1
|
Allemeier AM, Drummond C, Tiefenthaler B, Dvorak TC, Holz FN, Hume C, Kreger RB, Koulibali CI, Khan HA, Best AL, Gee T, Pedersen GD, Glover K, Ganu D, Martin J, Hill MN, Epps SA. Endocannabinoid involvement in beneficial effects of caloric restriction in a rodent model of comorbid depression and epilepsy. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111212. [PMID: 39645180 DOI: 10.1016/j.pnpbp.2024.111212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
Clinically, patients with depression are at a heightened risk for developing epilepsy, and vice versa, suggesting shared mechanisms for this bidirectional comorbidity. Unfortunately, comorbid depression and epilepsy is associated with worsened quality of life and treatment refractoriness, highlighting the need for novel treatment targets and nonpharmacologic supplements to existing therapies. The present study used the Swim-Low Active rat, a well-validated model of depression and epilepsy comorbidity that was selectively bred based on forced swim test behavior, to assess the safety and efficacy of caloric restriction in treating this comorbidity. The study also investigated the role of endocannabinoids in the effects of caloric restriction on the behavioral endpoints and to determine whether there were any sex differences in these effects. Male rats restricted to approximately 80 % of their daily food intake for an acute 24-h period showed elevated struggling behavior in the Porsolt (Forced) Swim Test and increased latency to pilocarpine-induced seizure; this same caloric restriction yielded a significant increase in hippocampal anandamide levels compared to ad lib rats. These effects were not seen in female rats, although female rats did show anticonvulsant effects of chronic caloric restriction. Administration of 1 mg/kg SR141716 alongside an acute caloric restriction in male rats blocked the antidepressant-like effects of caloric restriction but did not affect seizure responses. Combined, these results suggest caloric restriction may be both safe and modestly effective in benefitting depression- and epilepsy-related behaviors in male SwLo rats, and that the endocannabinoid system may be a promising target for treating this comorbidity.
Collapse
Affiliation(s)
- Ashley M Allemeier
- Department of Psychology, Whitworth University, 300 W Hawthorne Rd, Spokane, WA 99251, USA
| | - Christine Drummond
- Department of Psychology, Whitworth University, 300 W Hawthorne Rd, Spokane, WA 99251, USA
| | - Bradley Tiefenthaler
- Department of Psychology, Whitworth University, 300 W Hawthorne Rd, Spokane, WA 99251, USA
| | - Tierney C Dvorak
- Department of Psychology, Whitworth University, 300 W Hawthorne Rd, Spokane, WA 99251, USA
| | - Faith N Holz
- Department of Psychology, Whitworth University, 300 W Hawthorne Rd, Spokane, WA 99251, USA
| | - Catherine Hume
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada.
| | - Rachelle B Kreger
- Department of Psychology, Whitworth University, 300 W Hawthorne Rd, Spokane, WA 99251, USA.
| | - Chauncella I Koulibali
- Department of Psychology, Whitworth University, 300 W Hawthorne Rd, Spokane, WA 99251, USA.
| | - Humza A Khan
- Department of Psychology, Whitworth University, 300 W Hawthorne Rd, Spokane, WA 99251, USA.
| | - Alexa L Best
- Department of Psychology, Whitworth University, 300 W Hawthorne Rd, Spokane, WA 99251, USA.
| | - Timothy Gee
- Department of Psychology, Whitworth University, 300 W Hawthorne Rd, Spokane, WA 99251, USA.
| | - Grace D Pedersen
- Department of Psychology, Whitworth University, 300 W Hawthorne Rd, Spokane, WA 99251, USA.
| | - Kevin Glover
- Department of Psychology, Whitworth University, 300 W Hawthorne Rd, Spokane, WA 99251, USA.
| | - Dollar Ganu
- Department of Psychology, Whitworth University, 300 W Hawthorne Rd, Spokane, WA 99251, USA.
| | - Julie Martin
- Department of Psychology, Whitworth University, 300 W Hawthorne Rd, Spokane, WA 99251, USA.
| | - Matthew N Hill
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada.
| | - S Alisha Epps
- Department of Psychology, Whitworth University, 300 W Hawthorne Rd, Spokane, WA 99251, USA.
