1
|
Liu YQ, Yang Q, He GW. Post-translational acylation of proteins in cardiac hypertrophy. Nat Rev Cardiol 2025:10.1038/s41569-025-01150-1. [PMID: 40229510 DOI: 10.1038/s41569-025-01150-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/20/2025] [Indexed: 04/16/2025]
Abstract
Acylations are post-translational modifications in which functional groups are attached to amino acids on proteins. Most acylations (acetylation, butyrylation, crotonylation, lactylation, malonylation, propionylation and succinylation) involve lysine but cysteine (palmitoylation) and glycine (myristoylation) residues can also be altered. Acylations have important roles in physiological and pathophysiological processes, including cardiac hypertrophy and related cardiovascular diseases. These post-translational modifications influence chromatin architecture, transcriptional regulation and metabolic pathways, thereby affecting cardiomyocyte function and pathology. The dynamic interaction between these acylations and their regulatory enzymes, such as histone acetyltransferases, histone deacetylases and sirtuins, underscores the complexity of cellular homeostasis and pathological processes. Emerging evidence highlights the therapeutic potential of targeting acylations to modulate enzyme activity and metabolite levels, offering promising avenues for novel treatments. In this Review, we explore the diverse mechanisms through which acylations contribute to cardiac hypertrophy, highlighting the complexity and potential therapeutic targets in this regulatory network.
Collapse
Affiliation(s)
- Ying-Qi Liu
- Department of Cardiovascular Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
| | - Qin Yang
- Department of Cardiovascular Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China
| | - Guo-Wei He
- Department of Cardiovascular Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, China.
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, China.
- Division of Cardiothoracic Surgery, Department of Surgery, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
2
|
Zheng XB, Wang C, Zhang M, Yao BQ, Wu HY, Hou SX. Exogenous H 2S targeting PI3K/AKT/mTOR pathway alleviates chronic intermittent hypoxia-induced myocardial damage through inhibiting oxidative stress and enhancing autophagy. Sleep Breath 2024; 29:43. [PMID: 39627628 DOI: 10.1007/s11325-024-03216-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/16/2024] [Accepted: 11/22/2024] [Indexed: 03/26/2025]
Abstract
AIMS Hydrogen sulfide (H2S) is a novel gas signaling molecule that has been researched in several physiological and pathological conditions, indicating that strategies targeting H2S may provide clinical benefits in diseases such as chronic cardiomyopathy. Here, we reveal the effect of H2S on chronic intermittent hypoxia (CIH)-related myocardial damage and its mechanistic relevance to phosphoinositol-3 kinase (PI3K). MATERIALS Mice were subjected to a 4-week CIH process to induce myocardial damage, which was accompanied by daily administration of NaHS (a H2S donor) and LY294002 (an inhibitor of PI3K). Changes in heart function were evaluated via echocardiography. Histological examination was applied to assess heart tissue lesions. Myocardial apoptosis was detected by TUNEL staining and apoptosis-associated protein expression. Furthermore, the effects of NaHS on autophagy and the PI3K/AKT/mTOR pathway were investigated. Finally, the level of inflammation is also affected by related proteins. KEY FINDINGS The CIH group presented increased myocardial dysfunction and heart tissue lesions. Echocardiography and histological analysis revealed that, compared with control mice, CIH-treated mice presented significantly more severe left ventricular remodeling and decreased myocardial contractile function. In addition, the apoptosis index and oxidative markers were significantly elevated in the CIH group compared with those in the control group. The autophagy marker Beclin-1 was decreased, while p62 was elevated by CIH treatment. H2S supplementation with NaHS significantly improved cardiac function and alleviated fibrosis, oxidative stress, and apoptosis but upregulated autophagy in CIH mice, and these effects were also observed in animals that underwent only PI3K blockade. Furthermore, PI3K/AKT pathway-mediated inhibition of the mammalian target of rapamycin (mTOR) pathway, the Nrf2/HO-1 pathway and proinflammatory NF-κB activity were shown to play a role in the therapeutic effect of NaHS after CIH stimulation.
