1
|
Jin M, Lu Q, Xia N, Fan X, Zhang Z, Huang X, Sun L, Zhang L, Jiang Z, Yu Q. LncRNA Gm35585 transcriptionally activates the peroxidase EHHADH against diet-induced fatty liver. Exp Mol Med 2025; 57:652-666. [PMID: 40082671 PMCID: PMC11958773 DOI: 10.1038/s12276-025-01420-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/13/2024] [Accepted: 01/01/2025] [Indexed: 03/16/2025] Open
Abstract
Metabolic-dysfunction-associated steatotic liver disease is one of the most common chronic liver diseases worldwide and has no approved treatment thus far. Here we report that the hepatic overexpression of Gm35585, a novel lncRNA downregulated in the livers of mice fed a high-fat diet, is functionally important in alleviating hepatic lipid accumulation pathologies. Gm35585 activates the peroxisome proliferator-activated receptor α (PPARα) signaling pathway and promotes the expression of downstream PPARα-target gene, enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydrogenase (EHHADH), which is one of the four enzymes of the peroxisomal β-oxidation pathway. Activation of EHHADH promotes the oxidation of long-chain fatty acids (LCFAs), and the increased levels of hepatic LCFAs contribute to metabolic-dysfunction-associated steatotic liver disease. Mechanistically, Gm35585 binds to retinoid X receptor α (RXRα) and then forms a PPARα/RXRα heterodimer with PPARα and guides the heterodimer to recognize the promoter of EHHADH, which is called peroxisome proliferator-activated receptor response element, causing transcriptional activation of EHHADH. Taken together, Gm35585 is a hepatic lipid metabolism regulator that activates EHHADH transcription, promoting peroxisomal β-oxidation of LCFAs and ultimately ameliorating diet-induced fatty liver.
Collapse
Affiliation(s)
- Ming Jin
- New Drug Screening and Pharmacodynamics Evaluation Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Qian Lu
- New Drug Screening and Pharmacodynamics Evaluation Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ninglin Xia
- New Drug Screening and Pharmacodynamics Evaluation Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Xue Fan
- New Drug Screening and Pharmacodynamics Evaluation Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ziling Zhang
- New Drug Screening and Pharmacodynamics Evaluation Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Xiaofei Huang
- New Drug Screening and Pharmacodynamics Evaluation Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Li Sun
- New Drug Screening and Pharmacodynamics Evaluation Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Luyong Zhang
- New Drug Screening and Pharmacodynamics Evaluation Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Zhenzhou Jiang
- New Drug Screening and Pharmacodynamics Evaluation Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, China.
| | - Qinwei Yu
- New Drug Screening and Pharmacodynamics Evaluation Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
2
|
Du P, Xia T, Li X, Giri BR, Fang C, Li S, Yan S, Cheng G. Schistosoma sex-biased microRNAs regulate ovarian development and egg production by targeting Wnt signaling pathway. Commun Biol 2024; 7:1717. [PMID: 39741204 DOI: 10.1038/s42003-024-07402-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 12/13/2024] [Indexed: 01/02/2025] Open
Abstract
Adult Schistosoma produces a large number of eggs that play essential roles in host pathology and disease dissemination. Consequently, understanding the mechanisms of sexual maturation and egg production may open a new avenue for controlling schistosomiasis. Here, we describe that Bantam miRNA and miR-1989 regulate Wnt signaling pathway by targeting Frizzled-5/7/9, which is involved in ovarian development and oviposition. Additionally, Frizzled-7 could cooperate with SjRho to maintain normal ovarian development and egg productions and SjRho may interact with Hsp60 to potentially support Frizzled-7 trafficking and signaling. Further in vivo inhibition of SjRho in mice model infected with Schistosoma results in a remarkable decrease in worm burden and egg productions. Our findings not only broaden the functions of Bantam miRNA and miR-1989 as well as Wnt signaling pathway, but also imply that interruption of Bantam/miR-1989-Frizzled-5/7/9-SjRho axis may serve as effective targets against schistosomiasis.