| |
Collapse
|
2
|
Silva NR, Arjmand S, Domingos LB, Chaves-Filho AM, Mottin M, Real CC, Waszkiewicz AL, Gobira PH, Ferraro AN, Landau AM, Andrade CH, Müller HK, Wegener G, Joca SRL. Modulation of the endocannabinoid system by (S)-ketamine in an animal model of depression. Pharmacol Res 2025; 211:107545. [PMID: 39667543 DOI: 10.1016/j.phrs.2024.107545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Ketamine (KET) is recognized as rapid-acting antidepressant, but its mechanisms of action remain elusive. Considering the role of endocannabinoids (eCB) in stress and depression, we investigated if S-KET antidepressant effects involve the regulation of the eCB system using an established rat model of depression based on selective breeding: the Flinders Sensitive Line (FSL) and their controls, the Flinders Resistant Line (FRL). S-KET (15 mg/kg) effects were assessed in rats exposed to the open field and forced swimming test (FST), followed by analysis of the eCB signaling in the rat prefrontal cortex (PFC), a brain region involved in depression neurobiology. Changes in eCB receptors and enzymes were assessed at mRNA and protein levels (qPCR and western blot), CB1 binding ([3H]SR141716A autoradiography) and endocannabinoid content (lipidomics). The results demonstrated that the depressive behavior in FSL was negatively correlated with 2-AG levels, which were restored upon acute S-KET treatment. Although S-KET decreased CB1 and FAAH gene expression in FSL, there were no significant changes at protein levels. [3H]SR141716A binding to CB1 receptors was increased by S-KET and in silico analysis suggested that it binds to CB1, CB2, GPR55 and FAAH. Overall, S-KET effects correlated with an increased endocannabinoid signaling in the PFC, but systemic treatment with rimonabant failed to block its behavioral effects. Altogether, our results indicate that S-KET facilitates eCB signaling in the PFC of FSL. The inability of rimonabant to block the antidepressant effect of S-KET highlights the complexity of its interaction with the ECS, warranting further investigation into the molecular pathways.
Collapse
Affiliation(s)
- Nicole R Silva
- Department of Biomedicine, Aarhus University, Denmark; Translational Neuropsychiatry Unit, Aarhus University, Denmark
| | - Shokouh Arjmand
- Translational Neuropsychiatry Unit, Aarhus University, Denmark
| | - Luana B Domingos
- Department of Biomedicine, Aarhus University, Denmark; Translational Neuropsychiatry Unit, Aarhus University, Denmark
| | - Adriano M Chaves-Filho
- Division of Medical Sciences, University of Victoria, Canada; Neuropharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Universidade Federal do Ceará, Brazil
| | - Melina Mottin
- Laboratory for Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Brazil
| | - Caroline C Real
- Translational Neuropsychiatry Unit, Aarhus University, Denmark; Department of Nuclear Medicine and PET Center, Aarhus University and Hospital, Denmark
| | | | - Pedro H Gobira
- Translational Neuropsychiatry Unit, Aarhus University, Denmark
| | | | - Anne M Landau
- Translational Neuropsychiatry Unit, Aarhus University, Denmark; Department of Nuclear Medicine and PET Center, Aarhus University and Hospital, Denmark
| | - Carolina H Andrade
- Laboratory for Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Brazil
| | - Heidi K Müller
- Translational Neuropsychiatry Unit, Aarhus University, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Aarhus University, Denmark
| | - Sâmia R L Joca
- Department of Biomedicine, Aarhus University, Denmark; Translational Neuropsychiatry Unit, Aarhus University, Denmark.
| |
Collapse
|
3
|
Martínez‐Torres A, Morán J. CB1 Receptor Activation Provides Neuroprotection in an Animal Model of Glutamate-Induced Excitotoxicity Through a Reduction of NOX-2 Activity and Oxidative Stress. CNS Neurosci Ther 2024; 30:e70099. [PMID: 39496572 PMCID: PMC11534500 DOI: 10.1111/cns.70099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/27/2024] [Accepted: 10/14/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Excitotoxicity is a process in which NADPH oxidase-2 (NOX-2) plays a pivotal role in the generation of reactive oxygen species (ROS). Oxidative stress influences the expression of Aquaporin 4 (AQP4), a water channel implicated in blood-brain barrier (BBB) permeability and edema formation. The endocannabinoid system is widely distributed in the brain, particularly through the cannabinoid receptor type 1 (CB1) and type 2 (CB2), which have been shown to have a neuroprotective function in brain injury. Given the significant involvement of NOX-2 in ROS production during excitotoxicity, our research aims to assess the participation of NOX-2 in the neuroprotective effect of the cannabinoid receptor agonist WIN55,212-2 against glutamate-induced excitotoxicity damage in the striatum using in vivo model. METHODS Wild-type mice (C57BL/6) and NOX-2 KO (gp91Cybbtm1Din/J) were stereotactically injected in the striatum with monosodium glutamate or vehicle. Subsequently, a group of mice was administered an intraperitoneal dose of WIN55,212-2, AM251, or AM251/WIN55,212-2 following the intracerebral injection. Motor activity was assessed, and the lesion was examined through histological sections stained with cresyl violet. Additionally, brain water content and Evans blue assay were conducted. The activity of NOX was quantified, and the protein expression of CB1, gp91phox, AQP4, Iba-1, TNF-α, and NF-κB was analyzed using Western blot. Furthermore, ROS formation was measured through the DHE assay. RESULTS The activation of the endocannabinoid receptors demonstrated a neuroprotective response during excitotoxicity, meditated by NOX-2. The reduction in ROS production led to a decrease in neuroinflammation, and AQP4 expression, resulting in reduced edema formation, and BBB permeability. CONCLUSIONS During excitotoxic damage, WIN55,212-2 inhibits NOX-2-induced ROS production, reducing brain injury.
