1
|
Asad M, Karim S, Sanobar, Faheem Khan M, Ahmad Ansari W, Al Said Y, Imran Khan M, Saquib M, Kamil Hussain M. Synthesis and Evaluation of 3,5-Disubstituted-1,2,4-Oxadiazolyl Benzamides as Potential Anti-Breast Cancer Agents: In Vitro and In Silico Studies. Chem Biodivers 2025; 22:e202402020. [PMID: 39495606 DOI: 10.1002/cbdv.202402020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/06/2024]
Abstract
Herein, the synthesis, anti-cancer evaluation, and in silico studies of a series of 1,2,4-oxadiazole compounds (8-15) are disclosed. The synthesized molecules were tested in vitro for anti-cancer activity against MCF-7, MDA-MB-231, HeLa, Ishikawa cell lines and human embryonic kidney (HEK-293) cell lines. Among the synthesized compounds, 9 and 15 exhibited significant cytotoxicity, with IC50 values of 7.82 μM and 6.02 μM, respectively, against MCF-7 cell line, better than that of anti-breast cancer drug, tamoxifen (IC50=11.92 μM), used as control. Significantly, both 9 and 15 exhibited very low toxicity (IC50>20 μM) against normal HEK-293 cells. This suggests them as potentially effective anti-cancer lead molecules. The in vitro anti-cancer data was supported by in silico studies which also identified compounds 9 and 15 as potent inhibitors of the 17β-hydroxysteroid dehydrogenase1 (17β-HSD1) proteins, demonstrating strong interactions and stability The atom-based QSAR model exhibited high accuracy, significant regression, and predictive reliability, aiding in understanding and optimizing biological activity. The drug-likeness study of compounds 9 and 15 indicated favorable pharmacokinetics, with in silico toxicity predictions showing compound 15 to be non-toxic. These findings suggest compounds 9 and 15 as potential lead molecules against breast cancer.
Collapse
Affiliation(s)
- Mohammad Asad
- Department of Chemistry, TCG Life Science, Kolakata, 700091, WB, India
| | - Shahid Karim
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Sanobar
- Department of Chemistry, Govt. Raza P.G. College, (M.J.P Rohil Khand University, Bareilly), Rampur, 244901, UP, India
| | - Mohammad Faheem Khan
- Department of Biotechnology, Era's Lucknow Medical College, Era University, Lucknow, 226003, UP, India
| | - Waseem Ahmad Ansari
- Department of Biotechnology, Era's Lucknow Medical College, Era University, Lucknow, 226003, UP, India
| | - Youssef Al Said
- Department of Neurosciences, King Faisal Specialist Hospital & Research Centre, Jeddah, 21556, Saudi Arabia
| | - Mohammad Imran Khan
- Research Centre, King Faisal Specialist Hospital and Research Centre, Jeddah, 21499, Saudi Arabia
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al-Faisal University, Riyadh, 11533, Saudi Arabia
| | - Mohammad Saquib
- Department of Chemistry, University of Allahabad, Prayagraj (Allahabad), 211002, UP, India
- Department of Chemistry, G. R. P. B. Degree College, P. R. S. University, Prayagraj (Allahabad), 211010, UP, India
| | - Mohd Kamil Hussain
- Department of Chemistry, Govt. Raza P.G. College, (M.J.P Rohil Khand University, Bareilly), Rampur, 244901, UP, India
| |
Collapse
|
2
|
Singh A, Prakash A, Mishra J, Luthra PM. Discovery of novel A 2AR antagonist via 3D-QSAR pharmacophore modeling: neuroprotective effects in 6-OHDA-induced SH-SY5Y cells and haloperidol-induced Parkinsonism in C57 bl/6 mice. Mol Divers 2025:10.1007/s11030-025-11120-x. [PMID: 39899125 DOI: 10.1007/s11030-025-11120-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/17/2025] [Indexed: 02/04/2025]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder which is caused by abrupt degeneration of dopaminergic neuronal cells in the substantia nigra pars compacta (SNPc) area of the midbrain. Adenosine A2A receptors have become promising therapeutic targets for PD; however, many A2A receptor antagonists face challenges, such as limited accessibility or failure in clinical trials due to poor selectivity and bioavailability. To identify novel A2A receptor antagonists, a 3D-QSAR-pharmacophore modeling