Collapse
Affiliation(s)
- Pengfei Du
- Shanghai Tenth People's Hospital, Institute for Infectious Diseases and Vaccine Development, School of Medicine, Tongji University, Shanghai, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai, China
- China Institute of Veterinary Drug Control, Beijing, China
| | - Tianqi Xia
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Xuxin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Bikash R Giri
- Shanghai Tenth People's Hospital, Institute for Infectious Diseases and Vaccine Development, School of Medicine, Tongji University, Shanghai, China
| | - Chuantao Fang
- Shanghai Tenth People's Hospital, Institute for Infectious Diseases and Vaccine Development, School of Medicine, Tongji University, Shanghai, China
| | - Shun Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Shi Yan
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Wien, Austria
| | - Guofeng Cheng
- Shanghai Tenth People's Hospital, Institute for Infectious Diseases and Vaccine Development, School of Medicine, Tongji University, Shanghai, China.
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai, China.
- Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Ghahari N, Shegefti S, Alaei M, Amara A, Telittchenko R, Isnard S, Routy JP, Olagnier D, van Grevenynghe J. HSP60 controls mitochondrial ATP generation for optimal virus-specific IL-21-producing CD4 and cytotoxic CD8 memory T cell responses. Commun Biol 2024; 7:1688. [PMID: 39709477 DOI: 10.1038/s42003-024-07326-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/27/2024] [Indexed: 12/23/2024] Open
Abstract
We have shown that virus-specific CD4 and CD8 memory T cells (TM) induce autophagy after T cell receptor (TCR) engagement to provide free glutamine and fatty acids, including in people living with HIV-1 (PLWH). These nutrients fuel mitochondrial ATP generation through glutaminolysis and fatty acid oxidation (FAO) pathways, to fulfill the bioenergetic demands for optimal IL-21 and cytotoxic molecule production in CD4 and CD8 cells, respectively. Here, we expand our knowledge on how the metabolic events that occur in the mitochondria of virus-specific TM down-stream of the autophagy are regulated. We show that HSP60 chaperone positively regulates the protein levels for multiple glutaminolysis- and FAO-related enzymes, thereby actively fueling the levels of cellular alpha-ketoglutarate (αKG) and related mitochondrial ATP-dependent antiviral T cell immunity in both CD4 and CD8 TM. Finally, we provide a way to rescue defective ATP generation in mitochondria and dependent effector functions in virus-specific TM including anti-HIV-1 protective responses, when HSP60 expression is impaired after TCR engagement in patients, in the form of dimethyl 2-oxoglutarate (DMKG) supplementation.
Collapse
Affiliation(s)
- Nazanin Ghahari
- Institut national de la recherche scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, H7V 1M7, Laval, QC, Canada
| | - Saina Shegefti
- Institut national de la recherche scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, H7V 1M7, Laval, QC, Canada
| | - Mahsa Alaei
- Institut national de la recherche scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, H7V 1M7, Laval, QC, Canada
| | - Amine Amara
- Institut national de la recherche scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, H7V 1M7, Laval, QC, Canada
| | - Roman Telittchenko
- Institut national de la recherche scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, H7V 1M7, Laval, QC, Canada
| | - Stéphane Isnard
- Chronic Viral Illness Service and Division of Hematology, McGill University Health Centre, Glen site, H4A 3J1, Montreal, Quebec, Canada
| | - Jean-Pierre Routy
- Chronic Viral Illness Service and Division of Hematology, McGill University Health Centre, Glen site, H4A 3J1, Montreal, Quebec, Canada
| | - David Olagnier
- Aarhus University; Department of Biomedicine, Aarhus C, 8000, Denmark
| | - Julien van Grevenynghe
- Institut national de la recherche scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, 531 boulevard des Prairies, H7V 1M7, Laval, QC, Canada.