Collapse
Affiliation(s)
- Xiao-Bin Zheng
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan City, 030000, China.
| | - Chao Wang
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan City, 030000, China
| | - Ming Zhang
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan City, 030000, China
| | - Bing-Qi Yao
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan City, 030000, China
| | - Hai-Yan Wu
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan City, 030000, China
| | - Shu-Xian Hou
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan City, 030000, China
| |
Collapse
|
3
|
Zhang P, Zou P, Huang X, Zeng X, Liu S, Liu Y, Shao L. Effect of aortic smooth muscle BK channels on mediating chronic intermittent hypoxia-induced vascular dysfunction. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:469-478. [PMID: 39198227 PMCID: PMC11361999 DOI: 10.4196/kjpp.2024.28.5.469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 09/01/2024]
Abstract
Chronic intermittent hypoxia (CIH) can lead to vascular dysfunction and increase the risk of cardiovascular diseases, cerebrovascular diseases, and arterial diseases. Nevertheless, mechanisms underlying CIH-induced vascular dysfunction remain unclear. Herein, this study analyzed the role of aortic smooth muscle calciumactivated potassium (BK) channels in CIH-induced vascular dysfunction. CIH models were established in rats and rat aortic smooth muscle cells (RASMCs). Hemodynamic parameters such as mean blood pressure (MBP), diastolic blood pressure (DBP), and systolic blood pressure (SBP) were measured in rats, along with an assessment of vascular tone. NO and ET-1 levels were detected in rat serum, and the levels of ET-1, NO, eNOS, p-eNOS, oxidative stress markers (ROS and MDA), and inflammatory factors (IL-6 and TNF-α) were tested in aortic tissues. The Ca2+ concentration in RASMCs was investigated. The activity of BK channels (BKα and BKβ) was evaluated in aortic tissues and RASMCs. SBP, DBP, and MBP were elevated in CIH-treated rats, along with endothelial dysfunction, cellular edema and partial detachment of endothelial cells. BK channel activity was decreased in CIH-treated rats and RASMCs. BK channel activation increased eNOS, p-eNOS, and NO levels while lowering ET-1, ROS, MDA, IL-6, and TNF-α levels in CIH-treated rats. Ca2+ concentration increased in RASMCs following CIH modeling, which was reversed by BK channel activation. BK channel inhibitor (Iberiotoxin) exacerbated CIH-induced vascular disorders and endothelial dysfunction. BK channel activation promoted vasorelaxation while suppressing vascular endothelial dysfunction, inflammation, and oxidative stress, thereby indirectly improving CIH-induced vascular dysfunction.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Neurology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, China
| | - Pengtao Zou
- Department of Cardiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, China
| | - Xiao Huang
- Department of Cardiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, China
| | - Xianghui Zeng
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People’s Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi 341000, China
| | - Songtao Liu
- Department of Cardiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, China
| | - Yuanyuan Liu
- Department of Cardiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, China
| | - Liang Shao
- Department of Cardiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, China
| |
Collapse
|
4
|
Deng M, Hou Y, Liu J, He J, Lan Z, Xiao H. Mesenchymal stem cell-derived exosomes overexpressing SRC-3 protect mice from cerebral ischemia by inhibiting ferroptosis. Brain Res Bull 2024; 211:110948. [PMID: 38614406 DOI: 10.1016/j.brainresbull.2024.110948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/26/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND The treatment for cerebral ischemia remains limited, and new therapeutic strategies are urgently needed. Exosome has shown great promise for the treatment of cerebral ischemia. Steroid receptor coactivator-3 (SRC-3) was reported to be involved in neurological performances. In this study, we aimed to investigate the protective effects of mesenchymal stem cell (MSC)-derived exosomes overexpressing SRC-3 on cerebral ischemia in mice. METHODS The mice were treated with an intracerebroventricular injection of GFP-overexpressed exosomes (GFP-exo) and SRC-3-overexpressed exosomes (SRC3-exo) in a middle cerebral artery occlusion (MCAO) model of cerebral ischemia. RESULTS The results showed that SRC3-exo treatment significantly inhibited lipid peroxidation and ferroptosis of the neurons subjected to oxygen-glucose deprivation. It further suppressed the activation of microglia and astrocytes, and decreased the production of pro-inflammatory cytokines in the brains of MCAO mice. Furthermore, SRC3-exo treatment reduced the water content of brain tissue and infarct size, which alleviated the neurological damage and improved neurological performances in the MCAO mice. CONCLUSIONS Our results suggest that MSC-derived exosomes expressing SRC3 can be a therapeutic strategy for cerebral ischemia by inhibiting ferroptosis.