approach was employed, involving virtual screening of ZINC, NCI, and MayBridge databases. The virtual hits were filtered via ADMET criteria to select compounds with favorable bioavailability and solubility profiles. From the MayBridge database, a potent monocyclic A2A receptor antagonist, AW00032 (N-(furan-2-ylmethyl)-5-methylthiazole-4-yl) thiophene-2-sulfonamide, was identified. AW00032 possessed key pharmacophoric features: two lipophilic hydrogen bond acceptors, one hydrophobic aliphatic/aromatic group, and one aromatic ring. Docking analysis revealed AW00032 had a strong binding affinity for A2A receptors (1.23 nM, ∆G - 10.49 kcal/mol), and its ADMET profile indicated good bioavailability. In 6-OHDA induced SH-SY5Y cells, AW00032 increased dopamine levels and tyrosine hydroxylase (TH) expression, demonstrating its potential as an A2A receptor antagonist. AW00032, discovered through 3D-QSAR pharmacophore modeling, also reduced reactive oxygen species (ROS) levels and showed depletion in mitochondrial dysfunction in 6-OHDA-induced SH-SY5Y cells. It exhibited A2A receptor antagonist activity comparable to the standard antagonist ZM241385, partially restoring dopamine and TH levels. Furthermore, AW00032 improved behavioral symptoms in haloperidol-induced C-57 bl/6 mice.
Collapse
Affiliation(s)
- Ankit Singh
- Neuropharmaceutical Chemistry Laboratory, Dr. B.R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Amresh Prakash
- Neuropharmaceutical Chemistry Laboratory, Dr. B.R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Jyoti Mishra
- Neuropharmaceutical Chemistry Laboratory, Dr. B.R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Pratibha Mehta Luthra
- Neuropharmaceutical Chemistry Laboratory, Dr. B.R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
3
|
Kaur D, Saluja D, Chopra M. Identification of novel inhibitors of cancer target telomerase using a dual structure-based pharmacophore approach to virtually screen libraries, molecular docking and validation by molecular dynamics simulations. J Biomol Struct Dyn 2024:1-24. [PMID: 39703994 DOI: 10.1080/07391102.2024.2443130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/27/2024] [Indexed: 12/21/2024]
Abstract
In about 85% of cancer malignancies, replicative immortality caused by increased telomerase activity makes it an attractive target for developing anticancer therapeutics. However, the lack of approved small-molecule inhibitors rooted in the structural ambiguity of telomerase has impeded drug development for decades. In this study, we have exploited the FVYL pocket in the thumb domain, which plays a key role in the enzyme's processivity. Due to the unavailability of a co-crystalized structure of BIBR1532 with the catalytic hTERT thumb domain, we utilized the molecular dynamics method to identify the precise binding site of the inhibitor. Two pharmacophore models were generated and validated for the putative (Site-I) and newly identified (Site-II) binding pockets which were screened virtually through the ChemDiv anticancer library, Otava drug-like green collection to identify novel lead compounds, and Binding database to screen out thumb domain-specific telomerase inhibitors. The top hits obtained were filtered using drug-likeliness parameters followed by redocking using a three-level screening strategy into their binding site. The structural investigation, molecular docking studies, and confirmatory molecular dynamics revealed that the exact binding site of BIBR1532 is away from the reported FVYL pocket with characteristic interactions conserved. Subsequently, the lead compounds with the highest docking scores and significant interactions in the newly discovered extended FVYL pocket were validated using 100 ns MD simulations. Additionally, cross-validated binding free energy calculations were performed using MM-PB(GB)SA methods followed by PCA and FEL characterization. The identified top lead compounds can be validated in vitro and taken forward for anticancer drug development.