| |
Collapse
|
4
|
Singh MK, Shin Y, Han S, Ha J, Tiwari PK, Kim SS, Kang I. Molecular Chaperonin HSP60: Current Understanding and Future Prospects. Int J Mol Sci 2024; 25:5483. [PMID: 38791521 PMCID: PMC11121636 DOI: 10.3390/ijms25105483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Molecular chaperones are highly conserved across evolution and play a crucial role in preserving protein homeostasis. The 60 kDa heat shock protein (HSP60), also referred to as chaperonin 60 (Cpn60), resides within mitochondria and is involved in maintaining the organelle's proteome integrity and homeostasis. The HSP60 family, encompassing Cpn60, plays diverse roles in cellular processes, including protein folding, cell signaling, and managing high-temperature stress. In prokaryotes, HSP60 is well understood as a GroEL/GroES complex, which forms a double-ring cavity and aids in protein folding. In eukaryotes, HSP60 is implicated in numerous biological functions, like facilitating the folding of native proteins and influencing disease and development processes. Notably, research highlights its critical involvement in sustaining oxidative stress and preserving mitochondrial integrity. HSP60 perturbation results in the loss of the mitochondria integrity and activates apoptosis. Currently, numerous clinical investigations are in progress to explore targeting HSP60 both in vivo and in vitro across various disease models. These studies aim to enhance our comprehension of disease mechanisms and potentially harness HSP60 as a therapeutic target for various conditions, including cancer, inflammatory disorders, and neurodegenerative diseases. This review delves into the diverse functions of HSP60 in regulating proteo-homeostasis, oxidative stress, ROS, apoptosis, and its implications in diseases like cancer and neurodegeneration.
Collapse
Affiliation(s)
- Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.H.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Centre for Genomics, SOS Zoology, Jiwaji University, Gwalior 474011, India;
| | - Yoonhwa Shin
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.H.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.H.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.H.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Pramod K. Tiwari
- Centre for Genomics, SOS Zoology, Jiwaji University, Gwalior 474011, India;
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.H.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.H.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
5
|
Li Y, Cao H, Qiu D, Wang N, Wang Y, Wen T, Wang J, Zhu H. The proteomics analysis of extracellular vesicles revealed the possible function of heat shock protein 60 in Helicobacter pylori infection. Cancer Cell Int 2023; 23:272. [PMID: 37974232 PMCID: PMC10652618 DOI: 10.1186/s12935-023-03131-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection is a major risk factor for gastric diseases, including gastritis and gastric cancer. Heat shock protein 60 (HSP60) is a chaperone protein involved in various cellular processes and has been implicated in the immune response to bacterial infections. Extracellular vesicles (EVs) containing various protein components play important roles in cell communication. In the present study, a systematic proteomic analysis of EVs obtained from H. pylori infected cells was performed and the EV-derived HSP60 function was studied. METHODS EVs were evaluated by nanoparticle tracking analysis, transmission electron microscopy and western blotting. The recognized protein components were quantified by label-free proteomics and subjected to bioinformatics assays. The expression of HSP60 in EVs, host cells and gastric cancers infected by H. pylori was determined by western blotting and immunohistochemical, respectively. In addition, the apoptotic regulation mechanisms of HSP60 in H. pylori infection were analyzed by western blotting and flow cytometry. RESULTS A total of 120 important differential proteins were identified in the EVs from H. pylori-infected cells and subjected to Gene Ontology analysis. Among them, CD63, HSP-70 and TSG101 were verified via western blotting. Moreover, HSP60 expression was significantly increased in the EVs from H. pylori-infected GES-1 cells. H. pylori infection promoted an abnormal increase in HSP60 expression in GES-1 cells, AGS cells, gastric mucosa and gastric cancer. In addition, knockdown of HSP60 suppressed the apoptosis of infected cells and the expression of Bcl2, and promoted the upregulation of Bax. CONCLUSION This study provides a comprehensive proteomic profile of EVs from H. pylori-infected cells, shedding light on the potential role of HSP60 in H. pylori infection. The findings underscore the significance of EV-derived HSP60 in the pathophysiology of H. pylori-associated diseases.