Collapse
Affiliation(s)
- Ari Misael Martínez‐Torres
- División de Neurociencias, Instituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Julio Morán
- División de Neurociencias, Instituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| |
Collapse
|
4
|
Martínez-Torres AM, Morán J. Aquaporin 4 and the endocannabinoid system: a potential therapeutic target in brain injury. Exp Brain Res 2024; 242:2041-2058. [PMID: 39043897 PMCID: PMC11306651 DOI: 10.1007/s00221-024-06896-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/14/2024] [Indexed: 07/25/2024]
Abstract
Brain edema is a critical complication arising from stroke and traumatic brain injury (TBI) with an important impact on patient recovery and can lead to long-term consequences. Therapeutic options to reduce edema progression are limited with variable patient outcomes. Aquaporin 4 (AQP4) is a water channel that allows bidirectional water diffusion across the astrocyte membrane and participates in the distinct phases of cerebral edema. The absence or inhibition of this channel has been demonstrated to ameliorate edema and brain damage. The endocannabinoid system (ECS) is a neuromodulator system with a wide expression in the brain and its activation has shown neuroprotective properties in diverse models of neuronal damage. This review describes and discusses the major features of ECS and AQP4 and their role during brain damage, observing that ECS stimulation reduces edema and injury size in diverse models of brain damage, however, the relationship between AQP4 expression and dynamics and ECS activation remains unclear. The research on these topics holds promising therapeutic implications for the treatment of brain edema following stroke and TBI.
Collapse
Affiliation(s)
- Ari Misael Martínez-Torres
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Apartado Postal 70-253, 04510, Ciudad de Mexico, México
| | - Julio Morán
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Apartado Postal 70-253, 04510, Ciudad de Mexico, México.
| |
Collapse
|
5
|
Barbetti M, Mancabelli L, Vacondio F, Longhi G, Ferlenghi F, Viglioli M, Turroni F, Carnevali L, Mor M, Ventura M, Sgoifo A, Rivara S. Social stress-induced depressive-like symptoms and changes in gut microbial and lipidomic profiles are prevented by pharmacological inhibition of FAAH activity in male rats. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110963. [PMID: 38354897 DOI: 10.1016/j.pnpbp.2024.110963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Pharmacological inhibition of fatty acid amide hydrolase (FAAH) activity has antidepressant-like effects in preclinical models of stress. In this study, we investigated whether the antidepressant-like effects of FAAH inhibition are associated with corresponding changes in gut microbial and lipidomic profiles, which are emerging as critical components in the pathophysiology of depression. Adult male Wistar rats experienced five weeks of repeated social defeat or control procedure and were treated with the FAAH inhibitor URB694 (0.3 mg/kg/day, i.p.) or vehicle starting from the third week. Repeated social defeat induced the emergence of depressive-like behavioral (sucrose preference reduction and passive coping behaviors in the forced swim test) and neuroendocrine (increased corticosterone levels) changes, which were prevented by URB694 treatment. Repeated social defeat also provoked a significant variation in gut microbiota (changes in the relative abundance of 14 bacterial taxa) and lipidic (e.g., glycerophospholipids) composition. These stress-induced changes were prevented by URB694 treatment. These findings indicate that inhibition of FAAH activity with URB694 blocks the co-occurrence of depressive-like behavioral and neuroendocrine changes and alterations in gut microbial and lipid composition in rats exposed to repeated social defeat. In conclusion, these results suggest that the gut microbiota-lipid crosstalk may represent a novel biological target for FAAH inhibitors to enhance stress resilience.
Collapse
Affiliation(s)
- Margherita Barbetti
- Stress Physiology Lab, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | | | - Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | | | | | - Francesca Turroni
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy; Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Luca Carnevali
- Stress Physiology Lab, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy; Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy.