Collapse
Affiliation(s)
- Mingyang Deng
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Ying Hou
- Department of Neurology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jianyang Liu
- Department of Neurology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jialin He
- Department of Neurology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Ziwei Lan
- Department of Neurology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Han Xiao
- Department of Neurology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
5
|
Liu W, Zhu Q, Li X, Wang Y, Zhao C, Ma C. Effects of obstructive sleep apnea on myocardial injury and dysfunction: a review focused on the molecular mechanisms of intermittent hypoxia. Sleep Breath 2024; 28:41-51. [PMID: 37548920 DOI: 10.1007/s11325-023-02893-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/08/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
Obstructive sleep apnea (OSA) is characterized by intermittent hypoxia (IH) and is strongly associated with adverse cardiovascular outcomes. Myocardial injury and dysfunction have been commonly observed in clinical practice, particularly in patients with severe OSA. However, the underlying mechanisms remain obscure. In this review, we summarized the molecular mechanisms by which IH impact on myocardial injury and dysfunction. In brief, IH-induced cardiomyocyte death proceeds through the regulation of multiple biological processes, including differentially expressed transcription factors, alternative epigenetic programs, and altered post-translational modification. Besides cell death, various cardiomyocyte injuries, such as endoplasmic reticulum stress, occurs with IH. In addition to the direct effects on cardiomyocytes, IH has been found to deteriorate myocardial blood and energy supply by affecting the microvascular structure and disrupting glucose and lipid metabolism. For better diagnosis and treatment of OSA, further studies on the molecular mechanisms of IH-induced myocardial injury and dysfunction are essential.
Collapse
Affiliation(s)
- Wen Liu
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, No. 155 NanjingBei Street, Heping District, Shenyang, 110001, Liaoning Province, China
- Clinical Medical Research Center of Imaging in Liaoning Province, The First Hospital of China Medical University, No. 155 NanjingBei Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Qing Zhu
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, No. 155 NanjingBei Street, Heping District, Shenyang, 110001, Liaoning Province, China
- Clinical Medical Research Center of Imaging in Liaoning Province, The First Hospital of China Medical University, No. 155 NanjingBei Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Xinxin Li
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, No. 155 NanjingBei Street, Heping District, Shenyang, 110001, Liaoning Province, China
- Clinical Medical Research Center of Imaging in Liaoning Province, The First Hospital of China Medical University, No. 155 NanjingBei Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Yonghuai Wang
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, No. 155 NanjingBei Street, Heping District, Shenyang, 110001, Liaoning Province, China
- Clinical Medical Research Center of Imaging in Liaoning Province, The First Hospital of China Medical University, No. 155 NanjingBei Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Cuiting Zhao
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, No. 155 NanjingBei Street, Heping District, Shenyang, 110001, Liaoning Province, China
- Clinical Medical Research Center of Imaging in Liaoning Province, The First Hospital of China Medical University, No. 155 NanjingBei Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Chunyan Ma
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, No. 155 NanjingBei Street, Heping District, Shenyang, 110001, Liaoning Province, China.
