1
|
Liana D, Chatwichien J, Phanumartwiwath A. Enhanced Anti-Inflammatory and Skin Barrier Repair Effects of Nanoemulsions Supplemented with Boesenbergia rotunda for Atopic Dermatitis. ACS NANOSCIENCE AU 2025; 5:37-51. [PMID: 39990109 PMCID: PMC11843515 DOI: 10.1021/acsnanoscienceau.4c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 02/25/2025]
Abstract
Betamethasone dipropionate (BD) is a potent anti-inflammatory drug for atopic dermatitis (AD); however, it leads to serious adverse effects during prolonged use. We aimed to improve the biochemical properties and lower the risk of toxicity by preparing nanoemulsions containing Boesenbergia rotunda rhizome hexane extract (Hex) and essential oils (EO). Physicochemical characterization and 3-month long-term stability testing were conducted. Gas chromatography-mass spectrometry analysis was used to compare the volatile composition after nanoemulsion formulation. Further, various assays related to AD management, including antioxidant potentials, anti-inflammatory activities through inhibition of 5-lipoxygenase and cyclooxygenase-2, and nitric oxide release suppression in lipopolysaccharides-induced RAW 264.7 macrophages, were investigated. In addition, antibacterial activity against Staphylococcus aureus and cytotoxicity to RAW 264.7 macrophages and HaCaT human keratinocyte cells were also evaluated. Monodispersed nanoemulsions (<20 nm) were successfully generated by an ultrasound-assisted method. BD was successfully encapsulated into B. rotunda-based nanoemulsions with more than 95% encapsulation efficiency (EE). The major phytochemicals present in EO and Hex remained after nanoemulsion formulation. The nanoemulsions were compatible with skin pH (5.2-5.8) and exhibited stability with respect to particle size, polydispersity index, transmittance, pH, and EE when stored for 3 months at -20 °C. The BD nanoemulsions loaded with B. rotunda exhibited antioxidant activities and significantly increased the 5-lipoxygenase inhibitory activity. Furthermore, the suppression of nitric oxide release was remarkably enhanced, whereas lower cytotoxicity was observed. The BD nanoemulsions improved the level of involucrin and filaggrin in HaCaT cells, implying their valuable property for skin barrier repair. The formulation of BD into nanoemulsions also enhanced S. aureus inhibition. Either B. rotunda nanoemulsions loaded with or without BD show promise for the topical treatment and prevention of AD.
Collapse
Affiliation(s)
- Desy Liana
- College
of Public Health Sciences, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Jaruwan Chatwichien
- Program
in Chemical Sciences, Chulabhorn Graduate
Institute, Bangkok 10210, Thailand
- Chulabhorn
Royal Academy, Bangkok 10210, Thailand
| | | |
Collapse
|
2
|
Satapathy BS, Mishra A, Mohanty K, Pattnaik S, Tripathy S, Biswal B. Lipid nanocarrier-based bigel of Piper betel oil for analgesic and anti-inflammatory applications. J Microencapsul 2025; 42:47-69. [PMID: 39587839 DOI: 10.1080/02652048.2024.2430651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/13/2024] [Indexed: 11/27/2024]
Abstract
Present study reports analgesic and anti-inflammatory potential of Piper betel (L.) leaf oil loaded lipid nanocarrier (BLNs)-embedded bigel. BLNs were developed by solvent evaporation technique and were characterised by FESEM, Cryo-TEM, mean diameter, zeta potential, loading efficiency, etc. BLNs embedded bigel (BLNs-G) was evaluated for analgesic and anti-inflammatory efficacy in rat model. Data showed spherical BLNs with intact lamellarity, 138.2 ± 1.08 nm mean diameter, 0.182 PDI, -46.6 ± 0.61 mV zeta potential, 76.2 ± 2.1% (w/w) loading efficiency and a sustained release in vitro. BLNs-G was homogenous with satisfied viscosity (40 734 ± 1.7 cps), spreadability (8.3 ± 1.5 g.cm sec-1), extrudability (91.33 ± 1.3% w/w) along with a sustained permeation ex vivo. Significant analgesic and anti-inflammatory action were depicted by BLNs-G (1% w/w) in rat model (p ˂ 0.05) within 30 minutes post topical application. In silico docking study revealed high affinity of major phytoactive components with key analgesic/inflammatory mediators. Further pre-clinical investigations are warranted for futuristic clinical application of BLNs-G.
