1
|
Aaronson PI. The Role of Hydrogen Sulfide in the Regulation of the Pulmonary Vasculature in Health and Disease. Antioxidants (Basel) 2025; 14:341. [PMID: 40227402 PMCID: PMC11939758 DOI: 10.3390/antiox14030341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/09/2025] [Accepted: 03/12/2025] [Indexed: 04/15/2025] Open
Abstract
The gasotransmitter hydrogen sulfide (H2S; also termed sulfide) generally acts as a vasodilator in the systemic vasculature but causes a paradoxical constriction of pulmonary arteries (PAs). In light of evidence that a fall in the partial pressure in oxygen (pO2) increases cellular sulfide levels, it was proposed that a rise in sulfide in pulmonary artery smooth muscle cells (PASMCs) is responsible for hypoxic pulmonary vasoconstriction, the contraction of PAs which develops rapidly in lung regions undergoing alveolar hypoxia. In contrast, pulmonary hypertension (PH), a sustained elevation of pulmonary artery pressure (PAP) which can develop in the presence of a diverse array of pathological stimuli, including chronic hypoxia, is associated with a decrease in the expression of sulfide -producing enzymes in PASMCs and a corresponding fall in sulfide production by the lung. Evidence that PAP in animal models of PH can be lowered by administration of exogenous sulfide has led to an interest in using sulfide-donating agents for treating this condition in humans. Notably, intracellular H2S exists in equilibrium with other sulfur-containing species such as polysulfides and persulfides, and it is these reactive sulfur species which are thought to mediate most of its effects on cells through persulfidation of cysteine thiols on proteins, leading to changes in function in a manner similar to thiol oxidation by reactive oxygen species. This review sets out what is currently known about the mechanisms by which H2S and related sulfur species exert their actions on pulmonary vascular tone, both acutely and chronically, and discusses the potential of sulfide-releasing drugs as treatments for the different types of PH which arise in humans.
Collapse
Affiliation(s)
- Philip I Aaronson
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, UK
| |
Collapse
|
2
|
Mansoor M, Ibrahim AF. Emerging Mechanistic Insights and Therapeutic Strategies for Pulmonary Arterial Hypertension: A Focus on Right Ventricular Dysfunction and Novel Treatment Pathways. Biomedicines 2025; 13:600. [PMID: 40149576 PMCID: PMC11940762 DOI: 10.3390/biomedicines13030600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Pulmonary arterial hypertension (PAH) is a progressive vascular disorder characterized by increased pulmonary vascular resistance, right ventricular dysfunction, and high mortality rates. Despite advancements in vasodilatory therapies, PAH remains a life-threatening condition with limited curative options. This review aimed to explore emerging molecular mechanisms, novel therapeutic targets, and future research directions in PAH treatment, focusing on strategies to improve long-term patient outcomes. Methods: This review synthesized recent advancements in PAH pathophysiology and therapeutic development. A structured literature search was conducted on PubMed and ClinicalTrials.gov using keywords such as "Pulmonary Arterial Hypertension", "vascular remodeling", "metabolic dysfunction", and "emerging therapies". Studies published between 2015 and 2025 were included, with a focus on preclinical models, clinical trials, and translational research. Key areas of investigation include vascular remodeling, metabolic dysregulation, inflammation, and right ventricular dysfunction. The review also evaluated the potential of novel pharmacological agents, gene-based therapies, and AI-driven diagnostics for PAH management. Results: Recent studies highlight dysregulated BMPR2 signaling, epigenetic modifications, and inflammatory cytokine pathways as critical contributors to PAH progression. Emerging therapies such as JAK-STAT inhibitors, metabolic reprogramming agents, and mesenchymal stromal cell-derived extracellular vesicles (EVs) show promise in preclinical and early clinical trials. Additionally, AI-enhanced imaging and non-invasive biomarkers are improving PAH diagnostics. Future research directions emphasize precision medicine approaches and the development of RV-targeted therapies. Conclusions: PAH remains a complex and fatal disease requiring multifaceted therapeutic strategies beyond traditional vasodilation. Advances in molecular-targeted treatments, AI-driven diagnostics, and personalized medicine offer new hope for disease-modifying interventions. Future research must bridge translational gaps to bring novel therapies from bench to bedside, improving survival and quality of life in PAH patients.
