1
|
|
Liu X, Wang F, Chen Y, An Y, Cheng L, Wang L, Kong D, Zhao W, Tian J, Niu Y, Cui W, Zhang W, Xu Y, Ba Y, Zhou H. Research progress on chemical components and pharmacological action of Solanum lyratum Thunb. J Pharm Pharmacol 2023; 75:328-62. [PMID: 36632823 DOI: 10.1093/jpp/rgac099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVES Solanum lyratum Thunb (SLT) is a perennial plant of the Solanaceae family, and is extensively used in the clinical practice of traditional Chinese medicine. Malaria, oedema, gonorrhoea, cancer, wind and fever, jaundiced hepatitis, cholecystitis and rheumatoid arthritis are among the diseases that it is used to treat. To offer a foundation for further development and usage of SLT, the pieces of literature about the chemical composition and pharmacological action of SLT were reviewed and analysed. KEY FINDINGS The chemical constituents of SLT mainly included steroids, alkaloids, flavonoids, terpenoids, anthraquinones, phenylpropanoids and others. Pharmacological action mainly contains anti-tumour, antibacterial, anti-inflammatory, anti-oxidation and other pharmacological actions, among them, the anti-tumour effect is particularly outstanding. SUMMARY At present, studies on the pharmacological effects of SLT mainly focus on alkaloids and steroidal saponins. In the follow-up studies, studies on the pharmacological activities of other chemical components in SLT, such as flavonoids and terpenoids, should be strengthened. It has the potential to pave the way for more research and development of novel SLT medicines.
Collapse
Affiliation(s)
- Xue Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, PR China
| | - Fulin Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, PR China
| | - Yueru Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, PR China
| | - Ying An
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, PR China
| | - Lingmei Cheng
- The Third Hospital of Jinan, Jinan, Shandong Province, PR China
| | - Lu Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, PR China
| | - Degang Kong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, PR China
| | - Wei Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, PR China
| | - Jinli Tian
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, PR China
| | - Yingshuo Niu
- Jinan Municipal Hospital of Traditional Chinese Medicine, Jinan, Shandong Province, PR China
| | - Weiliang Cui
- Shandong Institute for Food and Drug Control, Jinan, Shandong Province, PR China
| | - Wenru Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, PR China
| | - Yang Xu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, PR China
| | - Yahui Ba
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, PR China
| | - Honglei Zhou
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, PR China
| |
Collapse
|
2
|
|
Xu L, Luo Z, Liu Q, Wang C, Zhou F, Zhou M. Metal-polyphenol polymer modified polydopamine for chemo-photothermal therapy. Front Chem 2023; 11:1124448. [PMID: 36762199 DOI: 10.3389/fchem.2023.1124448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Chemotherapy combined with photothermal therapy (PTT) is a new way to improve the curative effect of cancer treatment. Here, we developed a multifunctional nanoparticle, namely PTX@mPDA@Fe-GA with the loading of a chemotherapeutic drug paclitaxel (PTX) for targeted and synergistic chemotherapy/photothermal therapy in lung cancer. Fe-gallic acid (Fe-GA) was coated on the surface of mesoporous polydopamine (mPDA) nanoparticles, and then the PTX was placed in the mesopores. The drug release of the loaded PTX exhibited pH- and thermal-dual responsive manner. Both mPDA and Fe-GA have high photothermal conversion ability and play a role in photothermal therapy. In addition, the results revealed that mPDA@Fe-GA had excellent biocompatibility and low hemolysis rate. The PTX-loaded mPDA@Fe-GA not only has excellent killing effect on lung cancer cells (A549) in vitro, but also can significantly suppress the growth of A549 subcutaneous tumor in nude mice. In a nutshell, the developed multifunctional nanoparticles integrate photothermal therapy and efficient chemotherapeutic drug delivery, providing new therapeutic ideas in the fight against lung cancer.