Collapse
Affiliation(s)
- Yujie Li
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, 215300, Jiangsu, People's Republic of China
| | - Hui Cao
- Department of Food and Nutrition Safety, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Dewen Qiu
- Department of Clinical Laboratory, Jiangxi Maternal and Child Health Hospital Maternal and Child Heath Hospital of Nanchang College, Nanchang, 215300, People's Republic of China
| | - Nan Wang
- The School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yan Wang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, 215300, Jiangsu, People's Republic of China
| | - Tingting Wen
- Department of Pharmacy, First People's Hospital of Kunshan, Suzhou, 215300, Jiangsu, People's Republic of China
| | - Jianjun Wang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, 215300, Jiangsu, People's Republic of China.
| | - Hong Zhu
- Department of Clinical Laboratory, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213000, People's Republic of China.
| |
Collapse
|
6
|
Zhou Y, Tang Y, Luo J, Yang Y, Zang H, Ma J, Fan S, Wen Q. High expression of HSP60 and survivin predicts poor prognosis for oral squamous cell carcinoma patients. BMC Oral Health 2023; 23:629. [PMID: 37661276 PMCID: PMC10476324 DOI: 10.1186/s12903-023-03311-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/14/2023] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND HSP60 is a heat shock proteins (HSPs) family member and help mitochondrial protein to fold correctly. Survivin is one of the inhibitors of apoptosis protein family member, which plays a significant part in cancer progression. They were capable of forming HSP60-survivin complexes and involved in the development of various tumors. METHODS The Cancer Genome Atlas (TCGA) database demonstrated that HSP60 and survivin and their correlation on mRNA expression level with OSCC patients. Besides, expression of HSP60 and survivin proteins was studied utilizing immunohistochemistry in tissue microarrays (TMA) in OSCC and in adjacent non-cancerous squamous epithelium (Non-CCSE) tissues. RESULTS Significantly increased levels of HSP60 and survivin in most cancers compared to normal tissue by pan-cancer analysis. HSP60 and survivin proved a significantly increased expression in OSCC samples compared to Non-CCSE both on mRNA and protein (both P < 0.05). Additionally, elevated HSP60 displayed a positive correlation with survivin in terms of mRNA and protein expression levels (all P < 0.001). Patients with OSCC who had advanced clinical stage or lymph node metastasis (LNM) showed higher HSP60 expression (P = 0.004, P = 0.006, respectively). Higher levels of the proteins HSP60 and survivin were significantly inversely correlated relationship with OSCC patients' overall survival rates in multivariate survival analysis (P = 0.018, P = 0.040). From the above results, overexpression of HSP60 and survivin protein may serve as independent biomarkers predicting poor prognosis in OSCC. CONCLUSIONS Elevated HSP60 and survivin might be served as novel poor prognosis biomarkers for surgically resected OSCC patients.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yaoxiang Tang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Jiadi Luo
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yang Yang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Hongjing Zang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Jian Ma
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Cancer Research Institute of Central South University, Central South University, Changsha, 410011, Hunan, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Qiuyuan Wen
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
7
|
Duan Y, Yu J, Chen M, Lu Q, Ning F, Gan X, Liu H, Ye Y, Lu S, Lash GE. Knockdown of heat shock protein family D member 1 (HSPD1) promotes proliferation and migration of ovarian cancer cells via disrupting the stability of mitochondrial 3-oxoacyl-ACP synthase (OXSM). J Ovarian Res 2023; 16:81. [PMID: 37087461 PMCID: PMC10122320 DOI: 10.1186/s13048-023-01156-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/06/2023] [Indexed: 04/24/2023] Open