| | - Marco Mor
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy; Department of Food and Drug, University of Parma, Parma, Italy
| | - Marco Ventura
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy; Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Andrea Sgoifo
- Stress Physiology Lab, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy; Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Silvia Rivara
- Department of Food and Drug, University of Parma, Parma, Italy
| |
Collapse
|
6
|
Medina-Saldivar C, Pardo GVE, Pacheco-Otalora LF. Effect of MCH1, a fatty-acid amide hydrolase inhibitor, on the depressive-like behavior and gene expression of endocannabinoid and dopaminergic-signaling system in the mouse nucleus accumbens. Braz J Med Biol Res 2024; 57:e12857. [PMID: 38381881 PMCID: PMC10880885 DOI: 10.1590/1414-431x2024e12857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 01/12/2024] [Indexed: 02/23/2024] Open
Abstract
MCH1 is a synthetic macamide that has shown in vitro inhibitory activity on fatty acid amide hydrolase (FAAH), an enzyme responsible for endocannabinoid metabolism. This inhibition can modulate endocannabinoid and dopamine signaling in the nucleus accumbens (NAc), potentially having an antidepressant-like effect. The present study aimed to evaluate the effect of the in vivo administration of MCH1 (3, 10, and 30 mg/kg, ip) in 2-month-old BALB/c male mice (n=97) on forced swimming test (FST), light-dark box (LDB), and open field test (OFT) and on early gene expression changes 2 h after drug injection related to the endocannabinoid system (Cnr1 and Faah) and dopaminergic signaling (Drd1 and Drd2) in the NAc core. We found that the 10 mg/kg MCH1 dose reduced the immobility time compared to the vehicle group in the FST with no effect on anxiety-like behaviors measured in the LDB or OFT. However, a 10 mg/kg MCH1 dose increased locomotor activity in the OFT compared to the vehicle. Moreover, RT-qPCR results showed that the 30 mg/kg MCH1 dose increased Faah gene expression by 2.8-fold, and 10 mg/kg MCH1 increased the Cnr1 gene expression by 4.3-fold compared to the vehicle. No changes were observed in the expression of the Drd1 and Drd2 genes in the NAc at either MCH1 dose. These results indicated that MCH1 might have an antidepressant-like effect without an anxiogenic effect and induces significant changes in endocannabinoid-related genes but not in genes of the dopaminergic signaling system in the NAc of mice.
Collapse
Affiliation(s)
- C Medina-Saldivar
- Laboratorio de Investigación en Neurociencia, Instituto Científico, Universidad Andina del Cusco, Cuzco, Perú
| | - G V E Pardo
- Laboratorio de Investigación en Neurociencia, Instituto Científico, Universidad Andina del Cusco, Cuzco, Perú
| | - L F Pacheco-Otalora
- Laboratorio de Investigación en Neurociencia, Instituto Científico, Universidad Andina del Cusco, Cuzco, Perú
| |
Collapse
|
7
|
Fusse EJ, Scarante FF, Vicente MA, Marrubia MM, Turcato F, Scomparin DS, Ribeiro MA, Figueiredo MJ, Brigante TAV, Guimarães FS, Campos AC. Anxiogenic doses of rapamycin prevent URB597-induced anti-stress effects in socially defeated mice. Neurosci Lett 2024; 818:137519. [PMID: 37852528 DOI: 10.1016/j.neulet.2023.137519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Repeated exposure to psychosocial stress modulates the endocannabinoid system, particularly anandamide (AEA) signaling in brain regions associated with emotional distress. The mTOR protein regulates various neuroplastic processes in the brain disrupted by stress, including adult hippocampal neurogenesis. This kinase has been implicated in multiple effects of cannabinoid drugs and the anti-stress behavioral effects of psychoactive drugs. Therefore, our hypothesis is that enhancing AEA signaling via pharmacological inhibition of the fatty acid amide hydrolase (FAAH) enzyme induces an anti-stress behavioral effect through an mTOR-dependent mechanism. To test this hypothesis, male C57Bl6 mice were exposed to social defeat stress (SDS) for 7 days and received daily treatment with either vehicle or different doses of the FAAH inhibitor, URB597 (0.1; 0.3; 1 mg/Kg), alone or combined with rapamycin. The results suggested that URB597 induced an inverted U-shaped dose-response curve in mice subjected to SDS (with the intermediate dose of 0.3 mg/kg being anxiolytic, and the higher tested dose of 1 mg/Kg being anxiogenic). In a second independent experiment, rapamycin treatment induced an anxiogenic-like response in control mice. However, in the presence of rapamycin, the anxiolytic dose of URB597 treatment failed to reduce stress-induced anxiety behaviors in mice. SDS exposure altered the hippocampal expression of the mTOR scaffold protein Raptor. Furthermore, the anxiogenic dose of URB597 decreased the absolute number of migrating doublecortin (DCX)-positive cells in the dentate gyrus, suggesting an anti-anxiety effect independent of newly generated/immature neurons. Therefore, our results indicate that in mice exposed to repeated psychosocial stress, URB597 fails to counteract the anxiogenic-like response induced by the pharmacological dampening of mTOR signaling.
Collapse
Affiliation(s)
- Eduardo J Fusse
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil
| | - Franciele F Scarante
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil
| | - Maria A Vicente
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil
| | - Mariana M Marrubia
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil
| | - Flávia Turcato
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, USA
| | - Davi S Scomparin
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil
| | - Melissa A Ribeiro
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil
| | - Maria J Figueiredo
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil
| | - Tamires A V Brigante
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil
| | - Alline C Campos
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Ave, Ribeirão Preto, Brazil.