Collapse
Affiliation(s)
- Divpreet Kaur
- Medical Biotechnology Laboratory, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
- Laboratory of Molecular Modeling and Anticancer Drug Development. Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Daman Saluja
- Medical Biotechnology Laboratory, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Madhu Chopra
- Laboratory of Molecular Modeling and Anticancer Drug Development. Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| |
Collapse
|
4
|
E U, T M, A V G, D P. A comprehensive survey of drug-target interaction analysis in allopathy and siddha medicine. Artif Intell Med 2024; 157:102986. [PMID: 39326289 DOI: 10.1016/j.artmed.2024.102986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 08/13/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Effective drug delivery is the cornerstone of modern healthcare, ensuring therapeutic compounds reach their intended targets efficiently. This paper explores the potential of personalized and holistic healthcare, driven by the synergy between traditional and allopathic medicine systems, with a specific focus on the vast reservoir of medicinal compounds found in plants rooted in the historical legacy of traditional medicine. Motivated by the desire to unlock the therapeutic potential of medicinal plants and bridge the gap between traditional and allopathic medicine, this survey delves into in-silico computational approaches for studying Drug-Target Interactions (DTI) within the contexts of allopathy and siddha medicine. The contributions of this survey are multifaceted: it offers a comprehensive overview of in-silico methods for DTI analysis in both systems, identifies common challenges in DTI studies, provides insights into future directions to advance DTI analysis, and includes a comparative analysis of DTI in allopathy and siddha medicine. The findings of this survey highlight the pivotal role of in-silico computational approaches in advancing drug research and development in both allopathy and siddha medicine, emphasizing the importance of integrating these methods to drive the future of personalized healthcare.
Collapse
Affiliation(s)
- Uma E
- Department of Information Science and Technology, College of Engineering Guindy, Chennai, India.
| | - Mala T
- Department of Information Science and Technology, College of Engineering Guindy, Chennai, India
| | - Geetha A V
- Department of Information Science and Technology, College of Engineering Guindy, Chennai, India
| | - Priyanka D
- Department of Information Science and Technology, College of Engineering Guindy, Chennai, India
| |
Collapse
|
5
|
Kundu S, N S, T DAK. Discovery of pharmacological agents for triple-negative breast cancer (TNBC): molecular docking and molecular dynamic simulation studies on 5-lipoxygenase (5-LOX) and nuclear factor kappa B (NF-κB). J Biomol Struct Dyn 2024; 42:9076-9089. [PMID: 37713334 DOI: 10.1080/07391102.2023.2250449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/12/2023] [Indexed: 09/17/2023]
Abstract
Global burden of breast cancer is expected to cross 26 million new cases by 2030. The term 'triple negative breast cancer' (TNBC) refers to lack of expression of hormone receptors (ER, PR and HER2). 5-Lipoxygenase (5-LOX) inhibition promotes breast cancer apoptosis, ferroptosis and inhibits metastases. Nuclear factor kappa B (NF-κB) activation induces cell survival in breast cancer through stimulation of angiogenesis. Therefore, inhibiting NF-B signalling can stop the growth of tumours. In light of these facts, an attempt is made to investigate binding characteristics of LOX inhibitors against 5-LOX (PDB-IDs 3V99 and 6N2W) and NF-κB (PDB-IDs 4KIK and 3DO7) through molecular docking, MM-GBSA calculation, molecular dynamic simulations (MDSs) and drug-likeness analysis. The eight lead molecules A169, A156, A162, A154, A102, A240, A86 and A58 were identified. The higher NF-B inhibiting potential of A169 was discovered through the sequential HTVS, SP docking and XP docking study. The hydrophobic interaction of Leu607, Phe610, Gln557 and Asn554 with 3V99 and Cys99, Glu97 and Arg20 of 4KIK is crucial for the inhibition. The LE, LLE and FQ values of A169 suggest their optimal binding with the target. This study strongly suggests the LOX and NF-κB inhibitory potential of A169, further lead optimisation and biological validation requires for the confirmations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sudipto Kundu