Abstract
BACKGROUND Heat shock protein 60 (HSP60) is essential for the folding and assembly of newly imported proteins to the mitochondria. HSP60 is overexpressed in most types of cancer, but its association with ovarian cancer is still in dispute. SKOV3 and OVCAR3 were used as experimental models after comparing the expression level of mitochondrial HSP60 in a normal human ovarian epithelial cell line and four ovarian cancer cell lines. RESULTS Low HSPD1 (Heat Shock Protein Family D (HSP60) Member 1) expression was associated with unfavorable prognosis in ovarian cancer patients. Knockdown of HSPD1 significantly promoted the proliferation and migration of ovarian cancer cells. The differentially expressed proteins after HSPD1 knockdown were enriched in the lipoic acid (LA) biosynthesis and metabolism pathway, in which mitochondrial 3-oxoacyl-ACP synthase (OXSM) was the most downregulated protein and responsible for lipoic acid synthesis. HSP60 interacted with OXSM and overexpression of OXSM or LA treatment could reverse proliferation promotion mediated by HSPD1 knockdown. CONCLUSIONS HSP60 interacted with OXSM and maintained its stability. Knockdown of HSPD1 could promote the proliferation and migration of SKOV3 and OVCAR3 via lowering the protein level of OXSM and LA synthesis.
Collapse
Affiliation(s)
- Yaoyun Duan
- Division of Uterine Vascular Biology, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Juan Yu
- Division of Uterine Vascular Biology, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Miaojuan Chen
- Division of Uterine Vascular Biology, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Qinsheng Lu
- Division of Uterine Vascular Biology, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Fen Ning
- Division of Uterine Vascular Biology, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Xiaowen Gan
- Division of Uterine Vascular Biology, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Hanbo Liu
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Yixin Ye
- Division of Uterine Vascular Biology, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Shenjiao Lu
- Division of Uterine Vascular Biology, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Gendie E Lash
- Division of Uterine Vascular Biology, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China.
| |
Collapse
|
8
|
Jiang R, Sun Y, Li Y, Tang X, Hui B, Ma S, Zhang J, Sun C, Tan J, Zhou B, Lei J, Jiang T. Cuproptosis-related gene PDHX and heat stress-related HSPD1 as potential key drivers associated with cell stemness, aberrant metabolism and immunosuppression in esophageal carcinoma. Int Immunopharmacol 2023; 117:109942. [PMID: 36889194 DOI: 10.1016/j.intimp.2023.109942] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/10/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND Heat stress is fundamental to esophageal carcinoma (ESCA) oncogenesis and progression. Heat stress damages epithelial structure, causing aberrant 'cell death-repair' patterns of esophagus cells and thereby driving tumor occurrence and progression. However, due to the distinctive functions and crosstalk of regulatory cell death (RCD) patterns, the specific cell deaths in ESCA malignancy are still unclear. METHODS We analyzed the key regulatory cell death genes involved in heat stress and ESCA progression by using The Cancer Genome Atlas-ESCA database. The least absolute shrinkage and selection operator (LASSO) algorithm was used to filter the key genes. The one-class logistic regression (OCLR) and quanTIseq methods were used to evaluate the cell stemness and immune cell infiltration in ESCA samples. Cell counting kit-8 (CCK8) and wound healing assays were performed to assess the proliferation and migration of cells. RESULTS We found that cuproptosis may be a potential risk factor of heat stress-related ESCA. Two interrelated genes, HSPD1 and PDHX, were associated with heat stress and cuproptosis and played a role in cell survival, proliferation, migration, metabolism and immunosuppression. CONCLUSIONS We found that cuproptosis promoted ESCA related to heat stress, offering a new therapeutic opportunity to treat this malignant disorder.