- Clinical Medical Research Center of Imaging in Liaoning Province, The First Hospital of China Medical University, No. 155 NanjingBei Street, Heping District, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
6
|
Costantino S, Mengozzi A, Velagapudi S, Mohammed SA, Gorica E, Akhmedov A, Mongelli A, Pugliese NR, Masi S, Virdis A, Hülsmeier A, Matter CM, Hornemann T, Melina G, Ruschitzka F, Luscher TF, Paneni F. Treatment with recombinant Sirt1 rewires the cardiac lipidome and rescues diabetes-related metabolic cardiomyopathy. Cardiovasc Diabetol 2023; 22:312. [PMID: 37957697 PMCID: PMC10644415 DOI: 10.1186/s12933-023-02057-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Metabolic cardiomyopathy (MCM), characterized by intramyocardial lipid accumulation, drives the progression to heart failure with preserved ejection fraction (HFpEF). Although evidence suggests that the mammalian silent information regulator 1 (Sirt1) orchestrates myocardial lipid metabolism, it is unknown whether its exogenous administration could avoid MCM onset. We investigated whether chronic treatment with recombinant Sirt1 (rSirt1) could halt MCM progression. METHODS db/db mice, an established model of MCM, were supplemented with intraperitoneal rSirt1 or vehicle for 4 weeks and compared with their db/ + heterozygous littermates. At the end of treatment, cardiac function was assessed by cardiac ultrasound and left ventricular samples were collected and processed for molecular analysis. Transcriptional changes were evaluated using a custom PCR array. Lipidomic analysis was performed by mass spectrometry. H9c2 cardiomyocytes exposed to hyperglycaemia and treated with rSirt1 were used as in vitro model of MCM to investigate the ability of rSirt1 to directly target cardiomyocytes and modulate malondialdehyde levels and caspase 3 activity. Myocardial samples from diabetic and nondiabetic patients were analysed to explore Sirt1 expression levels and signaling pathways. RESULTS rSirt1 treatment restored cardiac Sirt1 levels and preserved cardiac performance by improving left ventricular ejection fraction, fractional shortening and diastolic function (E/A ratio). In left ventricular samples from rSirt1-treated db/db mice, rSirt1 modulated the cardiac lipidome: medium and long-chain triacylglycerols, long-chain triacylglycerols, and triacylglycerols containing only saturated fatty acids were reduced, while those containing docosahexaenoic acid were increased. Mechanistically, several genes involved in lipid trafficking, metabolism and inflammation, such as Cd36, Acox3, Pparg, Ncoa3, and Ppara were downregulated by rSirt1 both in vitro and in vivo. In humans, reduced cardiac expression levels of Sirt1 were associated with higher intramyocardial triacylglycerols and PPARG-related genes. CONCLUSIONS In the db/db mouse model of MCM, chronic exogenous rSirt1 supplementation rescued cardiac function. This was associated with a modulation of the myocardial lipidome and a downregulation of genes involved in lipid metabolism, trafficking, inflammation, and PPARG signaling. These findings were confirmed in the human diabetic myocardium. Treatments that increase Sirt1 levels may represent a promising strategy to prevent myocardial lipid abnormalities and MCM development.
Collapse
Affiliation(s)
- Sarah Costantino
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, Zurich University Hospital and University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
- Department of Cardiology, Zurich University Hospital, Zurich, Switzerland
| | - Alessandro Mengozzi
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, Zurich University Hospital and University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Health Science Interdisciplinary Center, Sant'Anna School of Advanced Studies, Pisa, Italy
| | | | - Shafeeq Ahmed Mohammed
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, Zurich University Hospital and University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Era Gorica
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, Zurich University Hospital and University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Alexander Akhmedov
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Alessia Mongelli
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, Zurich University Hospital and University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | | | - Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Agostino Virdis
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Andreas Hülsmeier
- Institute for Clinical Chemistry, University Hospital and University of Zürich, Zurich, Switzerland
| | - Christian Matthias Matter
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, Zurich University Hospital and University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
- Department of Cardiology, Zurich University Hospital, Zurich, Switzerland
| | - Thorsten Hornemann
- Institute for Clinical Chemistry, University Hospital and University of Zürich, Zurich, Switzerland
| | - Giovanni Melina
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Frank Ruschitzka
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, Zurich University Hospital and University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
- Department of Cardiology, Zurich University Hospital, Zurich, Switzerland
| | - Thomas Felix Luscher
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
- Royal Brompton and Harefield Hospitals and Imperial College, London, UK
| | - Francesco Paneni
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, Zurich University Hospital and University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland.