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
| | - Swathi N
- Department of Pharmaceutical Chemistry, Gokaraju Rangaraju College of Pharmacy, Bachupally, Hyderabad, Telangana, India
| | - Durai Ananda Kumar T
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamil Nadu, India
| |
Collapse
|
6
|
Behera DU, Gaur M, Sahoo M, Subudhi E, Subudhi BB. Development of pharmacophore models for AcrB protein and the identification of potential adjuvant candidates for overcoming efflux-mediated colistin resistance. RSC Med Chem 2024; 15:127-138. [PMID: 38283226 PMCID: PMC10809322 DOI: 10.1039/d3md00483j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/26/2023] [Indexed: 01/30/2024] Open
Abstract
Growing multi-drug resistance (MDR) among ESKAPE pathogens is a huge challenge. Increased resistance to last-resort antibiotics, like colistin, has further aggravated this. Efflux is identified as a major route of colistin resistance. So, finding an FDA-approved efflux inhibitor for potential application as an adjuvant to colistin was the primary objective of this study. E. coli-AcrB pump inhibitors and substrates were used to develop and validate the pharmacophoric model. Drugs confirming this pharmacophore were subjected to molecular docking to identify hits for the AcrB binding pocket. The efflux inhibition potential of the top hit was validated through the in vitro evaluation of the minimum inhibitory concentration (MIC) in combination with colistin. The checkerboard assay was done to demonstrate synergism, which was further corroborated by the Time-kill assay. Ten common pharmacophore hypotheses were successfully generated using substrate/inhibitors. Following enrichment analysis, AHHNR.100 was identified as the top-ranked hypothesis, and 207 unique compounds were found to conform to this hypothesis. The multi-step docking of these compounds against the AcrB protein revealed argatroban as the top non-antibiotic hit. This significantly inhibited the efflux activity of colistin-resistant clinical isolates K. pneumoniae (n = 1) and M. morganii (n = 2). Further, their combination with colistin enhanced the susceptibility of these isolates, and the effect was found to be synergistic. Accordingly, the time-kill assay of this combination showed 8-log and 2-log reductions against K. pneumoniae and M. morganii, respectively. In conclusion, this study found argatroban as a bacterial efflux inhibitor that can be potentially used to overcome efflux-mediated resistance.
Collapse
Affiliation(s)
- Dibyajyoti Uttameswar Behera
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Kalinga Nagar, Ghatikia Bhubaneswar-751003 Odisha India +91 9861075829
| | - Mahendra Gaur
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Kalinga Nagar, Ghatikia Bhubaneswar-751003 Odisha India +91 7978085389
- Department of Biotechnology & Food Technology, Punjabi University Patiala 147002 India
| | - Maheswata Sahoo
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Kalinga Nagar, Ghatikia Bhubaneswar-751003 Odisha India +91 9861075829
| | - Enketeswara Subudhi
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Kalinga Nagar, Ghatikia Bhubaneswar-751003 Odisha India +91 9861075829
| | - Bharat Bhusan Subudhi
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Kalinga Nagar, Ghatikia Bhubaneswar-751003 Odisha India +91 7978085389
| |
Collapse
|
7
|
Borik RMA, El-Wahab AHFA. Heteroaromatization of Coumarin Part I: Design, Synthesis, Reactions, Antitumor Activities of Novel Pyridine and Naphthyridine Derivatives. Curr Org Synth 2024; 21:571-581. [PMID: 38174438 DOI: 10.2174/0115701794265924230920061222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/07/2023] [Accepted: 08/25/2023] [Indexed: 01/05/2024]
Abstract