| |
Collapse
|
8
|
Diksha, Singh L, Bhatia D. Mechanistic interplay of different mediators involved in mediating the anti-depressant effect of isoflavones. Metab Brain Dis 2024; 39:199-215. [PMID: 37855935 DOI: 10.1007/s11011-023-01302-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/24/2023] [Indexed: 10/20/2023]
Abstract
Depression is one of the most prevalent severe CNS disorders, which negatively affects social lives, the ability to work, and the health of people. As per the World Health Organisation (WHO), it is a psychological disorder that is estimated to be a leading disease by 2030. Clinically, various medicines have been formulated to treat depression but they are having a setback due to their side effects, slow action, or poor bioavailability. Nowadays, flavonoids are regarded as an essential component in a variety of nutraceutical, pharmaceutical and medicinal. Isoflavones are a distinctive and important subclass of flavonoids that are generally obtained from soybean, chickpeas, and red clover. The molecules of this class have been extensively explored in various CNS disorders including depression and anxiety. Isoflavones such as genistein, daidzein, biochanin-A, formononetin, and glycitein have been reported to exert an anti-depressant effect through the modulation of different mediators. Fatty acid amide hydrolase (FAAH) mediated depletion of anandamide and hypothalamic-pituitary-adrenal (HPA) axis-mediated modulation of brain-derived neurotrophic factor (BDNF), monoamine oxidase (MAO) mediated depletion of biogenic amines and inflammatory signaling are the important underlying pathways leading to depression. Upregulation in the levels of BDNF, anandamide, antioxidants and monoamines, along with inhibition of MAO, FAAH, HPA axis, and inflammatory stress are the major modulations produced by different isoflavones in the observed anti-depressant effect. Therefore, the present review has been designed to explore the mechanistic interplay of various mediators involved in mediating the anti-depressant action of different isoflavones.
Collapse
Affiliation(s)
- Diksha
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Lovedeep Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Deepika Bhatia
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| |
Collapse
|
9
|
Nápoles-Medina AY, Aguilar-Uscanga BR, Solís-Pacheco JR, Tejeda-Martínez AR, Ramírez-Jirano LJ, Urmeneta-Ortiz MF, Chaparro-Huerta V, Flores-Soto ME. Oral Administration of Lactobacillus Inhibits the Permeability of Blood-Brain and Gut Barriers in a Parkinsonism Model. Behav Neurol 2023; 2023:6686037. [PMID: 38025189 PMCID: PMC10653970 DOI: 10.1155/2023/6686037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/26/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
It has recently been shown that the administration of probiotics can modulate the microbiota-gut-brain axis and may have favorable effects in models of Parkinson's disease. In this study, we used a hemiparkinsonism model induced by the neurotoxin 6-OHDA to evaluate the efficacy of the administration of a four-week administration of a mixture containing the microorganisms Lactobacillus fermentum LH01, Lactobacillus reuteri LH03, and Lactobacillus plantarum LH05. The hemiparkinsonism model induced an increase in rotations in the apomorphine test, along with a decrease in the latency time to fall in the rotarod test on days 14 and 21 after surgery, respectively. The administration of probiotics was sufficient to improve this condition. The model also showed a decrease in tyrosine hydroxylase immunoreactivity in the striatum and the number of labeled cells in the substantia nigra, both of which were counteracted by the administration of probiotics. The permeability of the blood-brain barrier was increased in the model, but this effect was reversed by the probiotics for both brain regions. The gut barrier was permeated with the model, and this effect was reversed and dropped to lower levels than the control group after the administration of probiotics. Finally, lipid peroxidation showed a pattern of differences similar to that of permeabilities. The inhibition of the permeability of the blood-brain and gut barriers mediated by the administration of probiotics will likely provide protection by downregulating oxidative stress, thus affecting the rotarod test performance.
Collapse
Affiliation(s)
- Angélica Y. Nápoles-Medina
- Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, Sierra Mojada #800, Independencia Oriente, C.P. 44340 Guadalajara, Jalisco, Mexico
- Departamento de Farmacobiología, Laboratorio de Microbiología Industrial, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán # 1421, Olímpica, C.P. 44430 Guadalajara, Jalisco, Mexico
| | - Blanca R. Aguilar-Uscanga
- Departamento de Farmacobiología, Laboratorio de Microbiología Industrial, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán # 1421, Olímpica, C.P. 44430 Guadalajara, Jalisco, Mexico
| | - Josué R. Solís-Pacheco
- Departamento de Farmacobiología, Laboratorio de Microbiología Industrial, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán # 1421, Olímpica, C.P. 44430 Guadalajara, Jalisco, Mexico
| | - Aldo R. Tejeda-Martínez
- Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, Sierra Mojada #800, Independencia Oriente, C.P. 44340 Guadalajara, Jalisco, Mexico
| | - Luis J. Ramírez-Jirano
- División de Neurociencias, Centro de Investigación Biomédica Occidente (IMSS), Guadalajara, Mexico
| | - María F. Urmeneta-Ortiz
- Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, Sierra Mojada #800, Independencia Oriente, C.P. 44340 Guadalajara, Jalisco, Mexico
| | - Veronica Chaparro-Huerta
- Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, Sierra Mojada #800, Independencia Oriente, C.P. 44340 Guadalajara, Jalisco, Mexico