Collapse
Affiliation(s)
- Runmin Jiang
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ying Sun
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yan Li
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China; Department of Radiation Oncology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xuefei Tang
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Bengang Hui
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Shouzheng Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jiao Zhang
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Chun Sun
- Student Major Team 3, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jiyi Tan
- Student Major Team 3, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Boyan Zhou
- Student Major Team 3, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jie Lei
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.
| | - Tao Jiang
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
9
|
Wang H, Liu Z, Wang Y, Han D, Du Y, Zhang B, He Y, Liu J, Xiong W, Zhang X, Gao Y, Shang P. Comprehensive analysis of fatty acid metabolism-related gene signatures for predicting prognosis in patients with prostate cancer. PeerJ 2023; 11:e14646. [PMID: 36643625 PMCID: PMC9838212 DOI: 10.7717/peerj.14646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/06/2022] [Indexed: 01/12/2023] Open
Abstract
Fatty acid metabolism (FAM) is an important factor in tumorigenesis and development. However, whether fatty acid metabolism (FAM)-related genes are associated with prostate cancer (PCa) prognosis is not known. Therefore, we established a novel prognostic model based on FAM-related genes to predict biochemical recurrence in PCa patients. First, PCa sequencing data were acquired from TCGA as the training cohort and GSE21032 as the validation cohort. Second, a prostate cancer prognostic model containing 10 FAM-related genes was constructed using univariate Cox and LASSO. Principal component analysis and t-distributed stochastic neighbour embedding analysis showed that the model was highly effective. Third, PCa patients were divided into high- and low-risk groups according to the model risk score. Survival analysis, ROC curve analysis, and independent prognostic analysis showed that the high-risk group had short recurrence-free survival (RFS), and the risk score was an independent diagnostic factor with diagnostic value in PCa patients. External validation using GSE21032 also showed that the prognostic model had high reliability. A nomogram based on a prognostic model was constructed for clinical use. Fourth, tumor immune correlation analyses, such as the ESTIMATE, CIBERSORT algorithm, and ssGSEA, showed that the high-risk group had higher immune cell infiltration, lower tumour purity, and worse RFS. Various immune checkpoints were expressed at higher levels in high-risk patients. In summary, this prognostic model is a promising prognostic biomarker for PCa that should improve the prognosis of PCa patients. These data provide new ideas for antitumour immunotherapy and have good potential value for the development of targeted drugs.
Collapse
Affiliation(s)
- Hongbo Wang
- Lanzhou University Second Hospital, Lanzhou, Gansu, China,Department of Urology, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, lanzhou, Gansu, China
| | - Zhendong Liu
- Department of Orthopaedic People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
| | - Yubo Wang
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, Henan, China
| | - Dali Han
- Lanzhou University Second Hospital, Lanzhou, Gansu, China,Department of Urology, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, lanzhou, Gansu, China
| | - Yuelin Du
- Lanzhou University Second Hospital, Lanzhou, Gansu, China,Department of Urology, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, lanzhou, Gansu, China
| | - Bin Zhang
- Lanzhou University Second Hospital, Lanzhou, Gansu, China,Department of Urology, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, lanzhou, Gansu, China
| | - Yang He
- Lanzhou University Second Hospital, Lanzhou, Gansu, China,Department of Urology, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, lanzhou, Gansu, China
| | - Junyao Liu
- Lanzhou University Second Hospital, Lanzhou, Gansu, China,Department of Urology, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, lanzhou, Gansu, China
| | - Wei Xiong
- Lanzhou University Second Hospital, Lanzhou, Gansu, China,Department of Urology, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, lanzhou, Gansu, China