- Department of Cardiology, Zurich University Hospital, Zurich, Switzerland.
| |
Collapse
|
7
|
Zhang L, Li Y, Tao D, Yang L, Zhang Y, Zhang H, Xie C. The miR-34b-5p-negative target Gnai2 aggravates fluorine combined with aluminum-induced apoptosis of rat offspring hippocampal neurons and NG108-15 cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:66822-66839. [PMID: 37186186 DOI: 10.1007/s11356-023-27135-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023]
Abstract
It is known that fluorine and aluminum are commonly found in the environment and that long-term overexposure can adversely affect the organism's nervous system, damaging the structure and function of brain tissue. Our previous study showed that fluorine combined with aluminum (FA) could trigger apoptosis in vitro and cause spatial learning and memory impairment and differentially expressed miRNAs (including miR-34b-5p) in the hippocampi in vivo. However, the detailed mechanism is unclear. Learning memory damage is implicated in excessive hippocampal neuron apoptosis, and miR-34b-5p participates in regulating the hippocampal neuron apoptosis. Thus, in the current research, Sprague-Dawley (SD) rats were subjected to FA, and NG108-15 control cells and NG108-15 cells pretransfected with miR-34b-5p agomir or antagomir were exposed to FA. We found that FA triggered apoptosis of rat hippocampal neurons and NG108-15 cells, increased miR-34b-5p expression, and decreased Gnai2, PKA, ERK and CREB expression. Inhibition of miR-34b-5p alleviated FA-induced NG108-15 cell apoptosis and further increased Gnai2, PKA, ERK, and CREB expression, and vice versa. Furthermore, miR-34b-5p modulated the level of Gnai2 by directly targeting its 3'-untranslated region (UTR), as verified through the dual Luciferase reporter assay. These outcomes suggested that miR-34b-5p participated in FA-induced neuronal apoptosis by targeting Gnai2 negatively, thereby inhibiting the PKA/ERK/CREB signaling pathway.
Collapse
Affiliation(s)
- Luwen Zhang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Yang Li
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Dan Tao
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Liu Yang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Yue Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Hua Zhang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Chun Xie
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
8
|
Zhao H, Fu X, Zhang Y, Yang Y, Wang H. Hydrogen sulfide plays an important role by regulating endoplasmic reticulum stress in myocardial diseases. Front Pharmacol 2023; 14:1172147. [PMID: 37124222 PMCID: PMC10133551 DOI: 10.3389/fphar.2023.1172147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Endoplasmic reticulum (ER) is an important organelle for protein translation, folding and translocation, as well as the post-translational modification and assembly of newly synthesized secreted proteins. When the excessive accumulation of misfolded and/or unfolded proteins exceeds the processing capacity of ER, ER stress is triggered. The integrated intracellular signal cascade, namely the unfolded protein response, is induced to avoid ER stress. ER stress is involved in many pathological and physiological processes including myocardial diseases. For a long time, hydrogen sulfide (H2S) has been considered as a toxic gas with the smell of rotten eggs. However, more and more evidences indicate that H2S is an important gas signal molecule after nitric oxide and carbon monoxide, and regulates a variety of physiological and pathological processes in mammals. In recent years, increasing studies have focused on the regulatory effects of H2S on ER stress in myocardial diseases, however, the mechanism is not very clear. Therefore, this review focuses on the role of H2S regulation of ER stress in myocardial diseases, and deeply analyzes the relevant mechanisms so as to lay the foundation for the future researches.