Collapse
Affiliation(s)
- Li Xu
- Department of Respiratory Medicine, Jinshan District Central Hospital affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Zhibing Luo
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qing Liu
- Department of Respiratory Medicine, Jinshan District Central Hospital affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Chuancui Wang
- Department of Respiratory Medicine, Jinshan District Central Hospital affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Fei Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China,*Correspondence: Fei Zhou, ; Min Zhou,
| | - Min Zhou
- Department of Respiratory Medicine, Jinshan District Central Hospital affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China,*Correspondence: Fei Zhou, ; Min Zhou,
| |
Collapse
|
3
|
|
Sun K, Wu L, Wang S, Deng W. Antitumor effects of Chinese herbal medicine compounds and their nano-formulations on regulating the immune system microenvironment. Front Oncol 2022; 12:949332. [PMID: 36212483 DOI: 10.3389/fonc.2022.949332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Traditional Chinese medicine (TCM), including herbal medicine, acupuncture and meditation, has a wide range of applications in China. In recent years, herbal compounding and active ingredients have been used to control tumor growth, reduce suffering, improve quality of life, and prolong the life span of cancer patients. To reduce side effects, herbal medicine can be used in conjunction with radiotherapy and chemotherapy or can be used as an adjuvant to strengthen the immune effect of anticancer vaccines. In particular, in the immunosuppressed tumor microenvironment, herbal medicine can have antitumor effects by stimulating the immune response. This paper reviews the advances in research on antitumor immunomodulation in Chinese herbal medicine, including the regulation of the innate immune system, which includes macrophages, MDSCs, and natural killer cells, and the adaptive immune system, which includes CD4+ T cells, CD8+ T cells, and regulatory T cells (Tregs), to influence tumor-associated inflammation. In addition, a combination of active ingredients of herbal medicine and modern nanotechnology alter the tumor immune microenvironment. In recent years, immunological antitumor therapy in TCM has been applied on a reasonably large scale both nationally and internationally, and there is potential for further clinical expansion. Investigation of immune modulation mechanisms in Chinese herbal medicine will provide novel perspectives of how herbal medicine controls tumor growth and metastasis, which will contribute to the evolution of tumor research.
Collapse
|
4
|
|
Ling M, Liu Q, Wang Y, Liu X, Jiang M, Hu J. LCS-1 inhibition of superoxide dismutase 1 induces ROS-dependent death of glioma cells and degradates PARP and BRCA1. Front Oncol 2022; 12:937444. [PMID: 35978820 DOI: 10.3389/fonc.2022.937444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Gliomas are characterized by high morbidity and mortality, and have only slightly increased survival with recent considerable improvements for treatment. An innovative therapeutic strategy had been developed via inducing ROS-dependent cell death by targeting antioxidant proteins. In this study, we found that glioma tissues expressed high levels of superoxide dismutase 1 (SOD1). The expression of SOD1 was upregulated in glioma grade III and V tissues compared with that in normal brain tissues or glioma grade I tissues. U251 and U87 glioma cells expressed high levels of SOD1, low levels of SOD2 and very low levels of SOD3. LCS-1, an inhibitor of SOD1, increased the expression SOD1 at both mRNA and protein levels slightly but significantly. As expected, LCS-1 caused ROS production in a dose- and time-dependent manner. SOD1 inhibition also induced the gene expression of HO-1, GCLC, GCLM and NQO1 which are targeting genes of nuclear factor erythroid 2-related factor 2, suggesting the activation of ROS signal pathway. Importantly, LCS-1 induced death of U251 and U87 cells dose- and time-dependently. The cell death was reversed by the pretreatment of cells with ROS scavenges NAC or GSH. Furthermore, LCS-1 decreased the growth of xenograft tumors formed by U87 glioma cells in nude mice. Mechanistically, the inhibition of P53, caspases did not reverse LCS-1-induced cell death, indicating the failure of these molecules involving in cell death. Moreover, we found that LCS-1 treatment induced the degradation of both PARP and BRCA1 simultaneously, suggesting that LCS-1-induced cell death may be associated with the failure of DNA damage repair. Taking together, these results suggest that the degradation of both PARP and BRCA1 may contribute to cell death induced by SOD1 inhibition, and SOD1 may be a target for glioma therapy.
Collapse
Affiliation(s)
- Min Ling
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yufei Wang
- Department of Clinical Laboratory, Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Medical Research Center, Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Xueting Liu
- Medical Research Center, Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Manli Jiang
- Medical Research Center, Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Jinyue Hu
- Medical Research Center, Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- *Correspondence: Jinyue Hu,
| |
Collapse
|
5
|
|
Ou A, Zhao X, Lu Z. Autophagy is involved in Ficus carica fruit extract-induced anti-tumor effects on pancreatic cancer. Biomed Pharmacother 2022; 150:112966. [PMID: 35427822 DOI: 10.1016/j.biopha.2022.112966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Pancreatic cancer (PaCa), a common and highly lethal malignant cancer, is often insensitive to radio- and/or chemotherapy. Therefore, effective treatment regiments are still lacking. Herein, we found that an extract of Ficus carica fruit (EFCF) exerted anti-tumor effects on PaCa cells. EFCF induced cell viability inhibition and apoptotic cell death in two PaCa cell lines in a dose- and time dependent manner. EFCF effectively suppressed the migration, metastasis, invasion, and colony formation of PaCa cells. Mechanistically, EFCF stimulated an increase in intracellular ROS to promote cell death and senescence. EFCF treatment also triggered autophagy, and autophagy inhibition enhanced EFCF-induced cell death. We found that EFCF decreased mitochondrial membrane potential and promoted lipid peroxidation. Moreover, intragastric administration of EFCF effectively suppressed xenograft PaCa growth inhibition by activating cell death. EFCF had no apparent toxicity to normal pancreatic epithelial cells. Together, these findings suggest that EFCF may be a potential treatment for PaCa.