| | - Xingxing Zhang
- Lanzhou University Second Hospital, Lanzhou, Gansu, China,Department of Urology, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, lanzhou, Gansu, China
| | - Yanzheng Gao
- Department of Orthopaedic People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
| | - Panfeng Shang
- Lanzhou University Second Hospital, Lanzhou, Gansu, China,Department of Urology, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, lanzhou, Gansu, China
| |
Collapse
|
10
|
Hu T, Chen X, Lu S, Zeng H, Guo L, Han Y. Biological Role and Mechanism of Lipid Metabolism Reprogramming Related Gene ECHS1 in Cancer. Technol Cancer Res Treat 2022; 21:15330338221140655. [PMID: 36567598 PMCID: PMC9806408 DOI: 10.1177/15330338221140655] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cancer is a major threat to human health today. Although the existing anticancer treatments have effectively improved the prognosis of some patients, there are still other patients who cannot benefit from these well-established strategies. Reprogramming of lipid metabolism is one of the typical features of cancers. Recent studies have revealed that key enzymes involved in lipid metabolism may be effective anticancer therapeutic targets, but the development of therapeutic lipid metabolism targets is still insufficient. ECHS1 (enoyl-CoA hydratase, short chain 1) is a key enzyme mediating the hydration process of mitochondrial fatty acid β-oxidation and has been observed to be abnormally expressed in a variety of cancers. Therefore, with ECHS1 and cancer as the main keywords, we searched the relevant studies of ECHS1 in the field of cancer in Pubmed, summarized the research status and functions of ECHS1 in different cancer contexts, and explored its potential regulatory mechanisms, with a view to finding new therapeutic targets for anti-metabolic therapy. By reviewing and summarizing the retrieved literatures, we found that ECHS1 regulates malignant biological behaviors such as cell proliferation, metastasis, apoptosis, autophagy, and drug resistance by remodeling lipid metabolism and regulating intercellular oncogenic signaling pathways. Not only that, ECHS1 exhibits early diagnostic and prognostic value in clear cell renal cell carcinoma, and small-molecule inhibitors that regulate ECHS1 also show therapeutic significance in preclinical studies. Taken together, we propose that ECHS1 has the potential to serve as a therapeutic target of lipid metabolism.
Collapse
Affiliation(s)
- Teng Hu
- Department of Oncology, The Affiliated Hospital of Southwest
Medical University, Luzhou, Sichuan, China
| | - Xiaojing Chen
- Department of Oncology, The Affiliated Hospital of Southwest
Medical University, Luzhou, Sichuan, China
| | - Simin Lu
- Department of Oncology, The Affiliated Hospital of Southwest
Medical University, Luzhou, Sichuan, China
| | - Hao Zeng
- Department of Oncology, The Affiliated Hospital of Southwest
Medical University, Luzhou, Sichuan, China
| | - Lu Guo
- Department of Ophthalmology, The Affiliated Hospital of Southwest
Medical University, Luzhou, Sichuan, China
| | - Yunwei Han
- Department of Oncology, The Affiliated Hospital of Southwest
Medical University, Luzhou, Sichuan, China,Yunwei Han, Department of Oncology, The
Affiliated Hospital of Southwest Medical University, Taiping Street, No. 25,
Luzhou, Sichuan Province 646000, China.
| |
Collapse
|
11
|
Guo C, He Y, Chen L, Li Y, Wang Y, Bao Y, Zeng N, Jiang F, Zhou H, Zhang L. Integrated bioinformatics analysis and experimental validation reveals fatty acid metabolism-related prognostic signature and immune responses for uterine corpus endometrial carcinoma. Front Oncol 2022; 12:1030246. [DOI: 10.3389/fonc.2022.1030246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/24/2022] [Indexed: 11/10/2022] Open
Abstract
BackgroundUterine corpus endometrial carcinoma (UCEC) is the third most common gynecologic malignancy. Fatty acid metabolism (FAM) is an essential metabolic process in the immune microenvironment that occurs reprogramming in the presence of tumor signaling and nutrient competition. This study aimed to identify the fatty acid metabolism-related genes (FAMGs) to develop a risk signature for predicting UCEC.MethodsThe differentially expressed FAMGs between UCEC samples and controls from TCGA database were discovered. A prognostic signature was then constructed by univariate, least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analyses. Based on the median risk score, UCEC samples were categorized into high- and low-FAMGs