Collapse
Affiliation(s)
- Huijie Zhao
- Institute of Chronic Disease Risks Assessment, Henan University, Kaifeng, China
| | - Xiaodi Fu
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Yanting Zhang
- School of Clinical Medicine, Henan University, Kaifeng, Henan, China
| | - Yihan Yang
- School of Clinical Medicine, Henan University, Kaifeng, Henan, China
| | - Honggang Wang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
- *Correspondence: Honggang Wang,
| |
Collapse
|
9
|
Xu X, Zhen PH, Yu FC, Wang T, Li SN, Wei Q, Tong JY. Chronic intermittent hypoxia accelerates cardiac dysfunction and cardiac remodeling during cardiac pressure overload in mice and can be alleviated by PHD3 overexpression. Front Cardiovasc Med 2022; 9:974345. [PMID: 36172572 PMCID: PMC9510693 DOI: 10.3389/fcvm.2022.974345] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Obstructive sleep apnea (OSA) accelerates the progression of chronic heart failure (CHF). OSA is characterized by chronic intermittent hypoxia (CIH), and CIH exposure accelerates cardiac systolic dysfunction and cardiac remodeling in a cardiac afterload stress mouse model. Mechanistic experiments showed that long-term CIH exposure activated hypoxia-inducible factor 1α (HIF-1α) expression in the mouse heart and upregulated miR-29c expression and that both HIF-1α and miR-29c simultaneously inhibited sarco-/endoplasmic reticulum calcium ATPase 2a (SERCA2a) expression in the mouse heart. Cardiac HIF-1α activation promoted cardiomyocyte hypertrophy. SERCA2a expression was suppressed in mouse heart in middle- and late-stage cardiac afterload stress, and CIH exposure further downregulated SERCA2a expression and accelerated cardiac systolic dysfunction. Prolyl hydroxylases (PHDs) are physiological inhibitors of HIF-1α, and PHD3 is most highly expressed in the heart. Overexpression of PHD3 inhibited CIH-induced HIF-1α activation in the mouse heart while decreasing miR-29c expression, stabilizing the level of SERCA2a. Although PHD3 overexpression did not reduce mortality in mice, it alleviated cardiac systolic dysfunction and cardiac remodeling induced by CIH exposure.
Collapse
Affiliation(s)
- Xuan Xu
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
- Medical School of Southeast University, Nanjing, China
| | - Peng-Hao Zhen
- Medical School of Southeast University, Nanjing, China
| | - Fu-Chao Yu
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Tao Wang
- Medical School of Southeast University, Nanjing, China
| | - Sheng-Nan Li
- Medical School of Southeast University, Nanjing, China
| | - Qin Wei
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Jia-Yi Tong
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
- *Correspondence: Jia-Yi Tong
| |
Collapse
|
10
|
Aib1 deficiency exacerbates inflammatory responses in acute myocardial infarction mice. J Mol Med (Berl) 2022; 100:1181-1190. [PMID: 35840741 DOI: 10.1007/s00109-022-02231-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
Abstract
Acute myocardial infarction (AMI) is one of the major causes of death throughout the world, while inflammation has been known as a major contributor to the pathophysiology of AMI. Inhibition of inflammation is shown to protect from AMI. Amplified in breast 1 (Aib1) is a transcriptional coactivator protein which can suppress inflammation. The anti-inflammatory activities of Aib1 imply its potential effects against AMI; however, to date the role of Aib1 in AMI has not been described yet. Here we explored the potential functions of Aib1 in AMI. We induced AMI in both wild-type (WT) and Aib1-/- mice. The expression levels of Aib1 and inflammatory cytokines in the AMI WT mice were measured by RT-PCR and Western blot. The heart infarction area and cardiac functions were compared between the AMI WT and Aib1-/- mice. The expression levels of inflammatory cytokines including IL-6, IL-1β, TNF-α, and MCP-1 in heart tissues were compared between the AMI WT and Aib1-/- mice by ELISA and RT-PCR. AMI induced the production of inflammatory cytokines whereas suppressed the expression of Aib1 in WT mice. AMI Aib1-/- mice displayed increased infarct area and aggravated heart dysfunction, as well as upregulated levels of Il-6, Il-1β, Tnf-α, and Mcp-1 in heart tissues. Aib1 deficiency exacerbates inflammation in AMI mice. KEY MESSAGES: AMI induced inflammation in the heart tissue of mice. Aib1 knockout exacerbated infarction in AMI mice. Aib1 knockout exacerbated cardiac dysfunction in AMI mice. Aib1 knockout exacerbated inflammation in AMI mice.
Collapse
|