Collapse
Affiliation(s)
- Masab Mansoor
- Edward Via College of Osteopathic Medicine–Louisiana Campus, 4408 Bon Aire Dr, Monroe, LA 71203, USA
| | - Andrew F. Ibrahim
- Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX 79430, USA;
| |
Collapse
|
3
|
Bačáková L, Sedlář A, Musílková J, Eckhardt A, Žaloudíková M, Kolář F, Maxová H. Mechanisms Controlling the Behavior of Vascular Smooth Muscle Cells in Hypoxic Pulmonary Hypertension. Physiol Res 2024; 73:S569-S596. [PMID: 39589304 PMCID: PMC11627264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/01/2024] [Indexed: 11/27/2024] Open
Abstract
Pulmonary hypertension is a complex and heterogeneous condition with five main subtypes (groups). This review focuses on pulmonary hypertension caused by chronic hypoxia (hypoxic pulmonary hypertension, HPH, group 3). It is based mainly on our own experimental work, especially our collaboration with the group of Professor Herget, whose fifth anniversary of death we commemorate. We have found that oxidation and degradation of the extracellular matrix (ECM) in vitro, in either the presence or the absence of pro-inflammatory cells, activate vascular smooth muscle cell (VSMC) proliferation. Significant changes in the ECM of pulmonary arteries also occurred in vivo in hypoxic rats, namely a decrease in collagen VI and an increase in matrix metalloproteinase 9 (MMP-9) in the tunica media, which may also contribute to the growth activation of VSMCs. The proliferation of VSMCs was also enhanced in their co-culture with macrophages, most likely due to the paracrine production of growth factors in these cells. However, hypoxia itself has a dual effect: on the one hand, it can activate VSMC proliferation and hyperplasia, but on the other hand, it can also induce VSMC hypertrophy and increased expression of contractile markers in these cells. The influence of hypoxia-inducible factors, microRNAs and galectin-3 in the initiation and development of HPH, and the role of cell types other than VSMCs (endothelial cells, adventitial fibroblasts) are also discussed. Keywords: Vasoconstriction, Remodeling, Oxidation, Degradation, Extracellular matrix, Collagen, Proteolytic enzymes, Metalloproteinases, Macrophages, Mast cells, Smooth muscle cells, Endothelial cells, Fibroblasts, Mesenchymal stem cells, Hypoxia-inducible factor, microRNA, Galectins, Hyperplasia, Hypertrophy, Therapy of hypoxic pulmonary hypertension.
Collapse
Affiliation(s)
- L Bačáková
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
4
|
Zhang X, Qin H, Ma Q, Zhang J, Tian H, Meng Y. CircST6GAL1 knockdown alleviates pulmonary arterial hypertension by regulating miR-509-5p/multiple C2 and transmembrane domain containing 2 axis. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e13771. [PMID: 38747117 PMCID: PMC11094577 DOI: 10.1111/crj.13771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/07/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Hypertension is a main contributing factor of cardiovascular diseases; deregulated circular RNAs are involved in the pathogenesis of pulmonary arterial hypertension (PAH). Herein, we evaluated the function and mechanism of circST6GAL1 in PAH process. METHODS Human pulmonary artery smooth muscle cells (HPASMCs) were cultured in hypoxic environment for functional analysis. The cell counting kit-8, 5-ethynyl-2'-deoxyuridine, wound healing, and flow cytometry assays were used to investigate cell proliferation, migration, and apoptosis. qRT-PCR and Western blotting analyses were used for level measurement of genes and proteins. The binding between miR-509-5p and circST6GAL1 or multiple C2 and transmembrane domain containing 2 (MCTP2) was analyzed by dual-luciferase reporter, RNA immunoprecipitation, and pull-down assays. The monocrotaline (MCT)-induced PAH mouse models were established for in vivo assay. RESULTS CircST6GAL1 was highly expressed in PAH patients and hypoxia-induced HPASMCs. Functionally, circST6GAL1 deficiency reversed hypoxia-induced proliferation and migration, as well as apoptosis arrest in HPASMCs. Mechanistically, circST6GAL1 directly targeted miR-509-5p, and MCTP2 was a target of miR-509-5p. Rescue assays showed that the regulatory effects of circST6GAL1 deficiency on hypoxia-induced HPASMCs were abolished. Moreover, forced expression of miR-509-5p suppressed HPASMC proliferation and migration and induced cell apoptosis under hypoxia stimulation, while these effects were abolished by MCTP2 overexpression. Moreover, circST6GAL1 silencing improved MCT-induced pulmonary vascular remodeling and PAH. CONCLUSION CircST6GAL1 deficiency reversed hypoxia-induced proliferation and migration, as well as apoptosis arrest in HPASMCs, and alleviated pulmonary vascular remodeling in MCT-induced PAH mouse models through the miR-509-5p/MCTP2 axis, indicating a potential therapeutic target for PAH.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Peripheral Vascular DiseasesThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Hao Qin