groups. Kaplan-Meier (K-M) curve was applied to determine patients’ overall survival (OS). The independent prognostic value was assessed by uni- and multivariate analyses. The associations between the risk score and immune status, immune score, and drug resistance were evaluated. Quantitative Real-time PCR (qRT-PCR) was utilized to confirm FAMGs expression levels in UCEC cells.ResultsWe built a 10-FAMGs prognostic signature and examined the gene mutation and copy number variations (CNV). Patients with a high-FAMGs had a worse prognosis compared to low-FAMGs patients in TCGA train and test sets. We demonstrated that FAMGs-based risk signature was a significant independent prognostic predictor of UCEC. A nomogram was also created incorporating this risk model and clinicopathological features, with high prognostic performance for UCEC. The immune status of each group was varied, and immune score was higher in a low-FAMGs group. HLA-related genes such as DRB1, DMA, DMB, and DQB2 had higher expression levels in the low-FAMGs group. Meanwhile, high-FAMGs patients were likely to response more strongly to the targeted drugs Bortezomib, Foretinib and Gefitinib. The qRT-PCR evidence further verified the significant expression of FAMGs in this signature.ConclusionsA FAMGs-based risk signature might be considered as an independent prognostic indicator to predict UCEC prognosis, evaluate immune status and provide a new direction for therapeutic strategies.
Collapse
|
12
|
Identification of HIBCH as a Fatty Acid Metabolism-Related Biomarker in Aortic Valve Calcification Using Bioinformatics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022. [DOI: 10.1155/2022/9558713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objective. To identify fatty acid metabolism-related biomarkers of aortic valve calcification (AVC) using bioinformatics and to research the role of immune cell infiltration for AVC. Methods. The AVC dataset was retrieved from the Gene Expression Omnibus database. R package is used for differential expression genes analysis and weighted gene coexpression analysis. The differentially coexpressed genes were identified by the Venn diagram, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of differentially coexpressed genes. Functions closely related to AVC were identified by GO and KEGG enrichment analyses of differentially coexpressed genes. Genes related to fatty acid metabolism were retrieved from the Molecular Signatures Database (MSigDB) database. After removing duplicate genes, least absolute shrinkage and selection operator (LASSO) regression analysis, support vector machine recursive feature elimination (SVM-RFE), and random forest were applied to recognize biomarkers related to fatty acid metabolism in AVC. The CIBERSORT tool was used to analyze infiltration of immune cells in normal and AVC samples. Correlations between biomarkers and immune cells were calculated. Finally, HIBCH-related pathway was predicted by single-gene gene set enrichment analysis (GSEA). Results. 2416 differentially expressed genes and one coexpression module were identified. A total of 1473 differentially coexpressed genes were acquired. GO and KEGG enrichment analyses demonstrated that differentially coexpressed genes were closely related to fatty acid metabolism. LASSO regression analysis, SVM-REF, and random forest revealed that 3-hydroxyisobutyryl-CoA hydrolase (HIBCH) was a biomarker of fatty acid metabolism-related genes in AVC. Significant high levels of memory B cells were found in AVC than normal samples, while activated natural killer (NK) cells were significantly low in AVC than normal samples. A significantly positive relevance was observed between HIBCH and activated NK cells, regulatory T cells, monocytes, naïve B cells, activated dendritic cells, resting memory CD4 T cells, resting NK cells, and CD8 T cells. A significantly negative relevance was observed between HIBCH and activated memory CD4 T cells, memory B cells, neutrophils, gamma delta T cells, M0 macrophages, and plasma cells. The single-gene GSEA results suggest that HIBCH may work through the inhibition of multiple immune-related pathways. Conclusion. HIBCH is closely relevant to immune cell infiltration in AVC and could be applied as a diagnostic marker for AVC.
Collapse
|
13
|
Tang Y, Zhou Y, Fan S, Wen Q. The Multiple Roles and Therapeutic Potential of HSP60 in Cancer. Biochem Pharmacol 2022; 201:115096. [DOI: 10.1016/j.bcp.2022.115096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 02/07/2023]
|