Collapse
Affiliation(s)
- Bhabani Sankar Satapathy
- Department of Pharmaceutics, GITAM School of Pharmacy, GITAM Deemed to be University, Hyderabad, India
| | - Abhishek Mishra
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Bhubaneswar, India
| | | | - Snigdha Pattnaik
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Bhubaneswar, India
| | - Shyamalendu Tripathy
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Bhubaneswar, India
| | - Biswabhusan Biswal
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Bhubaneswar, India
| |
Collapse
|
3
|
Rustamova N, Huang G, Isokov M, Movlanov J, Farid R, Buston I, Xiang H, Davranov K, Yili A. Modification of natural compounds through biotransformation process by microorganisms and their pharmacological properties. Fitoterapia 2024; 179:106227. [PMID: 39326800 DOI: 10.1016/j.fitote.2024.106227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
The biotransformation of natural compounds by fungal microorganisms is a complex biochemical process. Tandem whole-cell biotransformation offers a promising, alternative, and cost-effective method for modifying of bioactive novel compounds. This approach is particularly beneficial for structurally complex natural products that are difficult to be synthesized through traditional synthetic methods. Biotransformation also provides significant regio- and stereoselectivity, making it a valuable tool for the chemical modification of natural compounds. By utilizing microbial conversion reactions, the biological activity and structural diversity of natural products can be enhanced. In this review, we have summarized 282 novel metabolites resulting from microbial transformation by various microorganisms. We discussed the chemical structures and pharmacological properties of these novel biotransformation products. The review would assist scientists working in the fields of biotechnology, organic chemistry, medicinal chemistry, and pharmacology.
Collapse
Affiliation(s)
- Nigora Rustamova
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; Department of Enzymology, Institute of Microbiology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Shaykhantakhur district, street Abdulla Kadiriy, 7 B100128, Uzbekistan; Department of Biology, Samarkand State University, University Boulevard 15, Samarkand 703004, Uzbekistan.
| | - Guozheng Huang
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, 59 Hudong Road, Ma'anshan 243002, Anhui, China
| | - Maksud Isokov
- University of Geological Science, Center of Geoinnovation Technologies, 100041 Tashkent, Uzbekistan
| | - Jakhongir Movlanov
- University of Geological Science, Center of Geoinnovation Technologies, 100041 Tashkent, Uzbekistan
| | - Ruziev Farid
- Department of Biology, Samarkand State University, University Boulevard 15, Samarkand 703004, Uzbekistan
| | - Islamov Buston
- Department of Biology, Samarkand State University, University Boulevard 15, Samarkand 703004, Uzbekistan
| | - Hua Xiang
- Institute Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kahramon Davranov
- Department of Enzymology, Institute of Microbiology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Shaykhantakhur district, street Abdulla Kadiriy, 7 B100128, Uzbekistan
| | - Abulimiti Yili
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
| |
Collapse
|
4
|
He MT, Shin YS, Kim HY, Cho EJ. Carthamus tinctorius seeds- Taraxacum coreanum combination attenuates scopolamine-induced memory deficit through regulation of inflammatory response and cholinergic function. Nutr Res Pract 2024; 18:647-662. [PMID: 39398878 PMCID: PMC11464282 DOI: 10.4162/nrp.2024.18.5.647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND/OBJECTIVES There is growing interest in herbal medicines for managing age-related diseases, such as Alzheimer's and Parkinson's. Safflower seeds (Carthamus tinctorius L. seeds, CTS) and dandelions (Taraxacum coreanum, TC) are widely used to treat bone- or inflammation-related diseases in Oriental countries. This study investigated the protective effect of the CTS-TC combination on scopolamine (Sco)-induced memory deficits through inflammatory response and cholinergic function. Moreover, marker