- Department of Peripheral Vascular DiseasesThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Qiang Ma
- Department of Peripheral Vascular DiseasesThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Junbo Zhang
- Department of Peripheral Vascular DiseasesThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Hongyan Tian
- Department of Peripheral Vascular DiseasesThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yan Meng
- Department of Peripheral Vascular DiseasesThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
5
|
Cao Y, Zheng M, Sewani MA, Wang J. The miR-17-92 cluster in cardiac health and disease. Birth Defects Res 2024; 116:e2273. [PMID: 37984445 PMCID: PMC11418803 DOI: 10.1002/bdr2.2273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
MicroRNAs (miRs) are small noncoding RNAs that play important roles in both physiological and pathological processes through post-transcriptional regulation. The miR-17-92 cluster includes six individual members: miR-17, miR-18a, miR-19a, miR-19b-1, miR-20a, and miR-92a-1. The miR-17-92 cluster has been extensively studied and reported to broadly function in cancer biology, immunology, neurology, pulmonology, and cardiology. This review focuses on its roles in heart development and cardiac diseases. We briefly introduce the nature of the miR-17-92 cluster and its crucial roles in both normal development and the pathogenesis of various diseases. We summarize the recent progress in understanding the versatile roles of miR-17-92 during cardiac development, regeneration, and aging. Additionally, we highlight the indispensable roles of the miR-17-92 cluster in pathogenesis and therapeutic potential in cardiac birth defects and adult cardiac diseases.
Collapse
Affiliation(s)
- Yuhan Cao
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Mingjie Zheng
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Maham A Sewani
- Department of BioSciences, Wiess School of Natural Sciences, Rice University, Houston, TX 77030, USA
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA
| |
Collapse
|
6
|
Su H, Zhu H, Wang S, Li Y, Yan C, Wang J, Ying K. CircItgb5 promotes synthetic phenotype of pulmonary artery smooth muscle cells via interacting with miR-96-5p and Uba1 in monocrotaline-induced pulmonary arterial hypertension. Respir Res 2023; 24:165. [PMID: 37344798 DOI: 10.1186/s12931-023-02480-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a rare but fatal cardiopulmonary disease mainly characterized by pulmonary vascular remodeling. Aberrant expression of circRNAs has been reported to play a crucial role in pulmonary vascular remodeling. The existing literature predominantly centers on studies that examined the sponge mechanism of circRNAs. However, the mechanism of circRNAs in regulating PAH-related protein remains largely unknown. This study aimed to investigate the effect of circItgb5 on pulmonary vascular remodeling and the underlying functional mechanism. MATERIALS AND METHODS High-throughput circRNAs sequencing was used to detect circItgb5 expression in control and PDGF-BB-treated pulmonary arterial smooth muscle cells (PASMCs). Localization of circItgb5 in PASMCs was determined via the fluorescence in situ hybridization assay. Sanger sequencing was applied to analyze the circularization of Itgb5. The identification of proteins interacting with circItgb5 was achieved through a RNA pull-down assay. To assess the impact of circItgb5 on PASMCs proliferation, an EdU assay was employed. Additionally, the cell cycle of PASMCs was examined using a flow cytometry assay. Western blotting was used to detect biomarkers associated with the phenotypic switch of PASMCs. Furthermore, a monocrotaline (MCT)-induced PAH rat model was established to explore the effect of silencing circItgb5 on pulmonary vascular remodeling. RESULTS CircItgb5 was significantly upregulated in PDGF-BB-treated PASMCs and was predominately localized in the cytoplasm of PASMCs. In vivo experiments revealed that the knockdown of circItgb5 attenuated MCT-induced pulmonary vascular remodeling and right ventricular hypertrophy. In vitro experiments revealed that circItgb5 promoted the transition of PASMCs to synthetic phenotype. Mechanistically, circItgb5 sponged miR-96-5p to increase mTOR level and interacted with Uba1 protein to activate the Ube2n/Mdm2/ACE2 pathway. CONCLUSIONS CircItgb5 promoted the transition of PASMCs to synthetic phenotype by interacting with miR-96-5p and Uba1 protein. Knockdown of circItgb5 mitigated pulmonary arterial pressure, pulmonary vascular remodeling and right ventricular hypertrophy. Overall, circItgb5 has the potential for application as a therapeutic target for PAH.