| | - Mario E. Flores-Soto
- Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, Sierra Mojada #800, Independencia Oriente, C.P. 44340 Guadalajara, Jalisco, Mexico
| |
Collapse
|
10
|
Dargahi M, Karimi G, Etemad L, Alavi MS, Roohbakhsh A. Fatty acid amide hydrolase inhibitor URB597 suppressed conditioned and sensitized fear responses in a rat model of post-traumatic stress disorder. LEARNING AND MOTIVATION 2023. [DOI: 10.1016/j.lmot.2023.101872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
11
|
Kędziora M, Boccella S, Marabese I, Mlost J, Infantino R, Maione S, Starowicz K. Inhibition of anandamide breakdown reduces pain and restores LTP and monoamine levels in the rat hippocampus via the CB 1 receptor following osteoarthritis. Neuropharmacology 2023; 222:109304. [PMID: 36341807 DOI: 10.1016/j.neuropharm.2022.109304] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 07/15/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
Chronic pain is a persistent, complex condition that contributes to impaired mood, anxiety and emotional problems. Osteoarthritis (OA) is one of the major causes of chronic pain in adults and elderly people. A substantial body of evidence demonstrate that hippocampal neural circuits, especially monoamine dopamine and serotonin levels, contributes to negative affect and avoidance motivation experienced during pain. Current pharmacological strategies for OA patients are unsatisfying and the endocannabinoid system modulation might represent an alternative for the treatment of OA-related pain. In the present study, we used a rat model of osteoarthritis induced by intra-articular injection of sodium monoiodoacetate to assess, 28 days post-induction, the contribution of endocannabinoid system on the possible alteration in pain perception and affective behavior, in LTP and monoamine levels in the lateral entorhinal cortex-dentate gyrus pathway. The results show that OA-related chronic pain induces working memory impairment and depressive-like behavior appearance, diminishes LTP, decreases dopamine levels and increases serotonin levels in the rat dentate gyrus. URB597 administration (i.p., 1 mg/kg) reduces hyperalgesia and mechanical allodynia, improves recognition memory and depressive-live behavior, restores LTP and normalizes monoamine levels in the hippocampus. The effect was observed 60-120 min post-treatment and was blocked by AM251, which proves the action of URB597 via the CB1 receptor. Therefore, our study confirms the role of anandamide in OA-related chronic pain management at the behavioral and hippocampal levels. This article is part of the Special Issue on 'Advances in mechanisms and therapeutic targets relevant to pain'.
Collapse
Affiliation(s)
- Marta Kędziora
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland
| | - Serena Boccella
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Ida Marabese
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Jakub Mlost
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland
| | - Rosmara Infantino
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "L. Vanvitelli", Naples, Italy; IRCSS, Neuromed, Pozzilli (IS), 86077, Italy; ERG, Endocannabinoid Research Group, CNR, Pozzuoli, Italy
| | - Katarzyna Starowicz
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland.
| |
Collapse
|
12
|
Watts JJ, Guma E, Chavez S, Tyndale RF, Ross RA, Houle S, Wilson AA, Chakravarty M, Rusjan PM, Mizrahi R. In vivo brain endocannabinoid metabolism is related to hippocampus glutamate and structure - a multimodal imaging study with PET, 1H-MRS, and MRI. Neuropsychopharmacology 2022; 47:1984-1991. [PMID: 35906490 PMCID: PMC9485131 DOI: 10.1038/s41386-022-01384-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/17/2022] [Accepted: 07/07/2022] [Indexed: 01/18/2023]
Abstract
Dysregulation of hippocampus glutamatergic neurotransmission and reductions in hippocampal volume have been associated with psychiatric disorders. The endocannabinoid system modulates glutamate neurotransmission and brain development, including hippocampal remodeling. In humans, elevated levels of anandamide and lower activity of its catabolic enzyme fatty acid amide hydrolase (FAAH) are associated with schizophrenia diagnosis and psychotic symptom severity, respectively (Neuropsychopharmacol, 29(11), 2108-2114; Biol. Psychiatry 88 (9), 727-735). Although preclinical studies provide strong evidence linking anandamide and FAAH to hippocampus neurotransmission and structure, these relationships remain poorly understood in humans. We recruited young adults with and without psychotic disorders and measured FAAH activity, hippocampal glutamate and glutamine (Glx), and hippocampal volume using [11C]CURB positron emission tomography (PET), proton magnetic resonance spectroscopy (1H-MRS) and T1-weighted structural MRI, respectively. We hypothesized that higher FAAH activity would be associated with greater hippocampus Glx and lower hippocampus volume, and that these effects would differ in patients with psychotic disorders relative to healthy control participants. After attrition and quality control, a total of 37 participants (62% male) completed [11C]CURB PET and 1H-MRS of the left hippocampus, and 45 (69% male) completed [11C]CURB PET and hippocampal volumetry. Higher FAAH activity was associated with greater concentration of hippocampal Glx (F1,36.36 = 9.17, p = 0.0045; Cohen's f = 0.30, medium effect size) and smaller hippocampal volume (F1,44.70 = 5.94, p = 0.019, Cohen's f = 0.26, medium effect size). These effects did not differ between psychosis and healthy control groups (no group interaction). This multimodal imaging study provides the first in vivo evidence linking hippocampal Glx and hippocampus volume with endocannabinoid metabolism in the human brain.