components such as serotonin, N-(p-coumaroyl) serotonin, N-feruloylserotonin, chlorogenic acid, and chicoric acid in the CTS-TC combination were analyzed for their potential benefits on memory function. MATERIALS/METHODS Water extracts of CTS, TC, and the CTS-TC combination at various ratios (4:1, 1:1, and 1:4) (100 mg/kg) were orally administered to mice for 14 days. Sco (1 mg/kg) was intraperitoneally injected into the mice before each behavioral test. T-maze and novel object recognition tests were conducted to monitor behavioral changes after the treatment. Western blotting was performed to detect protein expression. In addition, the presence of 5 biomarkers, serotonin, N-(p-coumaroyl) serotonin, N-feruloylserotonin, chlorogenic acid, and chicoric acid, was analyzed using high-performance liquid chromatography (HPLC). RESULTS Behavioral tests showed that the CTS-TC combination enhanced memory function in Sco-injected mice. Inflammation-related proteins (inducible nitric oxide synthase, cyclooxygenase-2, and glial fibrillary acidic protein) were downregulated after treatment with the CTS-TC combination. The acetylcholinesterase protein expression was also downregulated. HPLC analysis revealed that N-feruloylserotonin and chicoric acid were the predominant components, followed by N-(p-coumaroyl) serotonin, chlorogenic acid, and serotonin. CONCLUSION These findings suggest that the CTS-TC combination protects against Sco-induced memory deficits by inhibiting inflammatory responses and cholinergic dysfunction. N-feruloylserotonin and chicoric acid, along with N-(p-coumaroyl) serotonin, chlorogenic acid, and serotonin, might be biomarkers for the CTS-TC combination, and their effects on memory protection warrant further study.
Collapse
Affiliation(s)
- Mei Tong He
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea
| | - Yu-Su Shin
- Department of Ginseng and Medicinal Herb, National Institute of Horticulture Herbal Science, Rural Development Administration, Eumseong 27709, Korea
| | - Hyun Young Kim
- Department of Food Science and Nutrition, Gyeongsang National University, Jinju 52725, Korea
| | - Eun Ju Cho
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Korea
- BK21 FOUR Program: Precision Nutrition Program for Future Global Leaders, Pusan National University, Busan 46241, Korea
| |
Collapse
|
5
|
Liana D, Eurtivong C, Phanumartwiwath A. Boesenbergia rotunda and Its Pinostrobin for Atopic Dermatitis: Dual 5-Lipoxygenase and Cyclooxygenase-2 Inhibitor and Its Mechanistic Study through Steady-State Kinetics and Molecular Modeling. Antioxidants (Basel) 2024; 13:74. [PMID: 38247498 PMCID: PMC10812521 DOI: 10.3390/antiox13010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
Human 5-lipoxygenase (5-LOX) and cyclooxygenase-2 (COX-2) are potential targets for suppressing pruritic skin inflammation in atopic dermatitis (AD). In addition, Staphylococcus aureus colonization and oxidative stress worsen AD skin conditions. We aimed to investigate anti-inflammatory activity, using 5-LOX and COX-2 inhibitions, and the anti-staphylococcal, and antioxidant potentials of several medicinal plants bio-prospected from traditional medicine related to AD pathogenesis. Essential oils and hexane fractions were prepared and analyzed using gas chromatography-mass spectrometry. Boesenbergia rotunda hexane extract displayed anti-Staphylococcus aureus (MIC = 10 µg/mL) and antioxidant activities (IC50 = 557.97 and 2651.67 µg/mL against DPPH and NO radicals, respectively). A major flavonoid, pinostrobin, was further nonchromatographically isolated. Pinostrobin was shown to be a potent 5-LOX inhibitor (IC50 = 0.499 µM) compared to nordihydroguaiaretic acid (NDGA; IC50 = 5.020 µM) and betamethasone dipropionate (BD; IC50 = 2.077 µM) as the first-line of AD treatment. Additionally, pinostrobin inhibited COX-2 (IC50 = 285.67 µM), which was as effective as diclofenac sodium (IC50 = 290.35 µM) and BD (IC50 = 240.09 µM). This kinetic study and molecular modeling showed the mixed-type inhibition of NDGA and pinostrobin against 5-LOX. This study suggests that B. rotunda and its bioactive pinostrobin have promising properties for AD therapy.