Collapse
Affiliation(s)
- Hua Su
- Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Diseases, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, No. 3 Qingchun Road East, Hangzhou, China
| | - Huiqi Zhu
- Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Diseases, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, No. 3 Qingchun Road East, Hangzhou, China
| | - Sihao Wang
- Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Diseases, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, No. 3 Qingchun Road East, Hangzhou, China
| | - Yeping Li
- Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Diseases, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, No. 3 Qingchun Road East, Hangzhou, China
| | - Chao Yan
- Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Diseases, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, No. 3 Qingchun Road East, Hangzhou, China
| | - Jiaoyan Wang
- Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Diseases, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, No. 3 Qingchun Road East, Hangzhou, China
| | - Kejing Ying
- Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Diseases, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, No. 3 Qingchun Road East, Hangzhou, China.
| |
Collapse
|
7
|
Mao J, Ma L. Research progress on the mechanism of phenotypic transformation of pulmonary artery smooth muscle cells induced by hypoxia. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:750-757. [PMID: 36915980 PMCID: PMC10262008 DOI: 10.3724/zdxbyxb-2022-0282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/20/2022] [Indexed: 12/24/2022]
Abstract
Phenotypic transformation of pulmonary artery smooth muscle cells (PASMCs) is a key factor in pulmonary vascular remodeling. Inhibiting or reversing phenotypic transformation can inhibit pulmonary vascular remodeling and control the progression of hypoxic pulmonary hypertension. Recent studies have shown that hypoxia causes intracellular peroxide metabolism to induce oxidative stress, induces multi-pathway signal transduction, including those related to autophagy, endoplasmic reticulum stress and mitochondrial dysfunction, and also induces non-coding RNA regulation of cell marker protein expression, resulting in PASMCs phenotypic transformation. This article reviews recent research progress on mechanisms of hypoxia-induced phenotypic transformation of PASMCs, which may be helpful for finding targets to inhibit phenotypic transformation and to improve pulmonary vascular remodeling diseases such as hypoxia-induced pulmonary hypertension.
Collapse
Affiliation(s)
- Jiaqi Mao
- 1. Medical Institute of Qinghai University, Xining 810001, China
- 2. Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China
| | - Lan Ma
- 2. Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China
| |
Collapse
|
8
|
Association of H-Type Hypertension with miR-21, miR-29, and miR-199 in Kazahks of Xinjiang, China. Int J Hypertens 2022; 2022:4632087. [PMID: 36200021 PMCID: PMC9529513 DOI: 10.1155/2022/4632087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/30/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
Objective This study aims to analyze the expressions of miR-21, miR-29, and miR-199 in the serum of the patients with H-type hypertension among Kazakhs. Then, we analyzed the effect of MTHFR 677C > T polymorphism on the association between the above miRNA and H-type hypertension. Method In this study, the expression of miR-21, miR-29, and miR-199 was quantitatively measured in 120 serum samples and then stratified according to the C677T polymorphism to analyze the relationship between target miRNAs and HHcy. Results The expression of miR-21/-29 in the hypertension group was higher than the normal group (P < 0.001). And the expression of miR-199 was higher in the hcy group than in the normal group (P < 0.001). In the CC and CT genotypes of MTHFR 677C > T, the expression of miR-21 was lower in the HHcy patients than in the normal individuals (P = 0.005 and P = 0.001) and miR-199 was significantly higher in the HHcy patients than in the normal ones (P = 0.002 and P = 0.048). No such difference was found in the TT genotype. Logistic regression analysis showed that after adjusting for sex, age, BMI, systolic blood pressure, diastolic blood pressure, and MTHFRC677 T gene polymorphism, miR-21 was negatively correlated with hcy (OR = 0.222, 95% CI (0.101–0.485), P < 0.001) and miR-199 was positively correlated with hcy (OR = 1.823,95%CI (1.272∼2.614), P = 0.001). Conclusion miR-21, miR-29, and miR-199 are associated with H-type hypertension in the Kazakhs, especially hyperhomocysteinemia. And these three miRNAs may serve as biomarkers to provide clues to the potential pathogenesis of H-type hypertension.
Collapse
|