Collapse
Affiliation(s)
- Aixin Ou
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Xiangxuan Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Zaiming Lu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China.
| |
Collapse
|
6
|
|
Guo X, Weng L, Yi L, Geng D. Toxicological Safety Evaluation in Acute and 21-Day Studies of Ethanol Extract from Sol anum lyratum Thunb. Evid Based Complement Alternat Med 2022; 2022:8518324. [PMID: 35399634 DOI: 10.1155/2022/8518324] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Solanum lyratum (Solanaceae) is a traditional Chinese medicine widely used to remedy cold fever, damp-heat jaundice, herpes, and nephritis dropsy. Despite its obvious therapeutic advantages, few toxicological studies have involved the efficacy and safety of its long-term treatment. To investigate the acute and subchronic toxicity of the extract of 75% ethanol extract of whole Solanum lyratum (ESL) after oral administration in mice. In acute toxicity experiment, mice were intragastric administration with ESL at doses of 1000, 2000, 3000, 4000, or 5000 mg/kg for 1 day. In a subchronic toxicity experiment, mice were intragastrically administration with ESL at doses of 180, 360, and 720 mg/kg and 0.9% saline for 21 days. Weight gain, hematological, biochemical, and histopathological analysis of vital organs were evaluated. The presence of aristolochic acid I in ESL was studied using UPLC-QTOF-MS. Phytochemical analysis indicated that the presence of aristolochic acid I in ESL was 0.0025 mg/g. This relatively low concentration is not enough to cause toxicity. In the acute toxicity experiment, neither mortality nor clinical alterations were shown, except for the mild transient diarrhea at 5000 mg/kg. So the LD50 value of ESL was assessed to be more than 5000 mg/kg. In the subchronic toxicity experiment, neither mortality nor treatment-related clinical signs were observed. There was a significant increase in body weight, hemoglobin (HB), and urea nitrogen (BUN) after administration with ESL at 180 mg/kg. In addition, the weight of the stomach was increased and the hematocrit (HCT) was decreased after administration with ESL at 360 mg/kg. The changes were not considered treatment-related toxicological effects because the toxicity and histopathological analysis indicate that the extracts are safe for oral administration.
Collapse
|
7
|
|
Xia T, Guo J, Zhang B, Song C, Zhao Q, Cui B, Liu Y. Bisphenol A Promotes the Progression of Colon Cancer Through Dual-Targeting of NADPH Oxidase and Mitochondrial Electron-Transport Chain to Produce ROS and Activating HIF-1α/VEGF/PI3K/AKT Axis. Front Endocrinol (Lausanne) 2022; 13:933051. [PMID: 35860704 DOI: 10.3389/fendo.2022.933051] [Citation(s) in RCA: 2] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bisphenol A (BPA) is a high-production-volume industrial chemical. Despite recent research conducted on its carcinogenicity, its role in the development of colon cancer (CC) has been rarely studied. This study aims to evaluate the effects of BPA on the migration and invasion of CC cells. First, we clinically verified that patients with CC exhibit higher serum BPA level than healthy donors. Subsequently, different CC cell lines were exposed to a series of BPA concentrations, and the migration and invasion of cells were detected by the wound healing test and transwell assay. Finally, N-acetyl-L-cysteine (NAC) and siHIF-1α intervention was used to explore the effects of ROS and HIF-1α on cell migration and invasion, respectively. The results demonstrated that the occurrence of BPA-induced migration and invasion were dependent on the dose and time and was most pronounced in DLD1 cells. ROS production was jointly driven by NADPH oxidase (NOX) and mitochondrial electron-transport chain (ETC). Furthermore, the intervention of NAC and siHIF-1α blocked the HIF-1α/VEGF/PI3K/AKT axis and inhibited cell migration and invasion. In conclusion, our results suggest that BPA exposure promotes the excessive production of ROS induced by NOX and ETC, which in turn activates the HIF-1α/VEGF/PI3K/AKT axis to promote the migration and invasion of CC cells. This study provides new insights into the carcinogenic effects of BPA on CC and warns people to pay attention to environmental pollution and the harm caused to human health by low-dose BPA.
Collapse
Affiliation(s)
| | | | | | | | | | - Binbin Cui
- *Correspondence: Binbin Cui, ; Yanlong Liu,
| | | |
Collapse
|