nrf2-related signaling pathways alleviates oxidative stress in intervertebral disc cells. The researchers suggest that therapies based on non-coding RNAs may prove valuable in activating Nrf2 in IDD patients.
Collapse
|
23
|
Zhu F, Duan W, Zhong C, Ji B, Liu X. The protective effects of dezocine on interleukin-1β-induced inflammation, oxidative stress and apoptosis of human nucleus pulposus cells and the possible mechanisms. Bioengineered 2022; 13:1399-1410. [PMID: 34974796 PMCID: PMC8805889 DOI: 10.1080/21655979.2021.2017700] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Intervertebral disc degeneration (IDD) is a natural problem linked to the inflammation. We aimed to investigate the role of dezocine (DEZ) in the development of IDD. Human nucleus pulposus cells (HNPCs) induced by interleukin (IL)-1β was used as a cellular model of IDD. After treatment with DEZ, HNPCs viability was evaluated with a CCK-8 assay. Then, the levels of inflammatory factors, including IL-6 and tumor necrosis factor-α (TNF-α), and oxidative stress-related markers, including reactive oxygen species (ROS), malondialdehyde (MDA) and reduced glutathione (GSH), were tested by RT-qPCR or kits. TUNEL staining was employed to detect cell apoptosis and Western blot was used to determine the expression of proteins related to inflammation, oxidative stress, apoptosis, endoplasmic reticulum stress (ERS) and MAPK signaling. Afterward, PMA, a MAPK signaling pathway agonist, was adopted for exploring the regulatory effects of DEZ on MAPK pathway. Results indicated that DEZ enhanced cell viability of HNPCs after IL-1β exposure. DEZ alleviated the inflammation and oxidative stress, evidenced by decreased levels of IL-6, TNF-α, ROS, MDA, p-NF-κB p65, NF-κB p65 in nucleus, cox-2 and increased levels of NF-κB p65 in cytoplasm, GSH, SOD1 and SOD2. Moreover, DEZ notably inhibited IL-1β-induced apoptosis of HNPCs. Furthermore, DEZ suppressed the levels of ERS-related proteins. The levels of related proteins in MAPK signaling including p-P38 and p-ERK1/2 were remarkably reduced after DEZ administration. By contrast, PMA crippled the impacts of DEZ on inflammation, oxidative stress and apoptosis of HNPCs induced by IL-1β. Collectively, DEZ ameliorates IL-1β-induced HNPCs injury via inhibiting MAPK signaling.
Collapse
Affiliation(s)
- Fang Zhu
- Department of Pain, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Wei Duan
- Dental Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Chao Zhong
- Department of Pain, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Bing Ji
- Department of Pain, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinjun Liu
- Department of Vascular and Endovascular Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
24
|
Limonin Inhibits IL-1 β-Induced Inflammation and Catabolism in Chondrocytes and Ameliorates Osteoarthritis by Activating Nrf2. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7292512. [PMID: 34795843 PMCID: PMC8595032 DOI: 10.1155/2021/7292512] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/17/2021] [Accepted: 10/06/2021] [Indexed: 12/23/2022]
Abstract
Osteoarthritis (OA), a degenerative disorder, is considered to be one of the most common forms of arthritis. Limonin (Lim) is extracted from lemons and other citrus fruits. Limonin has been reported to have anti-inflammatory effects, while inflammation is a major cause of OA; thus, we propose that limonin may have a therapeutic effect on OA. In this study, the therapeutic effect of limonin on OA was assessed in chondrocytes in vitro in IL-1β induced OA and in the destabilization of the medial meniscus (DMM) mice in vivo. The Nrf2/HO-1/NF-κB signaling pathway was evaluated to illustrate the working mechanism of limonin on OA in chondrocytes. In this study, it was found that limonin can reduce the level of IL-1β induced proinflammatory cytokines such as INOS, COX-2, PGE2, NO, TNF-α, and IL-6. Limonin can also diminish the biosynthesis of IL-1β-stimulated chondrogenic catabolic enzymes such as MMP13 and ADAMTS5 in chondrocytes. The research on the mechanism study demonstrated that limonin exerts its protective effect on OA through the Nrf2/HO-1/NF-κB signaling pathway. Taken together, the present study shows that limonin may activate the Nrf2/HO-1/NF-κB pathway to alleviate OA, making it a candidate therapeutic agent for OA.
Collapse
|
25
|
Tissue Renin-Angiotensin System (tRAS) Induce Intervertebral Disc Degeneration by Activating Oxidative Stress and Inflammatory Reaction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3225439. [PMID: 34413926 PMCID: PMC8369181 DOI: 10.1155/2021/3225439] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/08/2021] [Indexed: 12/15/2022]
Abstract
Lumbar intervertebral disc degeneration (IDD) has been the major contributor to low back pain (LBP). IDD is an chronic inflammation process, with the activation of plentiful inflammation-related cytokines and ECM degradation-related enzymes. In the past few years, hypertension has been reported to correlate with LBP. In addition, the local tissue renin-angiotensin system (tRAS) has been identified in multiple tissues, including the spinal cord, skin, kidney, heart, and bone. Recently, tRAS has also been established in both bovine and human intervertebral disc tissues, especially in the degenerated disc tissue. However, the exact of tRAS and IDD remains unknown. In this present study, proteomic analysis, molecular biology analysis, and animal model were all used. Firstly, we revealed that tRAS was excessively activated in the human degenerated intervertebral disc tissue via proteomic analysis and molecular biology analysis. Then, in vitro experiment suggested that Ang II could decrease the cell viability of human NP cells and promote NP cell apoptosis, senescence, oxidative stress, and NLRP3 activation in human NP cells. In addition, Ang II could also trigger degeneration and fibrosis phenotype in human NP cells. Finally, the animal model demonstrated that the local activated ACE/Ang II axis in the NP tissue could accelerate IDD in aging spontaneously hypertensive rats (SHR). Collectively, the degenerated intervertebral disc tissue showed excessively activated tRAS, and local activated tRAS could induce NP cell senescence, apoptosis, oxidative stress, and inflammatory reaction to promote IDD. These biological effects of Ang II on human NP cells may provide novel insight into further treatment of IDD.
Collapse
|