Collapse
Affiliation(s)
- Desy Liana
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Chatchakorn Eurtivong
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Ratchathewi, Bangkok 10400, Thailand;
| | | |
Collapse
|
6
|
Gawlik-Dziki U, Wrzesińska-Krupa B, Nowak R, Pietrzak W, Zyprych-Walczak J, Obrępalska-Stęplowska A. Herbicide resistance status impacts the profile of non-anthocyanin polyphenolics and some phytomedical properties of edible cornflower (Centaurea cyanus L.) flowers. Sci Rep 2023; 13:11538. [PMID: 37460793 DOI: 10.1038/s41598-023-38520-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
To ensure sufficient food supply worldwide, plants are treated with pesticides to provide protection against pathogens and pests. Herbicides are the most commonly utilised pesticides, used to reduce the growth of weeds. However, their long-term use has resulted in the emergence of herbicide-resistant biotypes in many weed species. Cornflower (Centaurea cyanus L., Asteraceae) is one of these plants, whose biotypes resistant to herbicides from the group of acetolactate synthase (ALS) inhibitors have begun to emerge in recent years. Some plants, although undesirable in crops and considered as weeds, are of great importance in phytomedicine and food production, and characterised by a high content of health-promoting substances, including antioxidants. Our study aimed to investigate how the acquisition of herbicide resistance affects the health-promoting properties of plants on the example of cornflower, as well as how they are affected by herbicide treatment. To this end, we analysed non-anthocyanin polyphenols and antioxidant capacity in flowers of C. cyanus from herbicide-resistant and susceptible biotypes. Our results indicated significant compositional changes associated with an increase in the content of substances and activities that have health-promoting properties. High antioxidant activity and higher total phenolic and flavonoid compounds as well as reducing power were observed in resistant biotypes. The latter one increased additionally after herbicide treatment which might also suggest their role in the resistance acquisition mechanism. Overall, these results show that the herbicide resistance development, although unfavourable to crop production, may paradoxically have very positive effects for medicinal plants such as cornflower.
Collapse
Affiliation(s)
- Urszula Gawlik-Dziki
- Department of Biochemistry and Food Chemistry, University of Life Sciences, 8 Skromna St, 20-704, Lublin, Poland.
| | - Barbara Wrzesińska-Krupa
- Department of Molecular Biology and Biotechnology, Institute of Plant Protection - National Research Institute, 20 Wegorka St, 60-318, Poznań, Poland
| | - Renata Nowak
- Department of Pharmaceutical Botany, Medical University of Lublin, Chodźki 1 Str., 20-093, Lublin, Poland
| | - Wioletta Pietrzak
- Department of Pharmaceutical Botany, Medical University of Lublin, Chodźki 1 Str., 20-093, Lublin, Poland
| | - Joanna Zyprych-Walczak
- Department of Mathematical and Statistical Methods, Poznan University of Life Sciences, 28 Wojska Polskiego St, 60-637, Poznań, Poland
| | - Aleksandra Obrępalska-Stęplowska
- Department of Molecular Biology and Biotechnology, Institute of Plant Protection - National Research Institute, 20 Wegorka St, 60-318, Poznań, Poland.