Collapse
Affiliation(s)
- Jeremy J Watts
- Research Centre, CHU Sainte-Justine, Montreal, QC, Canada
- Department of Psychiatry, Université de Montréal, Montreal, QC, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Elisa Guma
- Computational Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, QC, Canada
- Developmental Neurogenomics Unit, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Sofia Chavez
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Rachel F Tyndale
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Ruth A Ross
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Sylvain Houle
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Alan A Wilson
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Mallar Chakravarty
- Computational Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Pablo M Rusjan
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Romina Mizrahi
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Douglas Mental Health University Institute, Montreal, QC, Canada.
| |
Collapse
|
13
|
Neurobiological Links between Stress, Brain Injury, and Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8111022. [PMID: 35663199 PMCID: PMC9159819 DOI: 10.1155/2022/8111022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022]
Abstract
Stress, which refers to a combination of physiological, neuroendocrine, behavioral, and emotional responses to novel or threatening stimuli, is essentially a defensive adaptation under physiological conditions. However, strong and long-lasting stress can lead to psychological and pathological damage. Growing evidence suggests that patients suffering from mild and moderate brain injuries and diseases often show severe neurological dysfunction and experience severe and persistent stressful events or environmental stimuli, whether in the acute, subacute, or recovery stage. Previous studies have shown that stress has a remarkable influence on key brain regions and brain diseases. The mechanisms through which stress affects the brain are diverse, including activation of endoplasmic reticulum stress (ERS), apoptosis, oxidative stress, and excitatory/inhibitory neuron imbalance, and may lead to behavioral and cognitive deficits. The impact of stress on brain diseases is complex and involves impediment of recovery, aggravation of cognitive impairment, and neurodegeneration. This review summarizes various stress models and their applications and then discusses the effects and mechanisms of stress on key brain regions—including the hippocampus, hypothalamus, amygdala, and prefrontal cortex—and in brain injuries and diseases—including Alzheimer’s disease, stroke, traumatic brain injury, and epilepsy. Lastly, this review highlights psychological interventions and potential therapeutic targets for patients with brain injuries and diseases who experience severe and persistent stressful events.
Collapse
|
14
|
Bright U, Akirav I. Modulation of Endocannabinoid System Components in Depression: Pre-Clinical and Clinical Evidence. Int J Mol Sci 2022; 23:5526. [PMID: 35628337 PMCID: PMC9146799 DOI: 10.3390/ijms23105526] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 02/05/2023] Open
Abstract
Depression is characterized by continuous low mood and loss of interest or pleasure in enjoyable activities. First-line medications for mood disorders mostly target the monoaminergic system; however, many patients do not find relief with these medications, and those who do suffer from negative side effects and a discouragingly low rate of remission. Studies suggest that the endocannabinoid system (ECS) may be involved in the etiology of depression and that targeting the ECS has the potential to alleviate depression. ECS components (such as receptors, endocannabinoid ligands, and degrading enzymes) are key neuromodulators in motivation and cognition as well as in the regulation of stress and emotions. Studies in depressed patients and in animal models for depression have reported deficits in ECS components, which is motivating researchers to identify potential diagnostic and therapeutic biomarkers within the ECS. By understanding the effects of cannabinoids on ECS components in depression, we enhance our understanding of which brain targets they hit, what biological processes they alter, and eventually how to use this information to design better therapeutic options. In this article, we discuss the literature on the effects of cannabinoids on ECS components of specific depression-like behaviors and phenotypes in rodents and then describe the findings in depressed patients. A better understanding of the effects of cannabinoids on ECS components in depression may direct future research efforts to enhance diagnosis and treatment.
Collapse
Affiliation(s)
- Uri Bright
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel;
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| | - Irit Akirav
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel;
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
15
|
Epps SA. Commonalities for comorbidity: Overlapping features of the endocannabinoid system in depression and epilepsy. Front Psychiatry 2022; 13:1041460. [PMID: 36339877 PMCID: PMC9626804 DOI: 10.3389/fpsyt.2022.1041460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
A wealth of clinical and pre-clinical data supports a bidirectional comorbidity between depression and epilepsy. This suggests commonalities in underlying mechanisms that may serve as targets for more effective treatment strategies. Unfortunately, many patients with this comorbidity are highly refractory to current treatment strategies, while others experience a worsening of one arm of the comorbidity when treating the other arm. This highlights the need for novel pharmaceutical targets that may provide safe and effective relief for both depression and epilepsy symptoms. The endocannabinoid system (ECS) of the brain has become an area of intense interest for possible roles in depression and epilepsy. Several existing literature reviews have provided in-depth analysis of the involvement of various aspects of the ECS in depression or epilepsy separately, while others have addressed the effectiveness of different treatment strategies targeting the ECS in either condition individually. However, there is not currently a review that considers the ECS when both conditions are comorbid. This mini-review will address areas of common overlap between the ECS in depression and in epilepsy, such as commonalities in endocannabinoids themselves, their receptors, and degradative enzymes. These areas of overlap will be discussed alongside their implications for treatment of this challenging comorbidity.