INTRODUCTION A novel series of chromen-3-yl-pyridine moieties were synthesized. IR, NMR, and MS spectroscopy were used to confirm the structure of these novel compounds and study antitumor activity of these compounds. The structure-activity relationship investigation demonstrated that 2,4-diamino- 5-(3-methoxyphenyl)-7-(2-oxo-2H-chromen-3-yl)-1,8-naphthyridine-3-carbonitrile (16), naphthyridine- 3-carbonitrile derivatives 17, 18 and pyrido[2,3-d]pyrimidine derivative 12 were found to be more effective, while compounds 5a,b, 9c, 11, 13 and 14 showed moderate activity for antitumor activities. OBJECTIVES The objective was to design a series of new chromen-3-yl-pyridine and pyrido[2,3-d]pyrimidine derivatives and study the antitumor of these compounds. MATERIALS AND METHODS The condensation reaction of 3-acetyl-2H-chromen-2-one with 3-methoxy benzaldehyde and malononitrile or ethyl cyanoacetate in the presence of ammonium acetate and acetic acid under reflux to give the corresponding chromen-3-yl pyridine-3-carbonitrile derivatives. RESULTS In this study, the antitumor activity of the synthesized compounds chromen-3-yl-pyridine derivatives has been determined for the broad spectrum of cytotoxic activity toward the investigated three cell lines and 5-Fluorouracil, as reference drugs. CONCLUSION A series of new chromen-3-yl-pyridine and pyrido[2,3-d]pyrimidine derivatives were synthesized in this work. All compounds were evaluated for cytotoxic activity.
Collapse
Affiliation(s)
- Rita Mohammed Ahmed Borik
- Department of Chemistry, College of Science, Jazan University, P.O. Box. 114, Jazan, 45142, Kingdom of Saudi Arabia
| | | |
Collapse
|
8
|
Hawash M. Recent Advances of Tubulin Inhibitors Targeting the Colchicine Binding Site for Cancer Therapy. Biomolecules 2022; 12:biom12121843. [PMID: 36551271 PMCID: PMC9776383 DOI: 10.3390/biom12121843] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer accounts for numerous deaths each year, and it is one of the most common causes of death worldwide, despite many breakthroughs in the discovery of novel anticancer candidates. Each new year the FDA approves the use of new drugs for cancer treatments. In the last years, the biological targets of anticancer agents have started to be clearer and one of these main targets is tubulin protein; this protein plays an essential role in cell division, as well as in intracellular transportation. The inhibition of microtubule formation by targeting tubulin protein induces cell death by apoptosis. In the last years, numerous novel structures were designed and synthesized to target tubulin, and this can be achieved by inhibiting the polymerization or depolymerization of the microtubules. In this review article, recent novel compounds that have antiproliferation activities against a panel of cancer cell lines that target tubulin are explored in detail. This review article emphasizes the recent developments of tubulin inhibitors, with insights into their antiproliferative and anti-tubulin activities. A full literature review shows that tubulin inhibitors are associated with properties in the inhibition of cancer cell line viability, inducing apoptosis, and good binding interaction with the colchicine binding site of tubulin. Furthermore, some drugs, such as cabazitaxel and fosbretabulin, have been approved by FDA in the last three years as tubulin inhibitors. The design and development of efficient tubulin inhibitors is progressively becoming a credible solution in treating many species of cancers.
Collapse
Affiliation(s)
- Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus P.O. Box 7, Palestine
| |
Collapse
|
9
|
Mirzaei S, Ghodsi R, Hadizadeh F, Sahebkar A. Corrigendum to "3D-QSAR-Based Pharmacophore Modeling, Virtual Screening, and Molecular Docking Studies for Identification of Tubulin Inhibitors with Potential Anticancer Activity". BIOMED RESEARCH INTERNATIONAL 2022; 2022:9761279. [PMID: 35036443 PMCID: PMC8758277 DOI: 10.1155/2022/9761279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 11/23/2022]
Abstract
[This corrects the article DOI: 10.1155/2021/6480804.].
Collapse
Affiliation(s)
- Salimeh Mirzaei
- Department of Medicinal Chemistry, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Razieh Ghodsi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|