| |
Collapse
|
7
|
He M, Park C, Shin Y, Kim J, Cho E. N-Feruloyl Serotonin Attenuates Neuronal Oxidative Stress and Apoptosis in Aβ 25-35-Treated Human Neuroblastoma SH-SY5Y Cells. Molecules 2023; 28:molecules28041610. [PMID: 36838597 PMCID: PMC9963151 DOI: 10.3390/molecules28041610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/25/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023] Open
Abstract
Amyloid-beta (Aβ) aggregation and deposition have been identified as a critical feature in the pathology of Alzheimer's disease (AD), with a series of functional alterations including neuronal oxidative stress and apoptosis. N-feruloyl serotonin (FS) is a plant-derived component that exerts antioxidant activity. This study investigated the protective effects of FS on Aβ25-35-treated neuronal damage by regulation of oxidative stress and apoptosis in human neuroblastoma SH-SY5Y cells. The radical scavenging activities increased with the concentration of FS, exhibiting in vitro antioxidant activity. The Aβ25-35-treated SH-SY5Y cells exerted neuronal cell injury by decreased cell viability and elevated reactive oxygen species, but that was recovered by FS treatment. In addition, treatment of FS increased anti-apoptotic factor B-cell lymphoma protein 2 (Bcl-2) and decreased the pro-apoptotic factor Bcl-2-associated X protein. The FS attenuated Aβ-stimulated neuronal apoptosis by regulations of mitogen-activated protein kinase signaling pathways. Moreover, activated CREB-BDNF signaling was observed by the treatment of FS in Aβ25-35-induced SH-SY5Y cells. These results demonstrate that FS shows potential neuroprotective effects on Aβ25-35-induced neuronal damage by attenuation of oxidative stress and apoptosis, and suggest that FS may be considered a promising candidate for the treatment of AD.
Collapse
Affiliation(s)
- Meitong He
- Department of Food Science and Nutrition, Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Chanhum Park
- Institute of New Frontier Research Team, Research Institute of Medical-Bio Convergence, Hallym University, Chuncheon 24252, Republic of Korea
| | - Yusu Shin
- Department of Medicinal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Republic of Korea
| | - Jihyun Kim
- Department of Food Science and Nutrition, Gyeongsang National University, Jinju 52725, Republic of Korea
- Correspondence: (J.K.); (E.C.)
| | - Eunju Cho
- Department of Food Science and Nutrition, Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea
- Correspondence: (J.K.); (E.C.)
| |
Collapse
|
8
|
Anti-skin aging activity of eggshell membrane administration and its underlying mechanism. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00291-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Abstract
Background
There is active research on developing materials for improving skin function. Eggshell membrane (ESM) is one such raw material that is consumed as a functional food to support skin health. However, studies on the mechanism of improvement of skin function on ingestion of ESM are still lacking.
Objectives
To explore this mechanism of action, we conducted an ultraviolet (UV) irradiation study on a SKH-1 hairless mouse model. Feeding ESM was found to improve skin moisture and reduce wrinkles during 12 weeks of UVB irradiation.
Results
Oral administration of ESM restored moisture in the dorsal skin tissue of mice. In addition, oral ingestion of ESM also reversed the increased transepidermal water loss and reduction of mRNA expression of hyaluronic synthases induced by UVB irradiation. Furthermore, UVB irradiation-induced collagen degradation was inhibited, and the expression of the collagenase MMP was reduced in the ESM intake group compared to the control. These results confirmed that oral ingestion of the ESM has an anti-wrinkle effect. In addition, the mRNA expression of the antioxidant enzyme SOD1, which was reduced on UVB irradiation, was restored on ingestion of the ESM. Restoring the expression of antioxidant enzymes is a key strategy for improving skin function of the ESM.
Conclusion
Taken together, the findings from our study reveal the potential of ESM as a nutricosmetic material with anti-wrinkle and skin moisturizing properties.
Collapse
|