Collapse
Affiliation(s)
- S Alisha Epps
- Department of Psychology, Whitworth University, Spokane, WA, United States
| |
Collapse
|
16
|
Patel R, Agrawal S, Jain NS. Stimulation of dorsal hippocampal histaminergic transmission mitigates the expression of ethanol withdrawal-induced despair in mice. Alcohol 2021; 96:1-14. [PMID: 34228989 DOI: 10.1016/j.alcohol.2021.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/12/2021] [Accepted: 06/25/2021] [Indexed: 10/20/2022]
Abstract
Garnered literature points toward the role of the dorsal hippocampus (CA1) in ethanol withdrawal-induced responses, wherein a strong presence of the histaminergic system is also reported. Therefore, the present study investigated the effect of an enhanced CA1 histaminergic transmission on the expression of chronic ethanol withdrawal-induced despair in mice on the tail suspension test (TST). The results revealed that mice who were on an ethanol-fed diet (5.96%, v/v) for 8 days exhibited maximum immobility time on the TST, and decreased locomotion at 24 h post-ethanol withdrawal (10th day), indicating ethanol withdrawal-induced despair. Enhancement of CA1 histaminergic activity achieved by the treatment of intra-CA1 microinjection of histaminergic agents such as histamine (0.1, 10 μg/mouse, bilateral), the histamine precursor l-histidine (1, 10 μg/mouse, bilateral), the histamine neuronal releaser/H3 receptor antagonist thioperamide (2, 10 μg/mouse, bilateral), the histamine H1 receptor agonist FMPH (2, 6.5 μg/mouse, bilateral), or the H2 receptor agonist amthamine (0.1, 0.5 μg/mouse, bilateral) to ethanol-withdrawn mice, 10 min before the 24-h post-ethanol withdrawal time point, significantly alleviated the expression of ethanol withdrawal-induced despair in mice on the TST. On the other hand, only the pre-treatment of the histamine H1 receptor agonist FMPH (2, 6.5 μg/mouse, intra-CA1 bilateral) reversed the reduction in locomotor activity induced in ethanol-withdrawn mice, whereas other employed histaminergic agents were devoid of any effect on this behavior. Therefore, our findings indicate that an enhanced CA1 histaminergic transmission, probably via stimulation of CA1 postsynaptic histamine H1 or H2 receptor, could preclude the behavioral despair, while H1 stimulation affects motor deficit expressed after ethanol withdrawal.
Collapse
|
17
|
Wilkerson JL, Bilbrey JA, Felix JS, Makriyannis A, McMahon LR. Untapped endocannabinoid pharmacological targets: Pipe dream or pipeline? Pharmacol Biochem Behav 2021; 206:173192. [PMID: 33932409 DOI: 10.1016/j.pbb.2021.173192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
It has been established that the endogenous cannabinoid (endocannabinoid) system plays key modulatory roles in a wide variety of pathological conditions. The endocannabinoid system comprises both cannabinoid receptors, their endogenous ligands including 2-arachidonoylglycerol (2-AG), N-arachidonylethanolamine (anandamide, AEA), and enzymes that regulate the synthesis and degradation of endogenous ligands which include diacylglycerol lipase alpha (DAGL-α), diacylglycerol lipase beta (DAGL-β), fatty acid amide hydrolase (FAAH), monoacylglycerol lipase (MAGL), α/β hydrolase domain 6 (ABHD6). As the endocannabinoid system exerts considerable involvement in the regulation of homeostasis and disease, much effort has been made towards understanding endocannabinoid-related mechanisms of action at cellular, physiological, and pathological levels as well as harnessing the various components of the endocannabinoid system to produce novel therapeutics. However, drug discovery efforts within the cannabinoid field have been slower than anticipated to reach satisfactory clinical endpoints and raises an important question into the validity of developing novel ligands that therapeutically target the endocannabinoid system. To answer this, we will first examine evidence that supports the existence of an endocannabinoid system role within inflammatory diseases, neurodegeneration, pain, substance use disorders, mood disorders, as well as metabolic diseases. Next, this review will discuss recent clinical studies, within the last 5 years, of cannabinoid compounds in context to these diseases. We will also address some of the challenges and considerations within the cannabinoid field that may be important in the advancement of therapeutics into the clinic.
Collapse
Affiliation(s)
- Jenny L Wilkerson
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| | - Joshua A Bilbrey
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Jasmine S Felix
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; Departments of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Lance R McMahon
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|